Although in vitro studies have demonstrated functional differences between young and old platelets, in vivo differences have not been precisely established. Therefore the in vivo hemostatic function of young and old platelets and the survival time have been examined in rabbits. The hemostatic function was measured by performing serial ear bleeding times in irradiation-induced thrombocytopenic rabbits. After irradiation with 930 rad the platelet count gradually diminished reaching a nadir (~20 × 10^3/µl) at 10 d. The platelets present in the circulation, 7-10 d after irradiation, were considered old platelets, and the platelets present after recovery, 11-14 d postirradiation, young platelets. The measurement of platelet size was consistent with the hypothesis that platelets become smaller with age: the mean size was 3.84 µm^3 for old platelets and 5.86 µm^3 for young platelets. Regression analysis of the relationship between the bleeding time and the platelet count in 18 rabbits showed a significantly different slope for rabbits with predominantly old platelets compared with rabbits with predominantly young platelets (P < 0.001). Young platelets were more effective giving much shorter bleeding times than old platelets at comparable platelet counts. Survival times of young and old platelets were measured using platelets harvested on day 8 postirradiation (old platelets) and day 12 postirradiation (young platelets) that were labeled and then reinjected into normal recipient animals. The […]
Hemostatic Function, Survival, and Membrane Glycoprotein Changes in Young versus Old Rabbit Platelets

MORRIS A. BLAJCHMAN, ANDREW F. SENYI, JACK HIRSH, EDWARD GENTON, and JAMES N. GEORGE, Departments of Pathology and Medicine, McMaster University, The Canadian Red Cross Blood Transfusion Service, Hamilton, Ontario; Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78284

ABSTRACT Although in vitro studies have demonstrated functional differences between young and old platelets, in vivo differences have not been precisely established. Therefore the in vivo hemostatic function of young and old platelets and the survival time have been examined in rabbits. The hemostatic function was measured by performing serial ear bleeding times in irradiation-induced thrombocytopenic rabbits. After irradiation with 930 rad the platelet count gradually diminished reaching a nadir (~20 x 10^9/µl) at 10 d. The platelets present in the circulation, 7–10 d after irradiation, were considered old platelets, and the platelets present after recovery, 11–14 d postirradiation, young platelets. The measurement of platelet size was consistent with the hypothesis that platelets become smaller with age: the mean size was 3.84 µm^3 for old platelets and 5.86 µm^3 for young platelets. Regression analysis of the relationship between the bleeding time and the platelet count in 18 rabbits showed a significantly different slope for rabbits with predominantly old platelets compared with rabbits with predominantly young platelets (P < 0.001). Young platelets were more effective giving much shorter bleeding times than old platelets at comparable platelet counts. Survival times of young and old platelets were measured using platelets harvested on day 8 postirradiation (old platelets) and day 12 postirradiation (young platelets) that were labeled and then reinjected into normal recipient animals. The mean platelet survival time, calculated by gamma function, of old platelets was 28.8 h; of young platelets, 87.4 h; and of normally circulating heterogeneous platelets, (normal platelets) 53.0 h. Notably, the survival of old platelets was found to be exponential, and of young platelets, linear. Analysis of the membrane glycoproteins in young, old and normal platelets indicated that there was no qualitative difference amongst the young, normal, and old platelets. The relative relationship among all the glycoprotein peaks was equal and the only changes observed were quantitative, with young platelets having significantly more membrane glycoprotein per cell than old platelets and normal platelets. Normal platelets had intermediate concentrations of each glycoprotein. These results demonstrate that young platelets are hemostatically more effective in vivo than old platelets. The data are compatible with the hypothesis that platelets age in the circulation by losing membrane fragments and then after becoming senescent, are removed from the circulation by a random process.

INTRODUCTION

A number of in vitro studies have demonstrated that platelets are heterogeneous with respect to their physical, biochemical, and functional characteristics (1–25). Platelets have been separated by differential centrifugation into light small, and heavy large platelets. The heavy large platelets are metabolically more active and in vivo studies in experimental animals, using 113Selenomethionine incorporation, indicate that these heavy large platelets are younger than the small light platelets (11, 16, 22), and that they lose membrane glycoprotein as they age in the circulation (22, 26). The results of studies in man also suggest that young platelets are both larger and hemostatically more effective than old platelets (6, 8, 11, 12, 14, 23). These observa-
tions have led to the hypothesis that platelets become smaller and hemostatically less effective as they age in the circulation. In this paper we report on studies in rabbits that directly examine the differences in the hemostatic function, survival, and membrane glycoproteins in young and old platelets from rabbits during marrow suppression and recovery.

METHODS

Preparation of rabbits with predominantly young or old platelets. New Zealand white rabbits weighing between 2.5 and 3 kg were irradiated with 930 rad for 30 min using a cesium source. During irradiation the rabbits’ ears were shielded with a lead ribbon to avoid damage to the ear vessels which were used for bleeding time experiments. After irradiation, the platelet count began to fall after 4 d, usually reached a nadir at 10 d, and recovered to pretreatment levels at ~day 14 (Fig. 1). Platelets present in the circulation 6–8 d after irradiation were considered old platelets. To obtain young platelets, heterologous platelet antiserum produced in sheep (27) was injected on day 8. This resulted in a sharp fall in the platelet count to <10,000/μl, which slowly began to recover after day 10. Platelets from normal unirradiated rabbits, with a heterogeneous distribution of platelets of various age served as a control and were considered “normal” platelets.

Ear bleeding time determinations. Hemostatic function in thrombocytopenic anesthetized rabbits was evaluated using a standardized ear bleeding time technique (27). The bleeding time was performed by warming the rabbit’s ear for 5 min in a saline bath maintained at a temperature of 37°C. The ear was then removed from the bath and a standard incision was made through the ear avoiding any macroscopically obvious vessels. The incised ear was then immediately re-placed into the saline bath, which was gently agitated with a magnetic stirrer. The bleeding time result was taken as the time required for blood flow from the incision to cease. Each result represents the mean of two determinations. Previous studies have shown that the bleeding time is highly reproducible in both normal and thrombocytopenic rabbits (27).

Platelet size determination. Blood for platelet size determination was collected by venipuncture from the marginal ear vein of unanesthetized rabbits into a tube containing liquid EDTA in a proportion of blood/2% EDTA, 0.9:0.1 ml. The measurements were made within 2 h of collection. Erythrocytes were sedimented at 1 g for 30 min, then 3.3 μl of platelet-rich plasma were diluted in 10 ml of Isoton (Coulter Electronics Inc., Hialeah, Fla.). The sizing experiments were performed using a Coulter Channelizer model 1,000, which had been standardized with 2.02 and 3.4 μm latex particles. The window width was set at 100 to allow only particles sizing from 1.4 to 28 fl. Each window was made to equal 0.27 fl. Electrical noise was minimized by using a base channel threshold of four. After 1,000 platelets were counted within one channel, a histogram was produced, and from this the median platelet volume was determined. All platelet counts were done using phase contrast microscopy (28).

Platelet survival measurements. Platelet survival of the young, normal, and old platelet populations were performed using standard techniques from blood samples taken from the marginal ear vein (29). Old platelets were harvested 8 d after irradiation, labeled with 35Cr, and then infused into normal rabbits. Young platelets were harvested 12 d after irradiation and 4 d after injection of heterologous platelet antiserum. These were then labeled with 35Cr and infused into normal rabbits. To obtain sufficient platelets for calculation of platelet survival, young or old platelets were obtained from nine donor animals, pooled, and then divided into three equal parts and reinfused into three recipient normal rabbits. The survival of normal platelets was performed using standard methods (29). Before 34Cr labeling, aliquots of each sample were taken for platelet size determination. The mean platelet survival time was calculated using a standard-assisted computer technique that determined, by the least squares method, the mean platelet survival time as a linear, exponential, and γ-function (29, 30).

Quantitative analysis of rabbit platelet membrane glycoprotein. Young, old, or normal rabbit platelet populations were prepared as described for human platelets (31). Platelets washed three times in Ringer’s citrate-dextrose buffer containing 50 ng/ml PGE, were then resuspended in the buffer containing 5 mM EDTA, 0.4 mM phenylmethylsulfonl fluoride, 0.5 mM N-carboxbenzoxyl-L-glutamyl-L-tyrosine, and 50 ng/ml PGE, to a concentration of 109/ml. They were then solubilized with 3% sodium dodecyl sulfate (SDS) and 40 mM dithiothreitol (DDT)1, immediately frozen in dry ice, and shipped to San Antonio, Tex. 50 μl (5 × 109 platelets) or 100 μl (109 platelets) were analyzed by SDS-polyacrylamide gel electrophoresis (PAGE) using 5% acrylamide and 0.25% N,N’-methylene bisacrylamide (31). Each sample contained 4 μg of orosomucoid (alpha,-acid glycoprotein, kindly provided by Dr. G. A. Jamieson, American Red Cross, Bethesda, Md.). After electrophoresis, the gels were stained for carbohydrate by the periodic-acid-Schiff (PAS) reaction and scanned at 550 nm (Giflard Instrument Laboratories, Inc., Oberlin, Ohio). The PAS bands were then quantitatively analyzed by planimetry and the data expressed as arbitrary units, using the orosomucoid band as an internal standard for the PAS reaction in each gel (31). Molecular weights were estimated from known standards analyzed by a parallel SDS-PAGE gel in each experiment (31, 32). Although whole platelets were analyzed in these experiments, the glycoproteins are referred to as membrane proteins because previous studies demonstrated that all PAS bands present in whole platelet samples were also present in isolated membranes (32).

RESULTS

Validation of Methods for Preparing Young and Old Platelets

Effect of heterologous platelet antiserum. To confirm that the rise in platelet count after day 10 was due to platelets newly released from the bone marrow, and not to reappearance of platelets sequestered after exposure to antiserum, experiments were performed with 51Cr-labeled normal rabbit platelets. Normal 51Cr-labeled platelets were injected into rabbits that had been irradiated 8 d previously; an injection of heterologous platelet antiserum was then administered. Serial measurements of platelet radioactivity and platelet count revealed that the 51Cr-labeled platelets were removed from the circulation within 30 min. Radioactivity did not reappear in the circulation during recovery of the platelet count (data not shown) indi-

1 Abbreviations used in this paper: DTT, dithiothreitol; PAGE, polyacrylamide gel; PAS, periodic-acid-Schiff.
cating that the rise in platelet count reflected platelets newly released from the marrow.

Effect of irradiation on platelet survival. To confirm that the fall in platelet count following irradiation was not caused by either vascular damage or platelet damage, which would lead to the premature destruction of platelets, two series of experiments were performed. In the first, platelets harvested from donor rabbits that had been irradiated 12 h previously were compared with the survival of platelets derived from nonirradiated animals. The platelet survival of 51Cr-labeled platelets in both groups of rabbits was normal and identical. In the second, the survival of normal platelets was studied in animals that had been irradiated 12 h earlier and compared with their survival in nonirradiated animals. Again, the platelet survival was identical (and normal) in both groups of rabbits (data not shown).

Effect of irradiation on platelet count and platelet size. The effect of irradiation (930 rads) on the platelet count in 36 rabbits is shown in Fig. 1. The platelet count, which was ~250,000/μl before irradiation, started to fall on day 4, and by day 8 had dropped > 70% of the initial count. After the injection of heterologous platelet antiserum (shown by the arrow in Fig. 1) there was a sharp fall in the platelet count to <10,000/μl. The count then began to rise slowly and steadily on day 10 and by day 14 had returned to preirradiation levels.

There was a progressive decrease in median platelet size after irradiation and a significant increase during recovery of the platelet count. The mean median platelet size preirradiation and on day 1 after irradiation was 4.1 μm2, and on day 8, 3.7 μm2. After recovery, the mean platelet size reached 5.9 μm2 on day 11. These mean platelet sizes are all statistically significantly different from each other ($P < 0.025$).

The bleeding times in rabbits with predominantly young or old platelets. The relationship between the platelet count and the bleeding time in 18 animals with predominantly young or old platelets is shown in Fig. 2. Bleeding times in animals with predominantly old platelets were performed on days 6, 7, and 8 post-irradiation, and bleeding times in animals with predominantly young platelets were performed on days 11, 12, and 13. The slopes of the regression lines relating the bleeding time and the logarithm of the platelet count for old and young platelets are significantly different from each other ($P < 0.001$). Thus, at any given platelet count the bleeding time was shorter in the animals with circulating young platelets.

The difference between the bleeding time produced by old and young platelets was also seen in individual rabbits. In 13 of 18 rabbits comparable platelet counts (within 10,000/μl) were obtained when the circulating platelets were predominantly old or young. The difference in bleeding time for each individual rabbit at a comparable platelet count thus reflected the difference in hemostatic function between young and old platelets. In these animals young platelets were consistently more effective at reducing the bleeding time than old platelets at comparable platelet counts ($P < 0.001$). The mean bleeding time ±1 SD for old platelets was 587±148 s, and for young platelets 210±29 s. The corresponding mean platelet counts were 62 and 64 × 109/μl, respectively.

To exclude the possibility that irradiation influenced platelet function and hence the results of the bleeding time experiments, bleeding times were performed on animals with normal platelets or young

![Figure 1](image1.png)
Figure 1. Mean platelet count (±SD) in 36 rabbits after 930 rad of irradiation. The arrow shown (day 8) indicates the administration of heterologous platelet antiserum. The median platelet size corresponding to the day after irradiation is also shown.

![Figure 2](image2.png)
Figure 2. The relationship between the bleeding time and the platelet count for old and young platelets in 18 rabbits.
platelets both before and 12 h after irradiation. As seen in Table I, the platelet counts were similar before and after irradiation in both groups and there was no difference between the pre- and postirradiation bleeding times in either the normal rabbits or those with circulating young platelets.

Platelet survival times of young, old, and normal platelets. Results of the platelet survival studies are shown in Fig. 3. The survival time was expressed as a percentage of the 2-h sample, which was designated as being 100%. The survival time of young, normal, and old platelets was significantly different from each other, young platelets having the longest survival and old platelets the shortest. Survival times were calculated as a linear, exponential, and gamma function model (29). Results are shown in Table II. For young platelets, the results obtained using the linear and gamma function models were similar, suggesting that platelet lifespan most closely approximated linear survival. In contrast, for old platelets, the survival time obtained with the gamma function model most closely approximated the exponential model, suggesting that the decay of old platelets followed an exponential pattern.

Quantitative analysis of membrane glycoproteins in young, old, and normal platelets. The pattern of the PAS reaction of normal rabbit platelets solubilized in SDS-DTT and separated by SDS-PAGE is shown in Fig. 4. Six PAS-positive bands were consistently identified. The quantitative analysis of the membrane glycoproteins is summarized in Table III. Young platelets contain significantly more membrane glycoprotein per cell than old platelets, and the results for normal platelets were intermediate between the two. There were, however, no qualitative changes of the platelet membrane glycoprotein related to cell age.

DISCUSSION

By using a combination of x-irradiation and platelet antiserum, it has been possible to investigate the func-

<table>
<thead>
<tr>
<th>Platelet population</th>
<th>Mean platelet count (±SD)</th>
<th>Mean bleeding time (±SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>×10^10/μl</td>
<td>s</td>
</tr>
<tr>
<td>Normal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preirradiation</td>
<td>279±40.6</td>
<td>90.3±19.7</td>
</tr>
<tr>
<td>Postirradiation</td>
<td>289.2±56.6</td>
<td>94.3±17.3</td>
</tr>
<tr>
<td>Young</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preirradiation</td>
<td>127.2±20.0</td>
<td>112.4±8.0</td>
</tr>
<tr>
<td>Postirradiation</td>
<td>134.3±19.5</td>
<td>108.4±6.7</td>
</tr>
</tbody>
</table>

* The number of rabbits in each experiment was 12.

![Figure 3](image_url) Platelet survival of young, old, and normal platelets. The percentage survival (±SD) at each time is expressed as a percentage of the count at 2 h. The number of determinations for each point was as follows: normal platelets, 26; old platelets, 9; and young platelets, 12.

Blajchman, Senyi, Hirsh, Genton, and George
The results of recent studies using the membrane-label \(^{125}\)I-diazotized diiodosulfanilic acid suggest that platelets lose membrane fragments as they circulate, possibly as a result of reversible contact interaction with the vessel wall and/or other intravascular particles (27, 32, 34). It is possible that the loss of these surface glycoproteins contribute to platelet senescence as well as the structural and functional changes that occur as platelets age. The present studies demonstrate directly that old platelets have considerably less membrane glycoprotein than normal platelets, which in turn have less membrane glycoprotein than young "stress" platelets. The decrease in membrane glycoproteins was symmetrical, not selective, suggesting the loss of intact pieces of membrane.

The findings in these experiments are consistent with the hypothesis that young platelets are hemostatically most effective when they are released from the bone marrow, and that they undergo significant changes in the circulation as they age: decreased size, symmetrical loss of membrane glycoprotein, and decreased hemostatic effectiveness.

ACKNOWLEDGMENTS

The authors gratefully acknowledge Leslie Bardossy and Myron Kulczyzky for their excellent technical assistance and the assistance of Prof. M. Gent of the Department of Clinical Epidemiology and Biostatistics, McMaster University, in the statistical analyses.

This work was supported in part by a grant from the Medical Research Council of Canada, by National Institutes of Health grant HL 19996, and by grant NAG9-5 from the National Aeronautics and Space Administration.
REFERENCES

