Supplementary references
Balligand, J.L., et al. 1993. Abnormal contractile function due to induction of nitric oxide synthesis in rat cardiac myocytes follows exposure to activated macrophage-conditioned medium. J. Clin. Invest. 91:2314–2319.
Becker, P.M., Alcasabas, A., Yu, A.Y., Semenza, G.L., and Bunton, T.E. 2000. Oxygen-independent upregulation of vascular endothelial growth factor and vascular barrier dysfunction during ventilated pulmonary ischemia in isolated ferret lungs. Am. J. Respir. Cell Mol. Biol. 22:272–279.
Bharadwaj, S., Ali, A., and Ovsenek, N. 1999. Multiple components of the HSP90 chaperone complex function in regulation of heat shock factor 1 in vivo. Mol. Cell. Biol. 19:8033–8041.
Bogoyevitch, M.A., et al. 1996. Stimulation of the stress-activated mitogen-activated protein kinase subfamilies in perfused heart. p38/RK mitogen-activated protein kinases and c-Jun N-terminal kinases are activated by ischemia/reperfusion. Circ. Res. 79:162–173.
Bolli, R. 1991. Oxygen-derived free radicals and myocardial reperfusion injury: an overview. Cardiovasc. Drugs Ther. 2:249–268.
Cahill, C.M., Waterman, W.R., Xie, Y., Auron, P.E., and Calderwood, S.K. 1996. Transcriptional repression of the prointerleukin 1beta gene by heat shock factor 1. J. Biol. Chem. 271:24874–24879.
Chen, Z., et al. 1998. Overexpression of MnSOD protects against myocardial ischemia/reperfusion injury in transgenic mice. J. Mol. Cell. Cardiol. 30:2281–2289.
Cheung, P.Y., et al. 2000. Matrix metalloproteinase-2 contributes to ischemia-reperfusion injury in the heart. Circulation. 101:1833–1839.
Di Lisa, F., and P. Bernardi. 1998. Mitochondrial function as a determinant of recovery or death in cell response to injury. Mol. Cell. Biochem. 184:379–391.
Dillmann, W.H. 1999. Small heat shock proteins and protection against injury. Ann. NY Acad. Sci. 874:66–68.
Dillmann, W.H., and Mestril, R. 1995. Heat shock proteins in myocardial stress. Z. Kardiol. 84:87–90.
Foti, D.M., Welihinda, A., Kaufman, R.J., and Lee, A.S. 1999. Conservation and divergence of the yeast and mammalian unfolded protein response. Activation of specific mammalian endoplasmic reticulum stress element of the grp78/BiP promoter by yeast Hac1. J. Biol. Chem. 274:30402–30409.
Fujio, Y., Kunisada, K., Hirota, H., Yamauchi-Takihara, K., and Kishimoto, T. 1997. Signals through gp130 upregulate bcl-x gene expression via STAT1-binding cis-element in cardiac myocytes. J. Clin. Invest. 99:2898–2905.
Fujio, Y., Nguyen, T., Wencker, D., Kitsis, R.N., and Walsh, K. 2000. Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation. 101:660–667.
Gray, M.O., Karliner, J.S., and Mochly-Rosen, D. 1997. A selective epsilon-protein kinase C antagonist inhibits protection of cardiac myocytes from hypoxia-induced cell death. J. Biol. Chem. 272:30945–30951.
Inagaki, K., et al. 2000. Anti-ischemic effect of a novel cardioprotective agent, JTV519, is mediated through specific activation of delta-isoform of protein kinase C in rat ventricular myocardium. Circulation. 101:797–804.
Karin, M. 1998. Mitogen-activated protein kinase cascades as regulators of stress responses. Ann. NY Acad. Sci. 851:139–146.
Knauf, U., Newton, E.M., Kyriakis, J., and Kingston, R.E. 1996. Repression of human heat shock factor 1 activity at control temperature by phosphorylation. Genes Dev. 10:2782–2793.
Knowlton, A.A., et al. 1991. A single myocardial stretch or decreased systolic fiber shortening stimulates the expression of heat shock protein 70 in the isolated, erythrocyte-perfused rabbit heart. J. Clin. Invest. 88:2018–2025.
Kokura, S., Wolf, R.E., Yoshikawa, T., Granger, D.N., and Aw, T.Y. 2000. T-lymphocyte-derived tumor necrosis factor exacerbates anoxia-reoxygenation-induced neutrophil-endothelial cell adhesion. Circ. Res. 86:205–213.
Locke, M., and Tanguay, R.M. 1996. Diminished heat shock response in the aged myocardium. Cell Stress Chaperones. 1:251–260.
Marber, M.S. 2000. Ischemic preconditioning in isolated cells. Circ. Res. 86:926–931.
Marber, M.S., et al. 1995. Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J. Clin. Invest. 95:1446–1456.
Mehta, H.B., Popovich, B.K., and Dillmann, W.H. 1988. Ischemia induces changes in the level of mRNAs coding for stress protein 71 and creatine kinase M. Circ. Res. 63:512–517.
Miyamae, M., Camacho, S.A., Weiner, M.W., and Figueredo, V.M. 1996. Attenuation of postischemic reperfusion injury is related to prevention of [Ca2+]m overload in rat hearts. Am. J. Physiol. 271:H2145–H2153.
Mosser, D.D., Kotzbauer, P.T., Sarge, K.D., and Morimoto, R.I. 1990. In vitro activation of heat shock transcription factor DNA-binding by calcium and biochemical conditions that affect protein conformation. Proc. Natl. Acad. Sci. USA. 87:3748–3752.
Murphy, J.G., Marsh, J.D., and Smith, T.W. 1987. The role of calcium in ischemic myocardial injury. Circulation. 75:V15–V24.
Nakano, A., et al. 2000. Ischemic preconditioning activates MAPKAPK2 in the isolated rabbit heart: evidence for involvement of p38 MAPK. Circ. Res. 86:144–151.
Napoli, C., et al. 2000. Protease-activated receptor-2 modulates myocardial ischemia-reperfusion injury in the rat heart. Proc. Natl. Acad. Sci. USA. 97:3678–3683.
Nitta, Y., Abe, K., Aoki, M., Ohno, I., and Isoyama, S. 1994. Diminished heat shock protein 70 mRNA induction in aged rat hearts after ischemia. Am. J. Physiol. 267:H1795–H1803.
Parsell, D.A., Taulien, J., and Lindquist, S. 1993. The role of heat-shock proteins in thermotolerance. Philos. Trans. R. Soc. Lond. B Biol. Sci. 339:279–285; discussion 285–276.
Pelham, H.R. 1986. Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell. 46:959–961.
Ping, P., and Murphy, E. 2000. Role of p38 mitogen-activated protein kinases in preconditioning: a detrimental factor or a protective kinase? Circ. Res. 86:921–922.
Ping, P., et al. 1999. Isoform-selective activation of protein kinase C by nitric oxide in the heart of conscious rabbits: a signaling mechanism for both nitric oxide-induced and ischemia-induced preconditioning. Circ. Res. 84:587–604.
Plumier, J.C., et al. 1995. Transgenic mice expressing the human heat shock protein 70 have improved post-ischemic myocardial recovery. J. Clin. Invest. 95:1854–1860.
Qiu, F.H., Wada, K., Stahl, G.L., and Serhan, C.N. 2000. IMP and AMP deaminase in reperfusion injury down-regulates neutrophil recruitment. Proc. Natl. Acad. Sci. USA. 97:4267–4272.
Rabindran, S., Haroun, R., Clos, J., Wisniewski, J., and Wu, C. 1993. Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science. 259:230–234.
Rupprecht, H.J., et al. 2000. Cardioprotective effects of the Na(+)/H(+) exchange inhibitor cariporide in patients with acute anterior myocardial infarction undergoing direct PTCA. Circulation. 101:2902–2908.
Sato, T., Sasaki, N., Seharaseyon, J., O'Rourke, B., and Marban, E. 2000. Selective pharmacological agents implicate mitochondrial but not sarcolemmal K(ATP) channels in ischemic cardioprotection. Circulation. 101:2418–2423.
Schoemaker, R.G., and van Heijningen, C.L. 2000. Bradykinin mediates cardiac preconditioning at a distance. Am. J. Physiol. Heart Circ. Physiol. 278:H1571–H1576.
Semenza, G.L., et al. 2000. Hypoxia, HIF-1, and the pathophysiology of common human diseases. Adv. Exp. Med. Biol. 475:123–130.
Sheng, Z., et al. 1997. Cardiotrophin 1 (CT-1) inhibition of cardiac myocyte apoptosis via a mitogen-activated protein kinase-dependent pathway. Divergence from downstream CT-1 signals for myocardial cell hypertrophy. J. Biol. Chem. 272:5783–5791.
Sutter, C.H., Laughner, E., and Semenza, G.L. 2000. Hypoxia-inducible factor 1alpha protein expression is controlled by oxygen-regulated ubiquitination that is disrupted by deletions and missense mutations. Proc. Natl. Acad. Sci. USA. 97:4748–4753.
Suzuki, K., et al. 1997. In vivo gene transfection with heat shock protein 70 enhances myocardial tolerance to ischemia-reperfusion injury in rat. J. Clin. Invest. 99:1645–1650.
Takashi, E., Wang, Y., and Ashraf, M. 1999. Activation of mitochondrial K(ATP) channel elicits late preconditioning against myocardial infarction via protein kinase C signaling pathway. Circ. Res. 85:1146–1153.
Theroux, P. 2000. Myocardial cell protection: a challenging time for action and a challenging time for clinical research. Circulation. 101:2874–2876.
Weinberg, J.M., Venkatachalam, M.A., Roeser, N.F., and Nissim, I. 2000. Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates. Proc. Natl. Acad. Sci. USA. 97:2826–2831.
Yoshida, T., et al. 1996. Transgenic mice overexpressing glutathione peroxidase are resistant to myocardial ischemia reperfusion injury. J. Mol. Cell. Cardiol. 28:1759–1767.
Yoshida, T., Maulik, N., Engelman, R.M., Ho, Y.S., and Das, D.K. 2000. Targeted disruption of the mouse Sod I gene makes the hearts vulnerable to ischemic reperfusion injury. Circ. Res. 86:264–269.
Ytrehus, K., Liu, Y., and Downey, J.M. 1994. Preconditioning protects ischemic rabbit heart by protein kinase C activation. Am. J. Physiol. 266:H1145–H1152.