Tissue Protective responses in the ischemic myocardium

R. Sanders Williams and Ivor J. Benjamin

Supplementary references

Balligand, J.L., et al. 1993. Abnormal contractile function due to induction of nitric oxide synthesis in rat cardiac myocytes follows exposure to activated macrophage-conditioned medium. J. Clin. Invest. 91:2314–2319.

Becker, P.M., Alcasabas, A., Yu, A.Y., Semenza, G.L., and Bunton, T.E. 2000. Oxygen-independent upregulation of vascular endothelial growth factor and vascular barrier dysfunction during ventilated pulmonary ischemia in isolated ferret lungs. Am. J. Respir. Cell Mol. Biol. 22:272–279.

Bharadwaj, S., Ali, A., and Ovsenek, N. 1999. Multiple components of the HSP90 chaperone complex function in regulation of heat shock factor 1 in vivo. Mol. Cell. Biol. 19:8033–8041.

Bogoyevitch, M.A., et al. 1996. Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart. p38/RK mitogen-activated protein kinases and c-Jun N-terminal kinases are activated by ischemia/reperfusion. Circ. Res. 79:162–173.

Bolli, R. 1991. Oxygen-derived free radicals and myocardial reperfusion injury: an overview. Cardiovasc. Drugs Ther. 2:249–268.

Cahill, C.M., Waterman, W.R., Xie, Y., Auron, P.E., and Calderwood, S.K. 1996. Transcriptional repression of the prointerleukin 1beta gene by heat shock factor 1. J. Biol. Chem. 271:24874–24879.

Chen, Z., et al. 1998. Overexpression of MnSOD protects against myocardial ischemia/reperfusion injury in transgenic mice. J. Mol. Cell. Cardiol. 30:2281–2289.

Cheung, P.Y., et al. 2000. Matrix metalloproteinase-2 contributes to ischemia-reperfusion injury in the heart. Circulation. 101:1833–1839.

Di Lisa, F., and P. Bernardi. 1998. Mitochondrial function as a determinant of recovery or death in cell response to injury. Mol. Cell. Biochem. 184:379–391.

Dillmann, W.H. 1999. Small heat shock proteins and protection against injury. Ann. NY Acad. Sci. 874:66–68.

Dillmann, W.H., and Mestril, R. 1995. Heat shock proteins in myocardial stress. Z. Kardiol. 84:87–90.

Foti, D.M., Welihinda, A., Kaufman, R.J., and Lee, A.S. 1999. Conservation and divergence of the yeast and mammalian unfolded protein response. Activation of specific mammalian endoplasmic reticulum stress element of the grp78/BiP promoter by yeast Hac1. J. Biol. Chem. 274:30402–30409.

Fujio, Y., Kunisada, K., Hirota, H., Yamauchi-Takihara, K., and Kishimoto, T. 1997. Signals through gp130 upregulate bcl-x gene expression via STAT1-binding cis-element in cardiac myocytes. J. Clin. Invest. 99:2898–2905.

Fujio, Y., Nguyen, T., Wencker, D., Kitsis, R.N., and Walsh, K. 2000. Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation. 101:660–667.

Gray, M.O., Karliner, J.S., and Mochly-Rosen, D. 1997. A selective epsilon-protein kinase C antagonist inhibits protection of cardiac myocytes from hypoxia-induced cell death. J. Biol. Chem. 272:30945–30951.

Inagaki, K., et al. 2000. Anti-ischemic effect of a novel cardioprotective agent, JTV519, is mediated through specific activation of delta-isoform of protein kinase C in rat ventricular myocardium. Circulation. 101:797–804.

Karin, M. 1998. Mitogen-activated protein kinase cascades as regulators of stress responses. Ann. NY Acad. Sci. 851:139–146.

Knauf, U., Newton, E.M., Kyriakis, J., and Kingston, R.E. 1996. Repression of human heat shock factor 1 activity at control temperature by phosphorylation. Genes Dev. 10:2782–2793.

Knowlton, A.A., et al. 1991. A single myocardial stretch or decreased systolic fiber shortening stimulates the expression of heat shock protein 70 in the isolated, erythrocyte-perfused rabbit heart. J. Clin. Invest. 88:2018–2025.

Kokura, S., Wolf, R.E., Yoshikawa, T., Granger, D.N., and Aw, T.Y. 2000. T-lymphocyte-derived tumor necrosis factor exacerbates anoxia-reoxygenation-induced neutrophil-endothelial cell adhesion. Circ. Res. 86:205–213.

Locke, M., and Tanguay, R.M. 1996. Diminished heat shock response in the aged myocardium. Cell Stress Chaperones. 1:251–260.

Marber, M.S. 2000. Ischemic preconditioning in isolated cells. Circ. Res. 86:926–931.

Marber, M.S., et al. 1995. Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J. Clin. Invest. 95:1446–1456.

Mehta, H.B., Popovich, B.K., and Dillmann, W.H. 1988. Ischemia induces changes in the level of mRNAs coding for stress protein 71 and creatine kinase M. Circ. Res. 63:512–517.

Miyamae, M., Camacho, S.A., Weiner, M.W., and Figueredo, V.M. 1996. Attenuation of postischemic reperfusion injury is related to prevention of [Ca2+]m overload in rat hearts. Am. J. Physiol. 271:H2145–H2153.

Mosser, D.D., Kotzbauer, P.T., Sarge, K.D., and Morimoto, R.I. 1990. In vitro activation of heat shock transcription factor DNA-binding by calcium and biochemical conditions that affect protein conformation. Proc. Natl. Acad. Sci. USA. 87:3748–3752.

Murphy, J.G., Marsh, J.D., and Smith, T.W. 1987. The role of calcium in ischemic myocardial injury. Circulation. 75:V15–V24.

Nakano, A., et al. 2000. Ischemic preconditioning activates MAPKAPK2 in the isolated rabbit heart: evidence for involvement of p38 MAPK. Circ. Res. 86:144–151.

Napoli, C., et al. 2000. Protease-activated receptor-2 modulates myocardial ischemia-reperfusion injury in the rat heart. Proc. Natl. Acad. Sci. USA. 97:3678–3683.

Nitta, Y., Abe, K., Aoki, M., Ohno, I., and Isoyama, S. 1994. Diminished heat shock protein 70 mRNA induction in aged rat hearts after ischemia. Am. J. Physiol. 267:H1795–H1803.

Parsell, D.A., Taulien, J., and Lindquist, S. 1993. The role of heat-shock proteins in thermotolerance. Philos. Trans. R. Soc. Lond. B Biol. Sci. 339:279–285; discussion 285–276.

Pelham, H.R. 1986. Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell. 46:959–961.

Ping, P., and Murphy, E. 2000. Role of p38 mitogen-activated protein kinases in preconditioning: a detrimental factor or a protective kinase? Circ. Res. 86:921–922.

Ping, P., et al. 1999. Isoform-selective activation of protein kinase C by nitric oxide in the heart of conscious rabbits: a signaling mechanism for both nitric oxide-induced and ischemia-induced preconditioning. Circ. Res. 84:587–604.

Plumier, J.C., et al. 1995. Transgenic mice expressing the human heat shock protein 70 have improved post-ischemic myocardial recovery. J. Clin. Invest. 95:1854–1860.

Qiu, F.H., Wada, K., Stahl, G.L., and Serhan, C.N. 2000. IMP and AMP deaminase in reperfusion injury down-regulates neutrophil recruitment. Proc. Natl. Acad. Sci. USA. 97:4267–4272.

Rabindran, S., Haroun, R., Clos, J., Wisniewski, J., and Wu, C. 1993. Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science. 259:230–234.

Rupprecht, H.J., et al. 2000. Cardioprotective effects of the Na(+)/H(+) exchange inhibitor cariporide in patients with acute anterior myocardial infarction undergoing direct PTCA. Circulation. 101:2902–2908.

Sato, T., Sasaki, N., Seharaseyon, J., O'Rourke, B., and Marban, E. 2000. Selective pharmacological agents implicate mitochondrial but not sarcolemmal K(ATP) channels in ischemic cardioprotection. Circulation. 101:2418–2423.

Schoemaker, R.G., and van Heijningen, C.L. 2000. Bradykinin mediates cardiac preconditioning at a distance. Am. J. Physiol. Heart Circ. Physiol. 278:H1571–H1576.

Semenza, G.L., et al. 2000. Hypoxia, HIF-1, and the pathophysiology of common human diseases. Adv. Exp. Med. Biol. 475:123–130.

Sheng, Z., et al. 1997. Cardiotrophin 1 (CT-1) inhibition of cardiac myocyte apoptosis via a mitogen-activated protein kinase-dependent pathway. Divergence from downstream CT-1 signals for myocardial cell hypertrophy. J. Biol. Chem. 272:5783–5791.

Sutter, C.H., Laughner, E., and Semenza, G.L. 2000. Hypoxia-inducible factor 1alpha protein expression is controlled by oxygen-regulated ubiquitination that is disrupted by deletions and missense mutations. Proc. Natl. Acad. Sci. USA. 97:4748–4753.

Suzuki, K., et al. 1997. In vivo gene transfection with heat shock protein 70 enhances myocardial tolerance to ischemia-reperfusion injury in rat. J. Clin. Invest. 99:1645–1650.

Takashi, E., Wang, Y., and Ashraf, M. 1999. Activation of mitochondrial K(ATP) channel elicits late preconditioning against myocardial infarction via protein kinase C signaling pathway. Circ. Res. 85:1146–1153.

Theroux, P. 2000. Myocardial cell protection: a challenging time for action and a challenging time for clinical research. Circulation. 101:2874–2876.

Weinberg, J.M., Venkatachalam, M.A., Roeser, N.F., and Nissim, I. 2000. Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates. Proc. Natl. Acad. Sci. USA. 97:2826–2831.

Yoshida, T., et al. 1996. Transgenic mice overexpressing glutathione peroxidase are resistant to myocardial ischemia reperfusion injury. J. Mol. Cell. Cardiol. 28:1759–1767.

Yoshida, T., Maulik, N., Engelman, R.M., Ho, Y.S., and Das, D.K. 2000. Targeted disruption of the mouse Sod I gene makes the hearts vulnerable to ischemic reperfusion injury. Circ. Res. 86:264–269.

Ytrehus, K., Liu, Y., and Downey, J.M. 1994. Preconditioning protects ischemic rabbit heart by protein kinase C activation. Am. J. Physiol. 266:H1145–H1152.