Suppression by cyproheptadine of human growth hormone and cortisol secretion during sleep.

K Chihara, …, S Matsukura, H Imura

J Clin Invest. 1976;57(6):1393-1402. https://doi.org/10.1172/JCI108408.

The effect of cyproheptadine on plasma growth hormone and cortisol levels was studied in seven male volunteers with polygraphic sleep monitoring. Sleep-related growth hormone release was completely inhibited in three of the seven normal subjects by the intravenous infusion of cyproheptadine (5 mg) which was started at the onset of sleep. In the other four, growth hormone release during sleep was significantly decreased or delayed by cyproheptadine when the drug infusion was started at 7:00 p.m., 1-2 h before the onset of sleep. The usual increase in plasma cortisol in the early morning was completely suppressed in all five subjects given cyproheptadine infusions from 4:00 to 7:00 a.m. The intravenous infusion of cyproheptadine increased slow wave sleep, although the time from sleep onset to the first occurrence of slow wave sleep was not affected. In contrast, rapid eye movement sleep was significantly decreased by cyproheptadine. These results suggest that cyproheptadine inhibits growth hormone and ACTH secretion during sleep in man, possibly by antagonizing serotoninergic mechanisms although other actions of the drug are not ruled out.

Find the latest version:

http://jci.me/108408-pdf
Suppression by Cyproheptadine of Human Growth Hormone and Cortisol Secretion during Sleep

KAZUO CHIHARA, YUZURU KATO, KIYOSHI MAEDA, SHIGERU MATSUKURA, and HIBOO IMURA

From the Third Division, Department of Medicine and Department of Neuropsychiatry, Kobe University School of Medicine, Kobe, Japan

ABSTRACT The effect of cyproheptadine on plasma growth hormone and cortisol levels was studied in seven male volunteers with polygraphic sleep monitoring.

Sleep-related growth hormone release was completely inhibited in three of the seven normal subjects by the intravenous infusion of cyproheptadine (5 mg) which was started at the onset of sleep. In the other four, growth hormone release during sleep was significantly decreased or delayed by cyproheptadine when the drug infusion was started at 7:00 p.m., 1-2 h before the onset of sleep.

The usual increase in plasma cortisol in the early morning was completely suppressed in all five subjects given cyproheptadine infusions from 4:00 to 7:00 a.m.

The intravenous infusion of cyproheptadine increased slow wave sleep, although the time from sleep onset to the first occurrence of slow wave sleep was not affected. In contrast, rapid eye movement sleep was significantly decreased by cyproheptadine.

These results suggest that cyproheptadine inhibits growth hormone and ACTH secretion during sleep in man, possibly by antagonizing serotoninergic mechanisms although other actions of the drug are not ruled out.

INTRODUCTION

Accumulating evidence in recent years suggests that serotoninergic mechanisms are implicated in the regulation of both growth hormone (GH)¹ and ACTH in laboratory animals (1-5). In our previous studies we observed that oral administration of 5-hydroxytryptophan, a precursor of serotonin, caused an increase in plasma GH, ACTH, and cortisol in normal subjects (6). These results suggest that serotoninergic mechanisms play a role in the release of GH and ACTH in man.

Cyproheptadine is known to be a potent serotonin antagonist, although it has additional actions such as antihistaminic and anticholinergic effects (7). Our subsequent studies have shown that cyproheptadine inhibits plasma GH responses to 5-hydroxytryptophan, arginine, or L-dihydroxyphenylalanine (8, 9). It has also been demonstrated in man that not only GH and cortisol release induced by hypoglycemia but also plasma GH response to exercise are significantly blunted by pretreatment with cyproheptadine (10-12).

The present study was designed to investigate the effect of cyproheptadine on the nocturnal rise of plasma GH and cortisol levels in man.

METHODS

Seven male volunteers, aged 19-23, were used throughout the experiment. They were non-obese (less than 10% above ideal body weight) and apparently normal in endocrine and autonomic nerve function. None of them took any drugs regularly. They slept normally for several nights before the day of the experiment and were not allowed to nap in the daytime.

They lay down in bed in our sleep laboratory at 8:00 p.m. for study I and at 4:00 p.m. for study II, and were kept recumbent till the end of the experiment. Electroencephalograms, electrooculograms, electromyograms, and electrocardiograms were recorded by standard techniques and sleep was scored as stage 1, 2, 3, 4, and stage of rapid eye movement (REM) according to the criteria of Rechtschaffen and Kales (13).

An indwelling needle (18 gauge) was inserted into an antecubital vein under local anesthesia and connected to an infusion apparatus. Another indwelling needle was inserted distally into another vein of the same arm.

Blood was drawn every 20 min through the latter needle into heparinized syringes. Plasma samples were immediately separated and stored at −20°C until subsequent measure-
ment of plasma GH and cortisol. Plasma GH was measured by double antibody radioimmunoassay as previously described (14) with highly purified human GH (NIH HS 1863) as the standard, and plasma cortisol by a competitive protein-binding assay (15).

Study I. Seven subjects participated in this study, but two of them completed only the first and second night experiments. During the first night, physiological saline solution was infused at a rate of 1 ml/min throughout the night. This night served as the first base-line night. During the second night, 5 mg of cyproheptadine dissolved in 180 ml of saline was infused intravenously for 3 h after the onset of sleep, which was defined as the first entry into stage 2 sleep (13), and was followed by saline solution. During the third night, cyproheptadine solution was infused from 4:00 to 7:00 a.m. after the physiological saline infusion which was started before the onset of sleep. During the fourth night, physiological saline was infused throughout the night. The fourth night study served as the second base-line night.

Study II. The infusion of cyproheptadine was begun at 7:00 p.m. and finished at 10:00 p.m. in four of the seven subjects who had participated in study I. The third base-line night consisted of studies in which subjects were infused with saline alone, starting at 7:00 p.m. Two of the four complained of drowsiness during the infusion of cyproheptadine, but were not allowed to fall sleep until 8:00 p.m. when the lights were turned off.

Statistical analysis was performed by Student's t test.

RESULTS

Effect of cyproheptadine on GH release during sleep periods. A significant increase in plasma GH during early sleep periods was observed during the first and second base-line nights in all subjects studied. The peak values of plasma GH in these subjects varied from 17.0 to 51.0 ng/ml. However, the pattern of GH release during early sleep periods in each subject was very similar on the two base-line nights (Fig. 1).

Polygraphic records of the first base-line night showed that stage 3 sleep occurred 5-19 min after the onset of sleep with a mean (±SEM) of 11±2 min, and that the first increase in plasma GH (more than 5 ng/ml) was

\[\text{Hours after sleep onset} \]

\[\text{Figure 1} \] Plasma GH concentration after onset of sleep (entry into stage 2) during base-line nights and nights of cyproheptadine infusion in subject H. I. The sleep histogram is shown beneath each panel: Open histograms (□) show slow wave stages 3 and 4, closed histograms (■) REM stage, and solid line (—) stages 1 and 2. Breaks in lines represent waking periods. Shaded areas indicate periods of cyproheptadine infusion. (A), First base-line night; (B), Night with cyproheptadine infused after sleep onset; (C), Second base-line night; (D), Night with cyproheptadine infused from 4:00 a.m.
noted 25–35 min after the onset of sleep with a mean
(±SEM) of 29±2 min. Results of the second base-line
night experiment did not differ significantly from those
of the first base-line night study, as shown in Table I.
During the two base-line nights, the first appearance
of slow wave sleep (SWS) was closely related with the
initial GH increment, although the occurrence of SWS
slightly but consistently preceded the first GH rise.

Table I

<table>
<thead>
<tr>
<th>Time from sleep onset:</th>
<th>First occurrence</th>
<th>First elevation</th>
<th>Peak value of plasma GH after the first elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(ng/ml)</td>
</tr>
<tr>
<td>First base-line night</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
</tr>
<tr>
<td>H. I.</td>
<td>5</td>
<td>34</td>
<td>17.6</td>
</tr>
<tr>
<td>T. S.</td>
<td>7</td>
<td>25</td>
<td>21.0</td>
</tr>
<tr>
<td>T. T.</td>
<td>11</td>
<td>25</td>
<td>20.0</td>
</tr>
<tr>
<td>H. N.</td>
<td>19</td>
<td>26</td>
<td>36.0</td>
</tr>
<tr>
<td>K. K.</td>
<td>15</td>
<td>35</td>
<td>28.0</td>
</tr>
<tr>
<td>N. M.</td>
<td>4</td>
<td>34</td>
<td>51.0</td>
</tr>
<tr>
<td>H. F.</td>
<td>18</td>
<td>25</td>
<td>17.0</td>
</tr>
<tr>
<td>Mean±SEM</td>
<td>11±2</td>
<td>29±2</td>
<td>27.2±4.7</td>
</tr>
<tr>
<td>Night with cyproheptadine infused after sleep onset</td>
<td>(c)</td>
<td>No peak*</td>
<td>No peak</td>
</tr>
<tr>
<td>H. I.</td>
<td>17</td>
<td>No peak*</td>
<td>No peak</td>
</tr>
<tr>
<td>T. S.</td>
<td>6</td>
<td>No peak</td>
<td>No peak</td>
</tr>
<tr>
<td>T. T.</td>
<td>8</td>
<td>No peak</td>
<td>No peak</td>
</tr>
<tr>
<td>H. N.</td>
<td>11</td>
<td>15</td>
<td>67.0</td>
</tr>
<tr>
<td>K. K.</td>
<td>9</td>
<td>17</td>
<td>28.5</td>
</tr>
<tr>
<td>N. M.</td>
<td>7</td>
<td>14</td>
<td>56.0</td>
</tr>
<tr>
<td>H. F.</td>
<td>6</td>
<td>16</td>
<td>28.0</td>
</tr>
<tr>
<td>Mean±SEM</td>
<td>9±1§</td>
<td>16±1‡</td>
<td>44.9±10.0¶§</td>
</tr>
<tr>
<td>Second base-line night</td>
<td>(d)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. I.</td>
<td>16</td>
<td>23</td>
<td>17.2</td>
</tr>
<tr>
<td>T. S.</td>
<td>8</td>
<td>45</td>
<td>7.7</td>
</tr>
<tr>
<td>T. T.</td>
<td>22</td>
<td>30</td>
<td>20.5</td>
</tr>
<tr>
<td>H. N.</td>
<td>13</td>
<td>22</td>
<td>34.0</td>
</tr>
<tr>
<td>K. K.</td>
<td>23</td>
<td>31</td>
<td>11.2</td>
</tr>
<tr>
<td>Mean±SEM</td>
<td>16±3</td>
<td>30±4</td>
<td>18.1±4.6</td>
</tr>
<tr>
<td>Night with cyproheptadine infused from 4:00 a.m.</td>
<td>(e)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. I.</td>
<td>14</td>
<td>41</td>
<td>30.5</td>
</tr>
<tr>
<td>T. S.</td>
<td>7</td>
<td>38</td>
<td>7.2</td>
</tr>
<tr>
<td>T. T.</td>
<td>19</td>
<td>32</td>
<td>40.0</td>
</tr>
<tr>
<td>H. N.</td>
<td>14</td>
<td>24</td>
<td>40.5</td>
</tr>
<tr>
<td>K. K.</td>
<td>11</td>
<td>35</td>
<td>22.7</td>
</tr>
<tr>
<td>Mean±SEM</td>
<td>13±2§</td>
<td>34±3</td>
<td>28.2±6.2¶§</td>
</tr>
</tbody>
</table>

* Plasma GH levels did not exceed 5 ng/ml.
‡ Subjects with no peak were excluded.
§ vs. control night, *P > 0.05.

During the night when cyproheptadine was infused
after the onset of sleep, the time from sleep onset to the
first occurrence of SWS (mean±SEM: 9±1 min) did
not differ significantly from that seen on the base-line
nights, but GH release during early sleep showed two
different patterns. In one (subjects H. I., T. S., and
T. T.) the plasma GH increment noted early during
base-line sleep was completely inhibited by cyprohepta-
dine infusion, as shown in Fig. 1. In the other (subjects
H. N., K. K., and H. F.), GH release was not
suppressed by cyproheptadine infusion, and plasma GH
peaks ranged from 28.0 to 67.0 ng/ml 14–17 min after
sleep onset (Figs. 2, 3). However, when cyproheptadine
was infused from 7:00 to 10:00 p.m. in these four sub-
jects, the plasma GH rise was either completely absent
or significantly delayed and occurred 130–193 min after
sleep onset (Fig. 3 and Table II). The mean levels of
plasma GH during the first 100 min period after sleep
onset were significantly lower (*P < 0.005) than those
on the third base-line night (Fig. 4). The interval be-
tween sleep onset and the first occurrence of SWS, 10:3±3
(min (Mean±SEM), did not differ from that
(14±2 min) recorded on the third base-line night.

GH release during sleep was not affected by cypro-
heptadine infused from 4:00 to 7:00 a.m. in any of
the five subjects examined.

**Effect of cyproheptadine on plasma cortisol levels
during sleep periods.** Plasma cortisol concentrations
during the base-line nights exhibited a progressive in-
crease in the early morning, starting 3–5 h after
the onset of sleep (i.e. at 4:00 a.m.) (Fig. 5). When cypro-
heptadine was infused intravenously from 4:00 to 7:00
a.m., cortisol release in these subjects was completely
inhibited during the infusion, as shown in Fig. 6.

The mean cortisol concentrations while cyprohepta-
dine was being infused from 4:00 to 7:00 a.m. were sig-
nificantly (*P < 0.005) lower than those during the same
periods on the second base-line night (Fig. 6), which
were slightly lower than those on the first base-line
night.

Effect of cyproheptadine on sleep EEG stages. As
shown in Table III, the percentage of time spent in each
sleep stage was not significantly different between the
first and second base-line nights, which were considered
to be within normal limits in this laboratory.

On the night when cyproheptadine was infused after
sleep onset, total sleep time was not significantly dif-
f erent from that on the base-line nights. However, SWS
(sleep stage 3 and 4) was significantly increased (*P <
0.025), whereas REM sleep was significantly decreased
(*P < 0.005) compared with the base-line nights. Total
REM sleep time was also significantly decreased (*P <
0.05) during the night when cyproheptadine was infused
from 4:00 to 7:00 a.m. On the night when cyprohepta-
dine was infused from 7:00 to 10:00 p.m. (study II), the percentage of time spent in SWS and REM sleep was comparable to that on the night when cyproheptadine was infused after the onset of sleep.

DISCUSSION

It is well-known that plasma GH increases during the early phase of sleep with a peak occurring within the first 90 min of sleep (16–19). The lack of correlation between nocturnal GH release and plasma glucose, FFA, or insulin levels suggests that sleep-related GH release is not controlled by systemic metabolic substrates but by central nervous system rhythm (16, 20). Although GH secretion is influenced by various monoamines, brain catecholamines probably do not play a major role in sleep-induced GH release, since phentolamine, propranolol, chlorpromazine, and L-dihydroxyphenylalanine do not significantly alter the GH secretory pattern during sleep periods (16, 21, 22).

The present experiments demonstrate that the intravenous infusion of cyproheptadine suppresses GH release during early sleep periods in man. Cyproheptadine completely blocked GH release during sleep in three of the seven subjects given the drug by intravenous infusion after the onset of sleep, although it was ineffective in the remaining four subjects. Since the shortness from the onset of drug infusion to the first occurrence of SWS seemed to be responsible for the failure of drug effect, we infused cyproheptadine from 7:00 p.m. (1 h before lights were turned off) in the four unresponsive subjects. In this case, the plasma GH rises during sleep were either completely inhibited or significantly delayed, as compared with those on the third base-line night.

Parker et al. (23) noted that sleep-induced GH release is consistently suppressed during somatostatin infusion after sleep onset. Their observation may be explained by the direct action of somatostatin on the pituitary (24).

Different from somatostatin, cyproheptadine infusion is not always effective in suppressing the GH rise during sleep when it is started from sleep onset, but effective when started during presleep periods. The need of a latent time for the action of cyproheptadine sug-
suggests that the drug inhibits the initiation of the neural trigger inducing GH release during early sleep periods at the suprahypophyseal level. However, the neural mechanisms inducing GH secretion and sleep seem to be controlled in different ways, since no difference was noted in the time from sleep onset to the first occurrence of SWS between those who responded to cyproheptadine and those who did not.

We have observed that plasma cortisol rises, possibly caused by ACTH release, in the early morning were completely inhibited by cyproheptadine infused from 4:00 to 7:00 a.m. Since plasma cortisol response to

Figure 3 Effect of cyproheptadine infused at different times on plasma GH concentrations during early sleep periods in four subjects. A shows plasma GH values and the sleep pattern of each subject when cyproheptadine was infused after the onset of sleep, and B, when cyproheptadine was infused at 7:00 p.m. Legends for sleep histogram and shaded areas are the same as in Fig. 1.
Plasma significance
Numbers of
Statistical significance
due to the rise of ACTH was not altered in subjects receiving cyproheptadine, the suppressive effect of cyproheptadine on the rise of plasma cortisol in the early morning could not be due to the direct action of this drug on the adrenal. These results agree with the observation of Krieger and Rizzo (25) that cyproheptadine, cinaserine, and parachloroamphetamine inhibit the daily rise in plasma cortisol in cats. It appears, therefore, that cyproheptadine inhibits the diurnal fluctuation of pituitary-adrenal function both in man and animals.

TABLE II
Plasma GH Levels and Occurrence of SWS in Four Normal Subjects during Control Night and Night with Cyproheptadine Infused from 7:00 to 10:00 p.m.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Time from sleep onset to:</th>
<th>Mean±±SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First occurrence of sleep stage 3</td>
<td>First elevation of plasma GH</td>
</tr>
<tr>
<td>H. N.</td>
<td>14</td>
<td>29</td>
</tr>
<tr>
<td>K. K.</td>
<td>15</td>
<td>14</td>
</tr>
<tr>
<td>N. M.</td>
<td>8</td>
<td>30</td>
</tr>
<tr>
<td>H. F.</td>
<td>19</td>
<td>17</td>
</tr>
<tr>
<td>Mean±±SEM</td>
<td>14±±2</td>
<td>23±±4</td>
</tr>
</tbody>
</table>

* Plasma GH levels did not exceed 5 ng/ml.
† Subject with no peak was excluded.
Statistical significance vs. control night: § P > 0.05, || P < 0.005.

ACTH was not altered in subjects receiving cyproheptadine, the suppressive effect of cyproheptadine on the rise of plasma cortisol in the early morning could not be due to the direct action of this drug on the adrenal. These results agree with the observation of Krieger and Rizzo (25) that cyproheptadine, cinaserine, and parachloroamphetamine inhibit the daily rise in plasma cortisol in cats. It appears, therefore, that cyproheptadine inhibits the diurnal fluctuation of pituitary-adrenal function both in man and animals.

TABLE III
Effect of Intravenous Infusion of Cyproheptadine on Sleep Stages

<table>
<thead>
<tr>
<th>Total sleep time</th>
<th>Percentage of sleep stage</th>
<th>Total SWS time</th>
<th>Total REM sleep time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Awake</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>First base-line night (7)†</td>
<td>476±±23</td>
<td>1.7±±0.8</td>
<td>5.1±±1.5</td>
</tr>
<tr>
<td>Night with cyproheptadine infused after sleep onset (7)</td>
<td>495±±17</td>
<td>1.5±±0.9</td>
<td>3.2±±1.0</td>
</tr>
<tr>
<td>Night with cyproheptadine infused from 4:00 a.m. (5)</td>
<td>592±±11</td>
<td>2.1±±1.3</td>
<td>4.2±±1.0</td>
</tr>
<tr>
<td>Second base-line night (5)</td>
<td>487±±31</td>
<td>2.0±±0.6</td>
<td>4.9±±1.5</td>
</tr>
</tbody>
</table>

* Values are shown as mean±SEM.
† Numbers of subjects are shown in parentheses.
Statistical significance vs. control nights: § P < 0.005, || P < 0.01, ¶ P < 0.025, ** P < 0.05.
In contrast with these observations, Plonk et al. (11) reported that base-line concentrations of serum cortisol in the morning were not changed by the oral administration of cyproheptadine, although serum cortisol response to insulin-induced hypoglycemia was blocked by this treatment. The discrepancy between our results and Plonk's may be explained by the different route, dose, and timing of the administration of cyproheptadine. Van Riezen (26) observed that cyproheptadine in a dose-dependent fashion blocked all effects supposed to be induced via central indole-sensitive receptors in mice. It has been reported that the GH release stimulated by 5-hydroxytryptophan, a serotonin precursor, is inhibited by cyproheptadine in man (6).
All these results may indicate that cyproheptadine inhibits GH and ACTH release by antagonizing brain serotoninergic mechanisms controlling secretion of these hormones. It has been known, however, that cyproheptadine, in addition to its antiserotonin activity, has antihistamine effects and very mild anticholinergic effects (7). Therefore, the possibility that the observed changes in GH and ACTH secretion are related to other actions of the drug than antiserotonin effect cannot be ruled out completely.

After this manuscript was submitted for publication, Mendelson et al. (27) reported that methysergide, a blocker of serotonin, rather enhanced sleep-related GH secretion in man. They administered methysergide (2 mg) orally every 6 h for 48 h with the final dose given at 6 a.m. on the day when sleep studies were performed. They also reported that methysergide inhibited insulin-induced GH release when the drug was given 30 min before the injection of insulin. The discrepancy between their results and ours may be explained by the different route and timing of the administration of the drug.

Polygraphic sleep monitoring on the night when cyproheptadine was infused during early sleep periods showed an apparent increase of SWS accompanied by a decrease of REM sleep. A prominent enhancement of SWS during the intravenous infusion of cyproheptadine is in agreement with the observation by Chakrabarty et al. (28) that the intravenous injection of cyproheptadine caused an increase of high voltage slow waves in both hypothalamic and cortical areas in cats. Recently, Krieger et al. (29) have reported that an increase in SWS was recognized in one subject with Cushing's disease receiving chronic cyproheptadine therapy.

Extensive studies in cats by Jouvet (30) have indicated that SWS may be initiated by a central serotoninergic mechanism. However, Dement (31) proposed a hypothesis derived from their animal experiments that serotonin regulates the ponto-geniculo-occipital activity, the driving force of REM sleep rather than a controller of SWS under normal circumstances. It has been reported that the administration of parachlorophenylalanine, an inhibitor of tryptophane hydroxylase, in patients...
with carcinoid tumors caused a significant reduction of REM sleep without essential changes of SWS (32), and that 5-hydroxytryptophan prolonged REM sleep with a slight decrease of SWS in man (33, 34). Therefore, changes of sleep stages obtained by cyproheptadine in our studies may be explained, at least partly, by its antagonism to the central serotonergic system. Alternatively, the effect of cyproheptadine on sleep patterns may be explained by an antihistaminic property of the drug to inhibit monoamine oxidase activity (35), since monoamine oxidase inhibitors cause irregular or transient enhancement of SWS with suppression of REM sleep (36). However, several investigators (37, 38) have suggested that these effects of monoamine oxidase inhibitors on sleep patterns might be related to brain serotonin changes.

It may be of interest to point out that cyproheptadine suppressed sleep-related GH release in spite of the enhancement of SWS. The sleep-related GH release is known to be closely related to SWS under normal circumstances (16-19). The apparent dissociation between the GH rise and SWS after the administration of cyproheptadine suggests that the subcortical mechanisms originating in the brain stem may act independently on cortical and hypothalamic areas under certain circumstances.

ACKNOWLEDGMENTS

We are indebted to the National Pituitary Agency and National Institute of Arthritis, Metabolism, and Digestive Diseases for providing highly purified human GH (NIH HS 1863) and Nippon Merk-Banyu Co. Tokyo for supplying cyproheptadine.

We also wish to thank Dr. Yoshikatsu Nakai and Dr. Noboru Sakamoto for encouragement and advice, and Miss Kikuko Nanba for excellent technical assistance. This paper was supported in part by grants from the Ministry of Education and the Ministry of Welfare, Japan.

REFERENCES

Growth Hormone and Cortisol Secretion during Sleep 1401

