Changes in bone sodium and carbonate in metabolic acidosis and alkalosis in the dog

James M. Burnell

J Clin Invest. 1971;50(2):327-331. https://doi.org/10.1172/JCI106499.

Research Article

Metabolic acidosis and alkalosis were produced in adult dogs over 5- to 10-day periods. Midtibial cortical bone was analyzed for calcium, sodium, phosphorus, and carbonate. In acidosis bone CO_3^2/Ca decreased 9.5% and bone Na/Ca decreased 6.3%. In alkalosis bone CO_3^2/Ca increased 3.1% and bone Na/Ca increased 3.0%.

Previous attempts to account for changes in net acid balance by summation of extra- and intracellular acid-base changes have uniformly resulted in about 40-60% of acid gained or lost being “unaccounted for.” If it is assumed that changes in tibial cortex reflect changes in the entire skeletal system, changes in bone $\text{CO}_3^2=$ are sufficiently large to account for the “unaccounted for” acid change without postulating changes in cellular metabolic acid production.

Find the latest version:

http://jci.me/106499-pdf
Changes in Bone Sodium and Carbonate in Metabolic Acidosis and Alkalosis in the Dog

JAMES M. BURNELL with technical assistance of ELIZABETH TEUBNER

From the Department of Medicine, University of Washington School of Medicine, Seattle, Washington 98105

ABSTRACT Metabolic acidosis and alkalosis were produced in adult dogs over 5- to 10-day periods. Mid-tibial cortical bone was analyzed for calcium, sodium, phosphorus, and carbonate. In acidosis bone CO₃/Ca decreased 9.5% and bone Na/Ca decreased 6.3%. In alkalosis bone CO₃/Ca increased 3.1% and bone Na/Ca increased 3.9%.

Previous attempts to account for changes in net acid balance by summation of extra- and intracellular acid-base changes have uniformly resulted in about 40-60% of acid gained or lost being "unaccounted for." If it is assumed that changes in tibial cortex reflect changes in the entire skeletal system, changes in bone CO₃ are sufficiently large to account for the "unaccounted for" acid change without postulating changes in cellular metabolic acid production.

INTRODUCTION

In 1917 Van Slyke noted that the distribution of accumulated acid could not be accounted for by changes in extracellular HCO₃ plus buffering (1). While initial explanation focused attention on intracellular buffers (1-3), there is a large body of evidence obtained by direct analysis of bone that CO₃ decreases in acidosis (4-7) and that this is associated with a decrease in both calcium (5-9) and sodium (4, 10, 11). Most of these studies were in growing rats. The two studies of bone in metabolic alkalosis are reports of increased sodium (11) and a suggestion of increased CO₃ in growing pigs fed large amounts of alkali (9). With the advent of a method of measurement of acid production, acid balance studies confirmed the existence of a tissue mechanism(s) involved in defense against continuing acid and alkali loads (12-14). The introduction of the DMO technique permitted measurement of intracellular pH and the estimation of cellular buffer capacity by CO₂ titration curves (15-19). Reexamination of the distribution of acid gain or loss produced by short-term hemodialysis revealed a large component "unaccounted for" after summation of changes in both extra- and intracellular fluid (19). Acid balance studies in KCl-depleted and Cl-repleted dogs confirmed that a major portion of the net acid changes observed were also "unaccounted for" (20).

This inability to account for all of the added acid or alkali can be explained by alteration in the cellular rate of metabolic acid production (16, 21) or by the existence of changes in bone CO₃. The present study was undertaken to test the hypothesis that plasma acidity is important in determination of bone CO₃ and that the magnitude of bone CO₃ change is adequate to explain the "unaccounted for" acid gain or loss obtained by summation of changes in extra- and intracellular body fluid compartments.

METHODS

Adult mongrel dogs were used. Initial variance from dog to dog, largely a function of age, was so large that it was necessary to use each dog as its own control. After methoxyflurane anesthesia three full thickness mid-tibial bone biopsies were removed from one leg with a 3 mm dental drill. Mean sample weight was about 40 mg. Metabolic acidosis was produced in six dogs (mean weight 10.0 kg) over 5-10 days by daily feeding of NH₄Cl, 15 mEq/kg. Metabolic alkalosis was produced in nine dogs (mean weight 9.0 kg) over 4-6 days by feeding a low Cl diet, plus daily administration of 50 mg of ethacrynic acid, 0.5 mg/kg DOCA, and 18 mEq/kg NaHCO₃. The dogs were then sacrificed and mid-tibial bone slices were taken from the other leg by using a high speed dental saw. Both biopsies and slices were frozen in liquid nitrogen (LN₂). For analysis, the frozen samples were powdered in a steel mortar and dried of condensed moisture and CO₂ in a standard vacuum oven at room temperature for 30 min. Triplicate samples of ±25 mg

Abbreviations used in this paper: DMO, 5,5-dimethyl-2,4-oxazolidinedione; DOCA, deoxycorticosterone acetate.

The Journal of Clinical Investigation Volume 50 1971 327
were weighed into 1.5 ml polyethylene vials and sealed. The contents of each vial were then analyzed for Na and Ca by neutron activation. The same bone powder was then analyzed for CO₂ manometrically. It is recognized that the eluted CO₂ could just as well come from HCO₃⁻ as from CO₂. However, since X-ray diffraction studies suggest that most bone CO₂ exists as CO₂⁺ (22), the term CO₂⁺ is used throughout. The eluate was then recovered and analyzed chemically for Ca and P.

Neutron activation analysis (NA). For calcium, the triplicate samples and one standard (15 mg dried CaCO₃) were irradiated in a thermal neutron flux of 8 × 10¹⁰ neutrons/(cm² sec) for 5 min. Counting was done with a Baird Atomic Spectrometer connected to a gamma scintillation detector, 3 × 3 in. NaI (TI). The discriminator was adjusted to reject scintillations below 2.9 Mev, just below the ⁴⁰Ca peak of 3.10 Mev (T₁ = 8.8 min). Because the ⁴⁰Na peak is 2.76 Mev (T₁ = 14.7 hr), it gave discernible interference so that it was necessary to recount ⁴⁰Na 3 hr later, when ⁴⁰Ca had decayed, adjust to zero time, and subtract from the original counts. Coefficient of variation (CV) of the method was 2.58%.

For Na determination the sample vials were placed in cylindrical Micarta holders with a standard (0.3180 mg dried Na₂CO₃) on each layer to monitor spatial flux variations and irradiated for 12 min in a thermal neutron flux of 7 × 10¹⁰ neutrons/(cm² sec). Counting of the gamma scintillations was delayed for 24-36 hr. At this time only ⁴⁰Na was left above the discriminator level of 2.2 Mev. Counting was performed by an automatic sample changer and printer using a 3 × 3 in. NaI (TI) well crystal. As the polyethylene vials contained about 0.5 μg Na₂, a blank vial was included in each irradiation to serve as the background count. The CV was 1.11%.

Carbonate determination. After neutron activation analysis the sample vial was cut in half and the lower half dropped into the sidearm opening of a reaction tube with a ground glass tip, and a 7 × 2 mm magnetic stirring bar added. A sidearm bulb containing 2 ml of 2 N HCl was attached with the bulb down, the entire unit attached to a manometric system which had been evacuated to less than 0.001 mm Hg. The HCl in the sidearm was frozen with LN₂ and the reaction tube then evacuated to at least 0.001 mm Hg. The flask was sealed off, the HCl thawed, and the sidearm rotated so that the acid would flow over the bone powder. The acid and carbonate were allowed to react with stirring for 3 min. In order to remove H₂O, the CO₂ was passed through an acetone–dry ice dewar before freezing in a LN₂ dewar. This reaction is complete in 2 min and must be timed carefully to avoid the collection of HCl vapor which occurs later. The LN₂ dewar was then removed and the CO₂ thawed and allowed to escape into the manometer, where the displacement caused by the CO₂ was read by a cathetometer. The mmoles of CO₂ were then calculated from the gas law equation PV = nRT. The CV was 1.11%. Comparison of biopy and slice sampling methods and samples from right and left leg, radius and tibia, revealed no significant differences, P = >0.05.

Chemical determination of calcium and phosphorus (AA). The water captured in the acetone–dry ice dewar was pulled back into the reaction tube by immersing it in LN₂ for 8 min. The tube was disconnected, 2 ml of 6 N HCl was added, and it was placed in a boiling water bath for 30 min to hydrolyze the bone powder completely. The contents were then transferred quantitatively to a volumetric flask and Ca and P determinations run on the Technicon AutoAnalyzer (23, 24). The CV for the Ca method was 1.62% and for the P method 1.54%.

RESULTS

Results in Table I are expressed as milliequivalents per gram wet bone powder. P values were calculated by the Student t test for paired observations and are considered significant if P < 0.05. In Table II and Fig. 1, each individual result is expressed as mEq ratio CO₂/Ca and Na/Ca using neutron activation analysis. In metabolic acidosis the mean decrease in plasma [HCO₃⁻] was from 26.9 to 12.1 mEq/liter. Blood pH fell from 7.37 to 7.21. Bone CO₂⁺ fell from 1.405 mEq/g to 1.268 mEq/g (-9.8%), P = <0.001. Bone Na fell from 0.2587 to 0.2413 mEq/g (-6.7%), P = <0.01. Changes in Ca and PO₄ were not significant. The mean decrease in CO₂/Ca was from 0.1262 to 0.1142, a decrease of 9.5%, P = <0.01. The mean decrease of Na/Ca was from 0.02321 to 0.02175, a decrease of 6.3%, P = <0.001.

Table I

<table>
<thead>
<tr>
<th>Acidosis (n = 6)</th>
<th>Alkalosis (n = 9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone</td>
<td>Change</td>
</tr>
<tr>
<td></td>
<td>Pre</td>
</tr>
<tr>
<td>CO₂</td>
<td>1.405</td>
</tr>
<tr>
<td>Na</td>
<td>0.2587</td>
</tr>
<tr>
<td>Ca (NA)</td>
<td>11.144</td>
</tr>
<tr>
<td>Ca (AA)</td>
<td>10.326</td>
</tr>
<tr>
<td>PO₄</td>
<td>10.033</td>
</tr>
</tbody>
</table>

[HCO₃⁻]ₚ | 26.9 | 12.1 | -55.0 | | | | | 25.1 | 45.6 | +81.7 |

(NA) = neutron activation; (AA) = AutoAnalyzer.

* All results are in mEq/g wet bone powder. [HCO₃⁻]ₚ = plasma [HCO₃⁻] in mEq/liter. P values were performed by Student t test.

328 J. M. Burnell
In metabolic alkalosis the mean increase in plasma
$[\text{HCO}_3^-]$ was from 25.1 to 45.6 mEq/liter. Blood pH rose
from 7.37 to 7.54. The mean increase in bone CO$_3^+$
was from 1.583 to 1.641 mEq/g (+3.7%), $P < 0.02$.
Bone Na increased from 0.2714 to 0.2813 mEq/g
(+3.6%), $P < 0.02$. The mean increase in CO$_3$/Na
was from 0.1307 to 0.1347, and increase of 3.1%. The
mean increase in Na/Ca was from 0.02242 to 0.02310,
an increase of 3.0%. Carbonate and Na changes in relation
to Ca are significant, $P < 0.001$. In metabolic alkalosis
changes in Ca and PO$_4$ are not significant as related
to wet weight, but Ca increase in relation to PO$_4$
or PO$_4$ decrease in relation to Ca is significant, $P <
0.01$ (NA) $P = 0.02$ (AA).

DISCUSSION

Although there has been considerable past interest in
bone and acid-base metabolism, as described in the
introduction, our interest was rekindled by failure to
account for all of the acid balance changes by summation
of changes in body fluids in studies in dogs (19, 20).
The implication was that either bone was more important
than generally viewed, or that metabolic cellular
events played an important role (16, 21). Since it was
postulated that analysis of the kinetics of cellular change
argued against the importance of cellular metabolism
(19), a direct reexamination of bone in adult animals
was indicated.

FIGURE 1 Changes in mid-tibial bone CO$_3$ and Na as related to Ca in
metabolic acidosis and alkalosis.
The results of direct analysis of bone in adult dogs demonstrate that bone is a source of HCO₃⁻ in acidosis and a reservoir for storage of excess HCO₃⁻ in metabolic alkalosis. From the standpoint of body fluid acid-base chemistry, these changes are large. In 2-hr acidosis experiments, 15 of 35 mEq (43%) of an acid load was calculated to have been buffered by bone CO₃²⁻ (19). In 4-hr alkalosis experiments 29 of 75 mEq (38%) of HCO₃⁻ transferred from dialysate to dog apparently accumulated in bone. In the metabolic alkalosis accompanying KCl depletion for 5-7 days, 32 mEq of a 67 mEq negative acid balance (48%) and in Cl repletion 65 of 98 mEq of a positive acid balance (65%) were postulated to have entered bone as CO₃²⁻ (20). These data are in general agreement with balance studies in man that a major portion of the buffering is in tissues (3, 12, 13).

In the present experiments acid balances were not performed. However, since the degrees of acidosis and alkalosis produced were of the same order of magnitude as in the previous studies, a comparison is warranted.

The previous studies involved rather gross estimates of acid balance; nonetheless, the per cent unaccounted for by summation of body fluid changes varied from 38% to 65% of the net acid balance change. In metabolic acidosis produced by hemodialysis, 43% of HCO₃⁻ removed from the dog apparently came from bone (19). In the longer-term studies of metabolic acidosis herein reported there was a 9.5% decrease in CO₃/Ca. If it is assumed that changes in tibial cortex reflect changes throughout the skeleton and that a dog has 3400 mEq Ca/kg body weight (25, 26), then mEq Ca/kg × kg × CO₃/Ca change (mEq) = total CO₃²⁻ change (mEq).

This becomes 3400 × 10.0 × (0.1262 × 0.095) = -408 mEq CO₃⁻. Even though the net acid balance associated with the decrease of 408 mEq in bone CO₃⁻ is unknown, this amount in general terms appears consistent with the indirect estimate of 43% of a 38 mEq load in 2 hr, and with large amounts of acid buffered by tissues during NH₄Cl loading (13, 14).

Comparison of acid balance data and direct bone data from our laboratory is possible in metabolic acidosis. In balance studies of metabolic acidosis (HCO₃⁻ = 42 mEq/liter) induced by KCl depletion and repair by Cl repletion (20), the calculated bone change per 15.6 kg dog was 48 mEq. In the present studies (HCO₃⁻ = 45 mEq/liter) the directly measured bone CO₃²⁻ change in 9-kg dogs was 120 mEq (3400 × 9.0 × 0.1307 × 0.03). While these are gross comparisons, it appears that the measured bone changes are sufficient to explain the "unaccounted for" negative acid balance without having to implicate changes in cellular metabolic acid production or buffer capacity.

Bone crystals have been described as nonhomogeneous with isomorphic substitutions producing variable composition from part to part of the crystal. Bone has been conceptualized as an equilibrium with moment to moment interchanges of ions between crystal surface and extracellular fluid (27). The observation that the composition of bone crystals from uremic humans parallels the high [PO₄³⁻] and low [HCO₃⁻] of the bathing media confirms this idea (28). The present observations provide further extension of such a concept, namely, that the bone crystal CO₃²⁻ content is in equilibrium with the [HCO₃⁻] content of extracellular fluid. However, there is nothing in the present experiments which differentiates changes in pH from change in [HCO₃⁻].

In both acidosis and alkalosis the mEq ratio of CO₃⁻/Na mobilized or deposited in the bone is 6-8:1, the same as in normal bone. The ratio is constant, whether one uses wet weight, Ca, or PO₄ as a reference base. This result requires that another cation moves with sodium or that there is anionic exchange. Both magnesium and citrate exist in such small amounts that they seem unlikely to play an important role. Unfortunately, the question of Ca movement and/or PO₄/C0₃ exchange must remain unresolved. Even though analytic methods permit identification of changes near 1-2% for Ca and P, the over-all amounts are so large that significant changes would be unidentifiable. Nonetheless, statistical analysis of our data suggests either Ca increases in alkalosis in reference to P0₄ or PO₄ decreases in reference to Ca (P = 0.02). Some skepticism should exist, however, because it would be expected that opposite changes would be observed in acidosis. The bone CO₃²⁻ changes in acidosis were greater and yet changes in Ca/P were not identified (P = >0.20).

In order to reconcile the data herein reported with prior knowledge, it appears that one must postulate in metabolic acidosis two separate phases of bone buffering. The appearance within 2-3 hr of large amounts of HCO₃⁻ (1-3, 19) suggests that the first phase would be a rapid, dynamic equilibrium (hours) between extracellular fluid [HCO₃⁻] or [H⁺] and bone CO₃⁻. The CO₃²⁻ changes may well be a surface phenomenon and are not dependent upon Ca mobilization because during the short time period no significant mobilization of Ca or P takes place. The second phase would be the long-term (days) mobilization of CO₃⁻ from bone seen in more chronic metabolic acidosis (4-7, 12-14). This requires both lowering of extracellular [HCO₃⁻] and mobilization of Ca and P (5-9, 12, 14).

In metabolic alkalosis, evidence of two phases is less clear. Short- (19) and long-term balance studies (13, 20) and the direct bone data herein reported suggest CO₃⁻ deposition in bone. However, there is not yet clear separation of short- and long-term effects and our direct
studies suggest that the CO$_3^-$ deposition is in excess of Ca and may involve CO$_3^-/P$ exchange rather than new bone formation.

ACKNOWLEDGMENTS

We are indebted to Robert Shiurba, Junior Medical Student, Wayne University, for assistance with the vacuum methods for CO$_3^-$; to Sayers J. Boyd, D.V.M., for surgical assistance; and to William P. Miller for assistance with neutron activation analysis.

This work was supported by National Institutes of Health Grant AM-06741 and the Boeing Good Neighbor Fund.

REFERENCES

