Effects of frequency, tidal volume, and lung volume on CO2 elimination in dogs by high frequency (2-30 Hz), low tidal volume ventilation.

A S Slutsky, … , R H Ingram Jr, J M Drazen

J Clin Invest. 1981;68(6):1475-1484. https://doi.org/10.1172/JCI110400.

Recent studies have shown that effective pulmonary ventilation is possible with tidal volumes (VT) less than the anatomic dead-space if the oscillatory frequency (f) is sufficiently large. We systematically studied the effect on pulmonary CO2 elimination (VCO2) of varying f (2-30 Hz) and VT (1-7 ml/kg) as well as lung volume (VL) in 13 anesthetized, paralyzed dogs in order to examine the contribution of those variables that are thought to be important in determining gas exchange by high frequency ventilation. All experiments were performed when the alveolar PCO2 was 40 +/- 1.5 mm Hg. In all studies, VCO2 increased monotonically with f at constant VT. We quantitated the effects of f and VT on VCO2 by using the dimensionless equation $VCO2/VOSC = a(VT/VTo)b(f/fo)c$ where: $VOSC = f \times VT$, $VTo = mean\ VT$, $fo = mean\ f$ and a, b, c, are constants obtained by multiple regression. The mean values of a, b, and c for all dogs were 2.12 X 10(-3), 0.49, and 0.08, respectively. The most important variable in determining VCO2 was VOSC; however, there was considerable variability among dogs in the independent effect of VT and f […]

Find the latest version:

http://jci.me/110400-pdf
Effects of Frequency, Tidal Volume, and Lung Volume on CO₂ Elimination in Dogs by High Frequency (2–30 Hz), Low Tidal Volume Ventilation

ARTHUR S. SLUTSKY, ROGER D. KAMM, THOMAS H. ROSSING, STEPHEN H. LORING, JOHN LEHR, ASCHER H. SHAPIRO, ROLAND H. INGRAM, JR., and JEFFREY M. DRAZEN, Department of Physiology, Harvard School of Public Health; Department of Mechanical Engineering, Massachusetts Institute of Technology; Departments of Medicine, Brigham and Women’s Hospital, West Roxbury Veterans Administration Hospital, Harvard Medical School, Boston, Massachusetts 02115

ABSTRACT Recent studies have shown that effective pulmonary ventilation is possible with tidal volumes (Vₜ) less than the anatomic dead-space if the oscillatory frequency (f) is sufficiently large. We systematically studied the effect on pulmonary CO₂ elimination (VCO₂) of varying f (2–30 Hz) and Vₜ (1–7 ml/kg) as well as lung volume (Vₜ) in 13 anesthetized, paralyzed dogs in order to examine the contribution of those variables that are thought to be important in determining gas exchange by high frequency ventilation. All experiments were performed when the alveolar PACO₂ was 40 ± 1.5 mm Hg. In all studies, VCO₂ increased monotonically with f at constant Vₜ. We quantitated the effects of f and Vₜ on VCO₂ by using the dimensionless equation VCO₂/Vosc = a(Vₜ/Vtot)b(fo)c where: Vosc = f × Vₜ, Vtot = mean Vₜ, fo = mean f and a, b, c, are constants obtained by multiple regression. The mean values of a, b, and c for all dogs were 2.12 × 10⁻³, 0.49, and 0.08, respectively. The most important variable in determining VCO₂ was Vosc; however, there was considerable variability among dogs in the independent effect of Vₜ and f on VCO₂, with a doubling of Vₜ at a constant Vosc causing changes in VCO₂ ranging from -13 to +110% (mean = +35%). Increasing Vₜ from functional residual capacity (FRC) to the lung volume at an airway opening minus body surface pressure of 25 cm H₂O had no significant effect on VCO₂.

INTRODUCTION

Traditional concepts of gas exchange during tidal ventilation are based on the principle that there is a physical distinction between the regions of the lung where gas transport is primarily convective (the dead-space volume) and regions of the lung where molecular diffusion is the predominant gas transport mechanism (the alveolar region). This concept is supported by a large body of experimental data as demonstrated by the single-breath nitrogen washout test. Following an inspiration of pure oxygen, if one plots the nitrogen concentration of expired gas vs. volume expired, at least three distinct phases are evident. Initially, (phase I) the expirate contains little detectable nitrogen and represents exclusively gas expired from the dead-space. As additional volume is exhaled, the nitrogen concentration of the expirate increases rapidly (phase II), representing the interface between the dead-space volume and the alveolar gas compartment. Finally, the end expired gas contains the highest nitrogen concentrations (phase III), representing alveolar gas. If these zones were distinct, one would predict that to achieve effective gas exchange, the Vₜ must be greater than the dead-space.

Recently, however, this traditional concept has been challenged by experimental observations demonstrating...

Abbreviations used in this paper: f, oscillatory frequency; FACO₂, fractional alveolar CO₂ concentration; fo, mean f; HFV, high frequency ventilation; Vₐₐ, measured anatomic dead-space; Vₑₑ, measured equipment dead-space; VCO₂, pulmonary CO₂ elimination; Vₕₕ, lung volume; Vₜₜ, tidal volume; Vₜ₀₀, mean Vₜₜ.

Address correspondence to Dr. Arthur Slutsky, Respiratory Division, Brigham and Women’s Hospital, Boston, Mass. 02115.

Received for publication 21 January 1981 and in revised form 19 August 1981.
ing that effective alveolar ventilation can occur with V_T considerably less than dead-space volume provided that the ventilatory frequencies are sufficiently large (1–5). Although this has by now been well established by a number of studies, the physical mechanisms that account for the observed gas exchange are not known with certainty. Moreover, lacking from most of these studies has been a comprehensive experimental data base and a clear interpretation of what the data signify with respect to possible physical mechanisms that could account for gas exchange.

In a previous short publication (5) we presented experimental data showing that the most important variable determining the effectiveness of high frequency ventilation (HFV) with sinusoidal oscillations of small tidal volumes is the flow amplitude of the oscillations imposed. We also presented a simple theoretical model that could explain these results. In the present study we extend this previous work in terms of a much larger data base and present results of HFV performed at different lung volumes.

METHODS

High frequency oscillatory circuit. Our experimental setup is shown in Fig. 1. It consists of a high frequency ventilator, a large animal ventilator (Harvard Apparatus, Ealing Corp., Natick, Mass.), a servo-controlled vacuum source, a screen pneumotachograph connected to a pressure transducer, a high impedance bias flow system, and a carbon dioxide analyzer (LB-2 Beckman Instruments, Inc., Fullerton, Calif.). We used two different methods of generating the high frequency oscillations. The first was a unit consisting of four 12-in. Diam. Diam. coated loudspeakers sealed in a special chamber and acoustically coupled in series. These speakers were driven by an amplified signal from a sinewave generator. The system allows the speakers to generate greater pressure than if we had used a single speaker as the oscillating source. When all four speakers were driven in phase, it was possible to generate volumes of ≈ 100 ml at pressures of ± 25 cm H$_2$O at a frequency of 25 Hz. This setup allowed us to easily vary independently the frequency (f) and V_T of oscillation for the experiments in which (a) we maintained a constant frequency-tidal volume product ($V_{osc} = f \times V_T$) at various V_T (series A, below) or (b) we varied V_T at constant frequency (series C, below). To achieve greater reproducibility of V_T in these experiments in which we varied frequency at a constant V_T (series B, below), we used a custom made volume displacement piston pump. This pump has been described in detail previously (6).

The air flow output of the speaker high frequency ventilator was measured by a 7 sq in. 400-mesh screen pneumotachograph connected to a pressure transducer (Validyne DP-45 Validyne Engineering Corp. Northridge, Calif.: 2 cm H$_2$O). Since this combination is known to exhibit a broad resonance peak near 80 Hz (7) it was necessary to calibrate the pneumotachograph-transducer combination using a motor driven piston pump. A calibration curve was determined for frequencies ranging from 3 to 30 Hz. We used pump stroke volumes between 20 and 100 cm3 and found that for peak flows <10 liter/s, the calibration curve was solely dependent on frequency and independent of V_T. This curve was unchanged by applying elastic loads (2- and 10-liter bottles) to the distal end of the pneumotachograph or by applying steady pressures in the bottles of up to 50 cm H$_2$O. For the experiments in which we used the piston pump as the high frequency ventilator, we did not use the pneumotachograph transducer combination.

We provided a steady supply of fresh air at 0.75 liter/s via a needle valve, leading from a compressed air source to a tap in the tracheal cannula. Another tap in the cannula connected to a high vacuum source was located directly across from this air source. During an experiment we could adjust the positive and negative pressure needle valves to maintain the mean pressure at the airway opening to within 0.1 cm H$_2$O of atmospheric pressure. To ensure that the entire flow measured by the pneumotachograph entered the dog, we checked it.

Figure 1 Schematic diagram of experimental setup.
initially with the bias flow on and subsequently with the bias flow taps closed off. No effect of the bias flow was found on the measured oscillatory flow in the range of 2–30 Hz. As an additional check, we placed an elastic load distal to the bias flow (in place of the dog in Fig. 1) and oscillated this load with a piston pump. The pressure oscillations within the elastic load were unaffected by the bias flow. Thus, the flow measured by the pneumotachograph or generated by the piston pump was the same as the flow entering the dog.

CO2 output as an index of the effectiveness of pulmonary gas exchange. During a short burst of HFV of the dog we measured the percentage of CO2 in the gas in the tubing between the oscillator and the bias flow and found that the CO2 concentration was <0.02%. Thus, small amounts of gas leakage into the speaker chamber could account for an error of <2–4%. Therefore we assumed that all the CO2 from the dog was purged by the bias flow. We calculated CO2 output by continuously drawing a small sample of gas from the bias flow, through the CO2 analyzer, and electrically integrated the CO2 analyzer output neglecting an initial transient. Since the bias flow was constant, the integral of the CO2 concentration in the bias flow over time was proportional to CO2 output. Since we required precise measurements of CO2 at very low CO2 concentrations (C0), we tested the accuracy and linearity of the system in the following manner. After calibrating the CO2 analyzer, we measured the C0 using a 0.80% CO2 test gas and electrically integrated this value over time. We then performed serial dilutions of this test gas to obtain a CO2 gas mixture with a concentration of 0.024% and measured C0 and the integral of C0. We found that although the absolute value of C0 varied due to analyzer noise, the time averaged value determined from the integral of C0 was within 4% of the true value. To confirm that during an experimental run of HFV the oscillations did not introduce an artifact, we measured the integral of the CO2 concentration from the bias flow using a constant CO2 source in place of the dog while oscillatory frequency and stroke volume were varied and found this integral to be constant. In dogs 3–6, whose data were presented in part in our previous paper (5), and in dogs 8 and 9, we corrected the integral of CO2 concentration for a small systematic error (7 ml/min) in our CO2 analyzer calibration. This problem was eliminated for the experiments in dogs 10–16.

We found that changes in the fractional alveolar CO2 concentration (FACO2) resulted in a change in VCO2 at any Vosc. When the Vosc was such that the VCO2 was approximately equal to the metabolic CO2 production, the measured endtidal PCO2 (PetCO2) before and after HFV were identical. At the higher values of Vosc, VCO2 was greater than the metabolic CO2 production and there was a fall in FACO2. Thus, as time progressed VCO2 continued to decrease. This was readily apparent on the tracing of integrated CO2 production, which exhibited a decreasing slope with time, and was accompanied by a fall in PetCO2 after the period of HFV. To correctly estimate the effectiveness of HFV under these conditions we examined the CO2 output until ~10–20 ml of CO2 was removed. This corresponded to a minimum integration time of ~6–10 s depending on the value of VCO2. At the very low Vosc, the oscillations were ineffective at removing CO2, thus the value of PetCO2 rose by an amount related to the CO2 production of the dog, or an average of ~2–3 mm Hg over a 30-s period. We confirmed this by measuring PetCO2 after each HFV run and found that it changed by <3 mm Hg when HFV was relatively ineffective. In this circumstance the errors introduced by assuming a constant FACO2 instead of a changing FACO2, during the course of the oscillations would be small and would be in the direction of overestimating VCO2 at very low levels of Vosc. The magnitude of this error would be roughly proportional to the average percent increase in PetCO2. If HFV was totally ineffective and PetCO2 increased by 3 mm Hg in a linear fashion over the 30-s period of HFV, the average increase in PetCO2 would be 1.5 mm Hg. This would thus introduce an error of about 1.5 divided by 40 (=PetCO2 representing an error of <5%.

Experimental protocol

We studied 13 mongrel dogs (body wt 9.8–22.5 kg) anesthetized with intravenous sodium pentobarbital (initial dose 50 mg/kg) and supplemented every hour with 10% of the initial dose. A tracheostomy was performed and the trachea cannulated with a tight-fitting metal tube that contained a pressure tap. The cervical vagi were isolated and cut to minimize variations in airway tone. Airway opening pressure minus body surface pressure was measured with a Hewlett-Packard 268B transducer (Hewlett-Packard Co., Palo Alto, Calif.). Catheters were placed in the femoral artery and vein for sampling arterial blood and intravenous administration of solutions and drugs, respectively. Sodium bicarbonate was given intravenously to maintain arterial pH between 7.25 and 7.45. The dogs were ventilated with a conventional piston ventilator at frequencies from 10–15 breaths/min and then paralyzed with a loading dose of succinylcholine (2 mg/kg) and a continuous infusion of 50 μg/kg per min. Under these conditions respiratory CO2 output was determined as described above.

In six dogs (3–6, 8, 9) the anatomic dead-space was measured using a modification of the Fowler technique with CO2 as the test gas. In these measurements, CO2 concentrations were determined just proximal to where the cannula entered the trachea. This technique has been described in detail previously (8). The mean of three or four determinations was used as an estimate of the anatomic dead-space. The equipment dead-space, from CO2 sampling site to the bias flow output, was determined by direct measurement in all experiments.

Measurements performed at FRC. After these determinations the ventilator was adjusted to maintain the end-tidal CO2 between 38.5 and 41.5 Torr and base line measurements of CO2 output were made. Then, the animal was ventilated with the high frequency ventilator for 15–30 s, during which time measurements of VCO2 were made. After each measurement, the dog was returned to standard tidal ventilation, and the end-tidal CO2 concentration was measured. If the CO2 concentration had changed, the rate of the conventional ventilation was increased or decreased transiently to allow the end-tidal CO2 concentration to return to its base-line value.

Using this protocol we examined the effectiveness of HFV at two to four fixed values of Vosc in dogs 3–6 over the range of frequencies from 4 to 25 Hz by decreasing Vf as f increased such that the product f × Vf was held constant. Short bursts of HFV were interspersed with normal tidal ventilation such that PetCO2 remained within its specified limits. This set of experiments will subsequently be referred to as series A. In addition, in these dogs (3–6) we performed further experiments in which we varied f and Vf over a wide range of values but in which Vosc and Vf were not systematically held constant.

We examined the effectiveness of HFV in seven dogs (10–16) by using the piston pump with fixed stroke volumes ranging from 3 to 5 ml/kg over the range of frequencies, 2–30 Hz. These tests will be referred to as series B.

Measurements at Vf above FRC (series C). We studied the effectiveness of HFV at different Vf in two dogs (8, 9) by
placing the animals in a rigid chamber, similar to an iron lung, in which the mean pressure was controlled by a servo-feedback mechanism. By changing the pressure within the chamber we could change and control V\textsubscript{T}. We measured CO\textsubscript{2} output at a number of different values of V\textsubscript{osc}, by varying the V\textsubscript{T} of oscillation (dog 6: 8–30 ml; dog 9: 8–76 ml) but keeping the frequency constant at 16 Hz. We made measurements at four to six different V\textsubscript{T}: FRC and the V\textsubscript{T} corresponding to airway opening minus body surface pressures of 5, 10, 15, 20, or 25 cm H\textsubscript{2}O. A similar protocol was followed in that short bursts of HFV were interspersed with conventional tidal ventilation.

RESULTS

The weight, anatomic dead-space (V\textsubscript{DA}—where measured), and equipment dead-space (V\textsubscript{DE}) for each of the dogs are given in Table I. Mean systemic arterial pressure was not significantly different for the experiments performed during the conventional tidal ventilation and the high frequency ventilation. However, there was a diminution in the respiratory variations in pressure as noted by others (4).

In Fig. 2, results obtained in series A for fixed V\textsubscript{osc} are presented for dogs 3 and 6. These two were chosen since the results for dog 3 did not show any substantial effect on V\textsubscript{CO2} as f was increased and V\textsubscript{T} decreased such that V\textsubscript{osc} remained fixed, whereas dog 6 showed the greatest such effect observed in series A. In Fig. 3 results obtained in series B for fixed V\textsubscript{T} are presented for dogs 12 and 15. These two were chosen since, as will be seen, dog 12 showed the smallest effect of V\textsubscript{T} at a fixed V\textsubscript{osc} while dog 15 showed the largest such effect (as determined from values of b-c as described below). The results for dogs 3, 6, 12, 15 are presented in Fig. 4 as V\textsubscript{CO2} vs. V\textsubscript{osc}. In this form, the data fall in relatively narrow bands; however, there is a tendency in all the dogs for the results obtained at the larger values of V\textsubscript{T} to lie above the results for the lower V\textsubscript{T}. Although there does not appear to be much of a difference between dogs 12 and 15, with regards to the effect of V\textsubscript{T}, based on the results when plotted as V\textsubscript{CO2} vs. f (Fig. 3), the plots of V\textsubscript{CO2} vs. V\textsubscript{osc} (Fig. 4) clearly show that dog 15 exhibits a greater V\textsubscript{T} dependence. Note that there are more data points presented for dogs 3 and 6 in Fig. 4 than in Fig. 2 because in addition to the data obtained in series A, we performed further experiments (as described previously) in which we independently varied f and V\textsubscript{T} without aiming for a fixed V\textsubscript{osc}.

The effects on V\textsubscript{CO2} of varying V\textsubscript{L} (series C) are shown in Fig. 5. For both dogs at a fixed oscillation frequency of 16 Hz, V\textsubscript{CO2} increased as V\textsubscript{T} of oscillation increased, but V\textsubscript{CO2} remained relatively independent of V\textsubscript{L}.

Thus, although the product of f × V\textsubscript{T} is the main

<table>
<thead>
<tr>
<th>Dog no.</th>
<th>Weight (kg)</th>
<th>V\textsubscript{DA} (ml)</th>
<th>V\textsubscript{DE} (ml)</th>
<th>V\textsubscript{T} (ml)</th>
<th>f (Hz)</th>
<th>V\textsubscript{CO2} V\textsubscript{osc} (×10-3)</th>
<th>a (×10-3)</th>
<th>b</th>
<th>c</th>
<th>r</th>
<th>n</th>
<th>b − c</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>22.5</td>
<td>99</td>
<td>45</td>
<td>54</td>
<td>14.3</td>
<td>1.669</td>
<td>1.725</td>
<td>0.393</td>
<td>0.156</td>
<td>0.65</td>
<td>38</td>
<td>0.237</td>
</tr>
<tr>
<td>4</td>
<td>12.2</td>
<td>43</td>
<td>39</td>
<td>25</td>
<td>17.0</td>
<td>1.878</td>
<td>2.278</td>
<td>1.022</td>
<td>1.231</td>
<td>0.75</td>
<td>12</td>
<td>−0.209</td>
</tr>
<tr>
<td>5</td>
<td>11.2</td>
<td>45</td>
<td>39</td>
<td>41</td>
<td>17.0</td>
<td>1.210</td>
<td>1.219</td>
<td>0.513</td>
<td>0.060</td>
<td>0.67</td>
<td>51</td>
<td>0.453</td>
</tr>
<tr>
<td>6</td>
<td>9.8</td>
<td>51</td>
<td>39</td>
<td>45</td>
<td>14.6</td>
<td>1.214</td>
<td>1.368</td>
<td>0.600</td>
<td>0.487</td>
<td>0.69</td>
<td>23</td>
<td>0.113</td>
</tr>
<tr>
<td>8</td>
<td>15.0</td>
<td>62</td>
<td>45</td>
<td>18</td>
<td>16.0</td>
<td>2.486</td>
<td>2.575</td>
<td>0.496</td>
<td>—</td>
<td>0.98</td>
<td>51</td>
<td>—</td>
</tr>
<tr>
<td>9</td>
<td>14.8</td>
<td>86</td>
<td>45</td>
<td>35</td>
<td>16.0</td>
<td>2.975</td>
<td>2.953</td>
<td>0.039</td>
<td>—</td>
<td>0.94</td>
<td>65</td>
<td>—</td>
</tr>
<tr>
<td>10</td>
<td>13.2</td>
<td>—</td>
<td>39</td>
<td>37</td>
<td>13.5</td>
<td>1.603</td>
<td>1.485</td>
<td>—</td>
<td>−0.236</td>
<td>0.92</td>
<td>14</td>
<td>—</td>
</tr>
<tr>
<td>11</td>
<td>11.0</td>
<td>—</td>
<td>39</td>
<td>39</td>
<td>13.3</td>
<td>2.644</td>
<td>2.533</td>
<td>0.423</td>
<td>−0.154</td>
<td>0.93</td>
<td>26</td>
<td>0.577</td>
</tr>
<tr>
<td>12</td>
<td>13.2</td>
<td>—</td>
<td>39</td>
<td>53</td>
<td>14.9</td>
<td>2.313</td>
<td>2.220</td>
<td>0.186</td>
<td>−0.139</td>
<td>0.79</td>
<td>47</td>
<td>0.325</td>
</tr>
<tr>
<td>13</td>
<td>12.0</td>
<td>—</td>
<td>39</td>
<td>49</td>
<td>13.1</td>
<td>2.209</td>
<td>2.091</td>
<td>0.211</td>
<td>−0.277</td>
<td>0.93</td>
<td>20</td>
<td>0.488</td>
</tr>
<tr>
<td>14</td>
<td>14.5</td>
<td>—</td>
<td>45</td>
<td>57</td>
<td>14.4</td>
<td>1.656</td>
<td>1.614</td>
<td>0.490</td>
<td>−0.090</td>
<td>0.97</td>
<td>24</td>
<td>0.580</td>
</tr>
<tr>
<td>15</td>
<td>12.2</td>
<td>—</td>
<td>39</td>
<td>49</td>
<td>12.3</td>
<td>2.426</td>
<td>2.284</td>
<td>0.909</td>
<td>−0.158</td>
<td>0.91</td>
<td>39</td>
<td>1.067</td>
</tr>
<tr>
<td>16</td>
<td>15.2</td>
<td>—</td>
<td>45</td>
<td>60</td>
<td>14.5</td>
<td>3.223</td>
<td>3.190</td>
<td>0.612</td>
<td>−0.046</td>
<td>0.90</td>
<td>47</td>
<td>0.658</td>
</tr>
<tr>
<td>Mean</td>
<td>13.6</td>
<td>64</td>
<td>41</td>
<td>43</td>
<td>14.5</td>
<td>2.116</td>
<td>2.118</td>
<td>0.491</td>
<td>0.076</td>
<td>0.85</td>
<td>35</td>
<td>0.429</td>
</tr>
<tr>
<td>SD</td>
<td>23.2</td>
<td>3.0</td>
<td>12.4</td>
<td>1.5</td>
<td>0.638</td>
<td>0.610</td>
<td>0.270</td>
<td>0.439</td>
<td>0.12</td>
<td>16.5</td>
<td>0.344</td>
<td></td>
</tr>
</tbody>
</table>

Summary of data for all dogs based on equation 1:

\[
\frac{\text{VCO}_2}{\text{Vosc}} = a \left(\frac{\text{V}_T}{\text{V}_{T0}} \right)^b \left(\frac{f}{f_0} \right)^c
\]

where V\textsubscript{T0} and f\textsubscript{0} are the mean V\textsubscript{T} and frequency used for each dog, and the units of V\textsubscript{CO2} and V\textsubscript{osc} (= f × V\textsubscript{T}) are identical. V\textsubscript{DA} = measured anatomic dead-space; V\textsubscript{DE} = measured dead-space; r = correlation coefficient; n = number of data points; a, b, c = best fit numerical values for equation 1.
determinant of CO₂ elimination, f and V₉ by themselves are of some importance. To quantitate the effects of V₉ and frequency individually, we fit the data obtained from the experiments on each dog to a dimensionless equation of the form:

\[
\frac{\dot{V}CO_2}{Vos} = a \left(\frac{V_T}{V_{T0}} \right)^b \left(\frac{f}{f_0} \right)^c
\]

(1)

where (in contrast to Figs. 2-5) \(\dot{V}CO_2\) and \(Vos\) are expressed in same units, \(V_{T0}\) and \(f_0\) are the mean \(V_T\) and \(f\) used for each dog (Table I), and \(a, b, c\) are constants determined by least squares regression analysis of each data set to this equation. Note that since the dimensions of \(VCO_2\) and \(Vos\) are identical in this expression, the parameter \(a\) is dimensionless. This equation can be rewritten in alternative forms by substituting the quantity \(f = Vos/V_T\) into equation 1.

\[
\dot{V}CO_2 = a \left(\frac{1}{V_{T0}} \right)^b \left(\frac{1}{f_0} \right)^c Vos^{1+c}V_T^{-b-c}
\]

(2a)

\[
\dot{V}CO_2 = a \left(\frac{1}{V_{T0}} \right)^b \left(\frac{1}{f_0} \right)^c Vos^{t+b}f^{c-b}
\]

(2b)

FIGURE 3 Plots of \(\dot{V}CO_2\) vs. \(f\) at constant values of \(V_T\) for dogs 12 (top) and 15 (bottom).

Table I shows for each dog the best-fit values of \(a, b\) and \(c\). The mean correlation coefficient \(r\) for all the data was 0.85 and the mean value of \(b - c\) was 0.429. Note that for any given value of \(Vos\) the exponent \(b - c\) is an index of the independent effects of \(V_T\) and \(f\) on \(\dot{V}CO_2\). For example, if \(b - c = 0\), then \(\dot{V}CO_2\) is determined only by \(Vos\) and does not depend upon the individual values of either \(V_T\) or \(f\). If, however, \(b - c\) is non-zero, then \(\dot{V}CO_2\) will depend on both \(Vos\) and \(V_T\), or \(Vos\) and \(f\). Suppose that \(b - c = 0.5\) and a given tracheal flow, \(\dot{V}os\), is achieved with two \(V_T\), one twice the other. The same \(\dot{V}CO_2\) would not be achieved even though the \(\dot{V}os\) were equal. The \(\dot{V}CO_2\) with the higher \(V_T\) would be greater by a factor of \(2^{0.5}\), or \(-41\%\).

Using this type of analysis, we found that the effect of doubling \(V_T\) while maintaining the same \(\dot{V}os\) varied considerably from dog to dog. The minimum such effect on \(\dot{V}CO_2\) was in dog 4 (–13%), whereas the maximum effect was in dog 15 (110%). The mean effect for all dogs of doubling \(V_T\) at a fixed \(\dot{V}os\) was \(-35\%\).

To determine the effect of \(V_L\) on \(\dot{V}CO_2\) we fit the data from dogs 8 and 9 to the equation:

\[
\dot{V}CO_2 = \beta_0 + \beta_1\dot{V}os + \beta_2V_L + \beta_3\dot{V}osV_L
\]

(3)
where: \dot{V}_{CO_2} is the observed CO$_2$ elimination for each value of \dot{V}_{osc} and V_L and the β_i ($i = 0, \ldots, 3$) are coefficients determined from least squares regression analysis. The estimated values of β_2 and β_3 were not statistically different from zero ($P > 0.05$) indicating that V_L had no independent effect on V_{CO_2}.
A plot of $\dot{V}CO_2$ vs. V_{osc} based on the mean regression results for all dogs is presented in Fig. 6 for constant values of V_T and f.

DISCUSSION

Previous studies of HFV. Although a number of investigators have used rapid oscillations to achieve gas exchange (9–11), only recently has it been demonstrated that rapid oscillations with volumes less than the anatomic dead-space volume could effect adequate gas exchange (1–5, 12). Lunkenheimer and colleagues (1) while investigating the effect of high frequency oscillation on cardiac performance, fortuitously found that they were able to maintain normal blood gases in dogs without standard tidal ventilation by using ventilatory frequencies of up to 40 Hz and V_T as low as 10–20 cm3. Similar observations were also provided by Bunnell et al. (2) and Custer et al. (3) who, using an asymmetric flow pulse at frequencies of 4–6 Hz, were able to maintain normal blood gases before and after induction of diffuse lung injury with alloxan. Bohn et al. (4) also found that HFV with V_T equal to 25% of the dead-space could produce normal blood gases and suggested that there appeared to be a frequency optimum at ~ 15 Hz that provided the most effective CO_2 elimination. In a recent report we also demonstrated that HFV could support eucapnic gas exchange in anesthetized dogs (5).

Although the observations mentioned clearly document the effectiveness of HFV with small V_T in achieving gas exchange, a comprehensive experimental data base and an understanding of the physical mechanisms responsible for the gas exchange with this technique are necessary before the full potential of this mode of ventilation can be realized. In this paper we present a larger data base exploring the effects of systematic variations of V_T and oscillation frequency on gas exchange. Further, we explore the effects of changes in V_L on gas exchange achieved by HFV in normal dogs. With regard to all of these observations, we provide a unifying analysis of these results and highlight several potentially important mechanisms.

Comparison with previous results. The new and important feature of our experimental apparatus that allowed us to obtain quantitative data relating VCO_2 to f, V_T, and V_{osc} was the very high impedance bias flow circuit. This permitted large quantities of fresh air to be delivered to the airway opening without loss of oscillation volume. In this regard, our experimental setup was substantially different from that of Bohn et al. (4) who found that at a fixed stroke volume of the piston pump, arterial PCO_2 passed through a minimum at 15 Hz, thus suggesting an optimum frequency for CO_2 elimination. To deliver fresh air to the animal they used a flow of fresh gas delivered through a long tube that acted as a low pass filter. Consequently, the stroke volume produced by their piston ventilator was not necessarily the same as the volume delivered to the experimental subject since a variable fraction of the stroke volume would be lost to the bias flow, the fraction depending upon the ratio of the subject's impedance to that of the bias flow. Both of these impedances are functions of the frequency of oscillation. Thus, it is possible that as frequency increased above 15 Hz in the experiments of Bohn et al. (4), the fraction of stroke volume lost to the bias flow increased such that the flows actually delivered to the dogs decreased.

In a previous paper (5), we suggested that the effec-
tive gas exchange during HFV might be due to a number of augmentive mechanisms including (a) Taylor laminar (13) and turbulent dispersion (14), (b) mixing due to asymmetrical velocity profiles as proposed by Haselton and Scherer (15) and (c) secondary flows at bifurcations. One of our predictions from this model and that of Fredberg (16) was that \(V_t \) should have relatively minor effects on VCO\(_2\) at any given tracheal flow. The reason for this is that increasing \(V_t \) produces two competing phenomena: (a) the increasing cross-sectional area of the airways tends to increase VCO\(_2\) but (b) at any given tracheal flow as cross-sectional area increases, the velocity in any airway decreases and thus may lead to decreased enhancement of the mixing process. Our results provide evidence in support of this prediction since we found no significant effect of \(V_t \) (Fig. 5) on VCO\(_2\) as a function of Vosc. It should be noted that all the experiments were performed at \(V_t \) at or greater than FRC, in which presumably all airways were open. It is possible that if experiments had been performed at \(V_t \) below FRC and if airways were closed at these volumes, VCO\(_2\) might decrease. As well, at lower \(V_t \), flow limitation might occur and also further decrease VCO\(_2\).

Our previous observations suggested that the magnitude of Vosc achieved during HFV was the critical factor in determining CO\(_2\) elimination. The current experimental data base indicates that although Vosc is the most important factor, \(V_t \) and \(f \) have independent effects on VCO\(_2\) at any given Vosc. This can be appreciated by comparing the data presented in Figs. 3 and 4. When the data are shown as VCO\(_2\) as a function of frequency at a given \(V_t \) the slope of the nearly linear VCO\(_2\) vs. \(f \) relationship obtained varies in magnitude as much as the \(V_t \) varies, dog 12, or more than \(V_t \) varies, dog 15. Thus in Fig. 4 the \(V_t \) dependence is minimal when plotted as a function of Vosc in dog 12 and is quite striking in dog 15. Using equation 1 we quantified the effects of \(V_t \) and \(f \) and found that, on the average, a doubling in \(V_t \) at a given Vosc resulted in an increase in VCO\(_2\) of \(-35\% \) (=2\% x 0.429 is the mean value of \(b - c \)). There is a relatively large variability in this effect, with some dogs showing a 13% decrease in VCO\(_2\) with a doubling in \(V_t \) (dog 4) and others showing \(-100\% \) increase in VCO\(_2\). In all but one of the dogs, the value of \(b - c \) was positive, indicating that at a given Vosc, greater VCO\(_2\) is achieved with the combination of larger values of \(V_t \) and lower values of \(f \). Clearly, this must be the case when \(V_t \) exceeds the dead-space volume. The values of the parameters estimated for equation 1 were obtained using data from experiments where \(f \) varied from 2 to 30 Hz and \(V_t \) was always less than the estimated total (anatomic plus equipment) dead-space. As \(V_t \) gets very small, approaching the volume of a single generation of the tracheobronchial tree, one might anticipate that gas mixing efficiency might decrease even more. However, we do not have data to address this point because we did not systematically study VCO\(_2\) with very small \(V_t \).

This \(V_t \) effect on CO\(_2\) elimination was not predicted by our previous model (5) and most likely relates to the bulk transport of gas both at the airway opening and at the junction of the dead-space and the alveolar region. This convective process would tend to purge the equipment dead-space of CO\(_2\) and enhance gas transport at the alveolar-dead-space interface in a more efficient manner than augmented transport, the only mechanism considered in our previous analysis. Thus, greater \(V_t \) would cause greater VCO\(_2\) at equivalent values of Vosc.

In an attempt to provide an estimate of the effect due to convective purging, we modified our previous theoretical analysis (5) by assuming that the diffusional resistance is reduced to zero in two regions, one adjacent to the bias flow and the other adjacent in the alveolar region. The volume of each of these two regions is taken to be one-half of the \(V_t \). We then applied the equations used previously (equations 1–5 of reference (5)) to obtain estimates of VCO\(_2\). Theoretical results using this formulation are presented in Fig. 7. These theoretical results provide an approximate upper bound for the purging effect and show that convective purging could represent a reasonable mechanism causing the \(V_t \) effect. Further analyses will be required to determine the exact nature of the effect.

In estimating VCO\(_2\) in our experiments we used a relatively short period of HFV (<30 s), so that we would be able to obtain a large number of measurements for any given dog over a relatively short period of time. Our assumption was that data collected in this manner could be extrapolated to predict the values of \(f \) and \(V_t \) that would be required to maintain eucapnia in the dogs during steady-state ventilation. To investigate this question, in three of the dogs, we used the estimated values of \(f \) and \(V_t \) that would be required to produce a VCO\(_2\) equal to the dogs’ measured metabolic CO\(_2\) production and ventilated the dogs for 1–2 h. We measured arterial blood gases at the end of this period and found arterial PCO\(_2\) values were between 38 and 42. This not only confirms the previous findings of Bohn et al. (4), but also demonstrates that the experimental values we determined for VCO\(_2\) over 30 s reflect the steady-state values that would exist over long periods of HFV.

The experimental data presented in this paper, together with our earlier experimental and theoretical findings (5) provide the rule that VCO\(_2\) is approximately independent of lung size and dependent mainly on Vosc. If we use (Table I) the mean value of VCO\(_2\)/Vosc for all 13 dogs, namely, \(2.12 \times 10^{-3} \), (where VCO\(_2\) and Vosc have the same units), we can estimate the
Theoretical results for VCO₂ vs. Vosc at various V₆ using our previous analysis (5) with the addition of convective purging at the airway opening and alveolar regions (see text for details).

FIGURE 7 Theoretical results for VCO₂ vs. Vosc at various V₆ using our previous analysis (5) with the addition of convective purging at the airway opening and alveolar regions (see text for details).

tracheal flows required to produce eucapnia in a given dog. For example, if the metabolic CO₂ production of a dog is about 5 ml/min per kg (17), then one would predict that a value of Vosc of ~0.8 liter/s would be required for eucapnia in a 20 kg dog. Applying the same data to humans, where the metabolic CO₂ production is about 3 ml/min per kg (18), one obtains a Vosc of ~1.7 liter/s for eucapnia in a 70 kg man. This is, of course, a predicted value, to be assessed by clinical trials in humans. Since these estimates are based on the average value of VCO₂/Vosc, it is expected that they would be most accurate at the mean frequency used in our experiment, 14.5 Hz. If the frequency of oscillation were much different than 14.5 Hz, then more accurate estimates of Vosc would be obtained using equation 1 with the appropriate mean values of the constants for this equation from Table I. These estimates are probably sensitive to the specific geometry of the experimental setup. A further consideration in applying these data is the fact that the oscillatory peak flow may be near or above flow limitation in many lungs. For example, the calculated Vosc of 1.7 liter/s corresponds to a peak flow rate of 5.3 liter/s and not all patients would be able to support this flow rate at FRC.

The potential benefits of HFV in the clinical setting are substantial. The mean tracheal pressure during HFV may be maintained at zero and the peak transpulmonary pressure is low. Thus, the detrimental effects of positive pressure ventilation, such as barotrauma and impaired hemodynamics, may possibly be diminished or eliminated. In this paper we have presented a relatively comprehensive experimental data base relating CO₂ elimination to the various variables thought to be important during HFV. Our data clearly demonstrate that HFV is an effective method of achieving pulmonary ventilation and that the magnitude of the effective ventilation achieved varies with the amplitude of tracheal volume flow rate. It is hoped that these results will provide a framework on which to base further work, with the aim of making this technique clinically useful in humans.

ACKNOWLEDGMENTS

We thank Dr. O. McLetchie for statistical advice.

This work was supported in part by Medical Research Council (Canada), Parker B. Francis Foundation Fellowship (THR), grants from the National Heart, Lung, and Blood Institute HL00549, HL26566, and HL22920 and the Veterans Administration.

REFERENCES

CO₂ Elimination by High-Frequency Ventilation 1483

