Cloning of chromosomal DNA from Haemophilus influenzae. Its use for studying the expression of type b capsule and virulence.

E R Moxon, … , R A Deich, C Connelly

*J Clin Invest.* 1984;73(2):298-306. [https://doi.org/10.1172/JCI111214](https://doi.org/10.1172/JCI111214).

Haemophilus influenzae may make any one of six chemically distinct capsular polysaccharides, but only strains of capsular serotype b commonly cause systemic infection (e.g., meningitis) in humans. Molecular cloning of DNA was used to investigate the expression of type b capsule and its association with H. influenzae virulence. A virulent H. influenzae type b strain was used to construct a lambda library of chromosomal DNA in Charon 4. Two independently isolated recombinant phage were isolated from the library and were found to possess DNA necessary for expression of type b capsule. Using a well-characterized rat model of H. influenzae systemic infection, we showed that type b transformants elicited by the cloned DNA were pathogenic, causing bacteremia and meningitis, whereas the untransformed capsule-deficient H. influenzae organisms were not. A 4.4-kb EcoRI fragment, common to both DNA clones, was used to characterize clinical isolates representing all six encapsulated serotypes as well as several capsule-deficient H. influenzae by Southern hybridization analysis. The probe hybridized to an identical sized (4.4 kb) fragment of EcoRI-digested chromosomal DNA from eight independently isolated type b strains. Single bands of homology to the probe were also found in EcoRI fragments of chromosomal DNA obtained from 33 encapsulated, nontype b H. influenzae. However, the size of these EcoRI fragments proved to be characteristic for each of the different capsular […]
Abstract. Haemophilus influenzae may make any one of six chemically distinct capsular polysaccharides, but only strains of capsular serotype b commonly cause systemic infection (e.g., meningitis) in humans. Molecular cloning of DNA was used to investigate the expression of type b capsule and its association with H. influenzae virulence. A virulent H. influenzae type b strain was used to construct a lambda library of chromosomal DNA in Charon 4. Two independently isolated recombinant phage were isolated from the library and were found to possess DNA necessary for expression of type b capsule. Using a well-characterized rat model of H. influenzae systemic infection, we showed that type b transformants elicited by the cloned DNA were pathogenic, causing bacteremia and meningitis, whereas the untransformed capsule-deficient H. influenzae organisms were not. A 4.4-kb EcoRI fragment, common to both DNA clones, was used to characterize clinical isolates representing all six encapsulated serotypes as well as several capsule-deficient H. influenzae by Southern hybridization analysis. The probe hybridized to an identical sized (4.4 kb) fragment of EcoRI-digested chromosomal DNA from eight independently isolated type b strains. Single bands of homology to the probe were also found in EcoRI fragments of chromosomal DNA obtained from 33 encapsulated, nontype b H. influenzae. However, the size of these EcoRI fragments proved to be characteristic for each of the different capsular serotypes. These studies provide a basis for pursuing the molecular analysis of the epidemiology and virulence of pathogenic H. influenzae.

Introduction

Polysaccharide capsules are considered important determinants of bacterial pathogenicity. (For a recent review, see reference 1.) For example, the majority of cases of bacterial meningitis are caused by encapsulated bacteria, most commonly Haemophilus influenzae. Most cerebral spinal fluid (CSF) isolates of H. influenzae elaborate a characteristic and biochemically distinct polysaccharide capsule, a linear polymer of ribosyl-ribitol phosphate (PRP) (2, 3). The proclivity of type b strains to cause meningitis as well as several other life-threatening systemic infections (septic arthritis, epiglottitis, cellulitis, septicaemia) is remarkable, since H. influenzae isolated from the respiratory tract of humans may make any one of six biochemically distinct capsular polysaccharides (designated a-f) (4), yet encapsulated strains, other than type b, only rarely cause systemic infections (5, 6). One possibility is that the type b capsule itself has unique virulence properties which confer a measure of invasive potential denied to the other capsule serotypes. Since H. influenzae can be transformed to each of the different capsular serotypes using chromosomal DNA (7–9), we were able to compare these genetically similar strains using a well characterized and biologically relevant rat model of systemic H. influenzae infection (10). Type b transformants were always strikingly more virulent than other capsular types (11, 12), thus directly implicating the type b capsule itself as a major determinant of H. influenzae pathogenicity. However, these transformants were elicited using high molecular weight donor DNA (derived from representative serotypes), and might have resulted from a recombinant event affecting an uncertain but possibly large (~40 kb) region of the chromosome. If type b strains are clonal descendents of strains exhibiting enhanced pathogenicity, then the type b capsule might be merely one of several linked determinants mediating this
greater virulence. Thus, in comparing the virulence of the dif-
ferent capsular transformants, co-transformation of genes distinct
from those determining capsule could not be excluded. If this
latter hypothesis were to be partly or wholly correct, it would
be very important to identify and characterize the contribution
of these putative virulence genes.

To clarify the role of PRP in determining *H. influenzae*
virulence, we have used molecular cloning techniques to isolate
chromosomal DNA necessary for the expression of type b capsule
and virulence. We have isolated two independent recombinant
phage from a Charon 4 library and shown that part or all of
gene necessary for expression of type b capsule and virulence
is located within a 4.4-kb EcoRI fragment of this cloned chro-
mosomal DNA. Using this 4.4-kb EcoRI fragment as a probe
we have shown, by Southern hybridization, that this probe hy-
bridizes to an EcoRI fragment of identical size in the chromo-
somes of several type b strains and also to EcoRI fragments of
different, but characteristic, size found in the chromosomes
of the five other serotypes of *H. influenzae*.

Methods

**Bacterial strains.** Strain KW 20b, possessing one-step, independent mu-
tations for streptomycin and erythromycin resistance, was used to con-
struct the Charon 4 gene library and has been previously described (11).
Strain Eag, previously described (13), and its one-step streptomycin-
resistant mutant (E-I) were gifts of Ms. Lynn Harding, Harvard Uni-
versity, Boston, MA. Strain S9 (donated by Dr. Porter Anderson, Uni-
versity of Rochester, New York) was a one-step, capsule-deficient mutant
of strain E-I selected on the basis of its noniridescent colonial appear-
ance. It has been shown to elaborate detectable PRP, but in greatly reduced
amounts (<1/1,000,000) compared with its parent (14). Strain Santo ab is a
transformant isolated by G. Leidy, Columbia University, New York,
which elaborates both type a and b capsular polysaccharides (15). Clinical
isolates of *H. influenzae* were obtained from several sources: type b
strains; Rut (CSF), Gast (blood) from New York; Burchart (CSF), Stern
(trachea) from Maryland (1982–1983); and A02-07 (CSF), A19-51 (na-
sopharynx), A89 (blood) from Arizona (1981–1982). Type a strains
ATCC 9006; Fin-7, Fin-18, Fin-31, Fin-35 from Finland (1974–1976);
St-a from Massachusetts; Morg from Tennessee; and A09-49 (CSF),
A15-49 (CSF), A14-09 (nasopharynx) from Arizona (1982). Type c strains
ATCC 9007; 1647A from Missouri; St-c from Massachusetts; and Rugg-
giero (CSF) from New York (1958). Type d strains ATCC 9008; St-d from
Massachusetts; Fin-28 from Finland; and D-45 (Centers for Disease
Control, Atlanta). Type e strains ATCC 8142; Fann from Tennessee;
1698K, 1207, and 3174A from Missouri; and Hernandez (CSF)
and Anderson (CSF) from New York. Type f strains ATCC 9833; Fisk from
Tennessee; 1271 and 3028 from Missouri; Nossal (nasopharynx) and
Conroy (blood) from New York (1976); and BD-257 (blood) and BD-
332 from Louisiana. Nontypable strains Cuesta (CSF) and Kaseman
(CSF) from New York (1982); 269133 (trachea) from Maryland (1981);
A29-13, A16-23, A26-23, A10-14, A08-34, A29-22, A04-22 nasopa-
phyngeal isolates from Arizona (1981–1983); Foons (cellulitis) from
Maryland; Fin-4 and Fin-19 from Finland; and BD-108 (nasopharynx),
BD-125 (middle-ear), BD-263 (putum), and BD-355 (eye) from Louisiana.

**Serotyping and quantitation of PRP elaboration.** *H. influenzae* strains
were serotyped by slide agglutination using type a-f antisera (Biologic
Products Division, Centers for Disease Control). The amount of PRP
elaborated into broth supernatants of overnight cultures was measured
using enzyme-linked immunosorbent assay (ELISA), as previously de-
scribed (16). For some strains the surface distribution of PRP was char-
acterized by staining with fluorescein-conjugated (17) type b antisera
(a generous gift of Dr. John Robbins and Dr. Rachael Schneerson, National
Institutes of Health, Bethesda, MD). Suspensions of *H. influenzae* were
air-dried on glass slides and incubated (30 min at 22°C) with 10 μl of
the antibody-conjugate diluted 1:4 in neutral phosphate-buffered saline
(PBS). After thorough rinsing in PBS, the preparation was mounted in
an equal mixture of glycerol and PBS under a coverslip. Photographs
were obtained by Dr. Andre Zwahlen with a Zeiss fluorescence microscope
(Ektachrome 400 ASA [Eastman Kodak Co., Rochester, NY]; exposure
time 60 s). Final magnification was × 6,000.

**Animal studies.** Virulence studies were performed using Sprague-
Dawley albino rats (strain COBS-CD) aged 5 d challenged by intranasal
inoculation (11). Blood and CSF cultures were performed using previously
described techniques (10, 11). To detect the presence of small numbers of
virulent, encapsulated *H. influenzae* within a population of predom-
nantly capsule-deficient organisms, rats aged 40 d were inoculated in-
traperitoneally with 10³ organisms and blood cultures were obtained
after 48 h.

**Preparation and analysis of DNA.** Large molecular weight chro-
mosomal DNA was prepared from liquid cultures (3 ml). The pellet
(10⁶ cells) was lysed in 0.1 M NaCl, 10 mM Tris-HCl, and 10 mM
EDTA (pH 8.0) containing 1% SDS and heated to 60°C for 10 min.
The lysate was digested at 37°C for 60 min with the addition of Proteinase
K (Boehringer Mannheim Biochemicals, Indianapolis, IN) to 1 mg/ml.
The mixture was extracted twice with an equal volume of phenol followed
by water-saturated butanol before precipitation with cold ethanol (95%).
The DNA was resuspended in 10 mM Tris, 1 mM EDTA, pH 8, contain-
ing RNase (Worthington Biochemical Corp., Freehold, NJ) at 40
μg/ml. Phage DNA was purified by precipitation with polyethylene glycol
and was banded in a CsCl step-gradient as described by Yamanoto et
al. (18).

DNA was digested to completion using EcoRI (New England Biolabs,
Beverly, MA) and fractionated on 1% agarose gels (horizontal) using a
glycine buffer (200 mM glycine, 15 mM NaOH, 0.1 mM Na₂ EDTA,
and 0.002% sodium azide, pH 8). DNA was recovered from gels by the
method of Danner (19).

**DNA transformation.** *H. influenzae* was grown to early log phase in
supplemented heart-infusion broth before transfer of the washed cells
to Herrnott's MIV medium (20) and incubation at 37°C for 100 min.
Large molecular weight chromosomal DNA or CCl₆-purified DNA from
Charon 4 phage was incubated with the competent cells for 30 min at
37°C. After uptake of DNA, cells were plated on supplemented brain-
heart-infusion medium solidified with 1.5% agar. Type b transformants
were identified by their characteristic iridescence, which was optimally
visualized by viewing colonies with obliquely transmitted light.

**Derivation of type b capsule-deficient mutants.** We isolated several
independent mutants deficient in type b capsule elaboration (Fig. 1). S₁₂
was transformed using donor DNA from strain Eag. We observed a
single colony that displayed both iridescence and noniridescent sectors.
This sectored colony of Sb transforms was subcultured and five
noniridescent colonies were isolated and designated Sec 1–5. Sec 1 had
characteristics that distinguished it from Sec 2–5; these features were:
synchronous reversion to full type b capsule elaboration at a frequency
of 10⁻⁷ as judged by animal inoculations; elaboration of ~20 times
more PRP in cell-free broth supernatants, as assessed by ELISA, compared
with S₁₂, and a higher frequency of transformation by high molecular
weight chromosomal DNA to full type b capsule elaboration as compared with strain S2. Sec 2-5 did not spontaneously revert and elaborated greatly reduced amounts of PRP in quantities intermediate between Sec 1 and S2. Strains Rt 20 and Rt 43 were derived by selecting capsule-deficient transformants elicited by incubating strain Eag in the presence of DNA extracted from strain S2; these capsule-deficient transformants occurred at a frequency of 0.24% in the presence of DNA, whereas in the absence of DNA no capsule-deficient colonies were detected. Capsule-deficient mutants KW20b M 34, which elaborated reduced amounts of PRP, and M 38, which made no detectable PRP, were obtained by mutagenesis with 0.4 mg/ml N-methyl-N-nitrosoguanidine.

Construction of Charon 4 library. The general approach (Fig. 2) was based on the procedures described by Blattner (21). Chromosomal DNA from strain KW20 b was partially digested with pancreatic DNase to yield fragments averaging 10–20 kb long and sized by sucrose-gradient sedimentation. The purified fragments were blunt-ended with T4 polymerase (New England Biolabs), modified with EcoRI methylase, and ligated to EcoRI linkers (Collaborative Research Inc., Lexington, MA). After EcoRI cleavage and the removal of the free-linker DNA by agarose gel electrophoresis, the fragments were ligated to the free arms of the vector Charon 4 (21) and packaged using an in vitro lambda packaging mix. Approximately 24,000 independent recombinant phage were obtained and amplified in Escherichia coli strain K302 (22), yielding a library suspension (5 ml) containing ~10^9 phage/ml. The library suspension was kept at 4°C after the addition of a few drops of chloroform.

Southern analysis of genomic DNA. DNA (~2 μg) was digested with EcoRI and run on 1% agarose-glycinate gels at 60 V overnight. The DNA from these gels was hydrolyzed with 0.25 M HCl, denatured with 0.5 M NaOH, 1.5 M NaCl, and neutralized with 1 M NH4 acetate, 0.02 M NaOH, then transferred bidirectionally to nitrocellulose filters as described by Smith and Summers (23). Nick-translated hybridization probes were prepared by the method of Rigby et al. (24) using 32P-dCTP (3000 Ci/m mol, Amersham Corp., Arlington Heights, IL) and Micrococcus luteus DNA polymerase (Miles Laboratories Inc., Elkhart, IN). The filter-bound DNA was hybridized to Nick-translated probes at 37°C in 50% formamide and 10% dextran sulphate for 16 h according to the method of Scott et al. (25) as modified by Wahl et al. (26). The filters were washed at 45°C in 0.015 M NaCl, 0.0015 M sodium citrate for 2 h with three changes of buffer. Autoradiograms were obtained using Kodak XAR-5 film (Eastman Kodak Co.) and a Cronex quanta III (DuPont Laboratories, Wilmington, DE) intensifying screen.
The complete library, calculated
Cloning of
Results
were
amplified
to
ability
per
In
was
for
as
elicit
and
Ch.4:60
4
Charon
4
Ethidium bromide stained bands obtained
the Charon
showed that
4.4-
and
kb. By Southern hybridization analysis (using
cloned
fragments
that DNA from
the
Charon
had
gel-purified
DNA
of
9 and 4.4

In
4
transformants. Ch.4:48 had
DNA
as
indicated
and/or the assembly of PRP on the bacterial
surface; furthermore, there were DNA sequences capable of
restoring the full type b capsular phenotype present in both
Ch.4:48 and 60. In an attempt to localize the relevant sequences
more precisely, the 4.4- and 5.6-kb EcoRI fragments of Ch.4:48
were gel purified and tested to determine whether one, the other,
or both fragments could restore full type b capsule production
to each of the mutants. Sec 1 was transformed by the 4.4-kb
fragment alone, but the other mutants (S2, Sec 5, Rt 43, and
M 34) required both fragments. Since Sec 1 spontaneously reverts
to type b, it appears likely that a point-mutation that maps
within the 4.4-kb fragment is responsible for its leaky phenotype.
The genetic changes resulting in capsule-deficiency among the
other mutants must be more complex, since restoration of type b
capsule required DNA from both the 4.4- and 9.0-kb fragments.

Restoration of virulence to capsule-deficient mutants by cloned
DNA. We found that all type b transformants elicited by the
cloned DNA were highly virulent for rats. In typical experiments,
10 independent type b transformants (e.g., of strain S2) elicited
by Charon 4:48 DNA consistently caused bacteremia and meningitis
in rats following intraperitoneal inocula of 10^7 organisms.
Indeed, as few as two transformed organisms resulted in bac-
teremia. In contrast, none of the untransformed, capsule-defi-
cient mutants resulted in bacteremia. When an inoculum of
10^7 type b transformants of S2 was inoculated intranasally, bac-
teremia and meningitis occurred in 8 of 10 rats, whereas a
similar inoculum of untransformed S2 organisms colonized the
nasopharynx, but did not cause invasive infection. (All blood
and CSF cultures were sterile.)

In summary, all avirulent bacterial strains capable of being
transformed by the cloned DNA (including Sec 1 transformants
elicited by the isolated 4.4-kb EcoRI fragment) became as vir-
ulent as fully encapsulated type b clinical isolates.

Use of cloned DNA as probe for Southern hybridization anal-
ysis. We have used the 4.4-kb internal EcoRI fragment of Ch.4:48
as a probe in Southern hybridization analysis of EcoRI digests
of chromosomal DNA from different H. influenzae. Fig. 5 shows
that the probe hybridized to a 4.4-kb EcoRI fragment present

Results

Cloning of DNA necessary for type b capsule expression. To
isolate individual clones from the library, ten dilutions from
the complete library, calculated to yield ~1,000 phage, were
amplified to complete lysis in E. coli, strain K802. Phage DNA
present in the supernatant of phage lysates was tested for its
ability to elicit type b transformants of Sec 1. Transformants
were identified by visual inspection of colonies (several thousand
per plate) for the iridescent phenotype characteristic of type b
organisms. In this manner, cloned DNA sequences necessary
for expression of type b capsule were identified using a method
that was independent of virulence expression by the transform-
ants. We found that DNA from three of the original ten lysates
could elicit type b transformants. One of these was diluted so
as to yield a few hundred plaques on a plate. Phage were scraped
from individual plaques, amplified, and assayed for ability to
elicit type b transformants. Using this approach we selected two
Charon 4 phage (Ch.4:48 and Ch.4:60). DNA from Ch.4:48
and Ch.4:60 were not identical, as indicated by the different
ethidium bromide stained bands obtained on agarose-gel electro-
phoresis following EcoRI digestion (Fig. 3). In addition to
the Charon 4 arms, Ch.4:48 had two fragments of 9 and 4.4
kb whereas Ch.4:60 yielded three fragments of 6.7, 5.6, and 4.4
kb. By Southern hybridization analysis (using the ^32P-labeled
4.4- and 9-kb gel-purified EcoRI fragments of Ch.4:48 as probes),
we showed that there was homology between the 4.4-kb fragment
of Ch.4:48 and 60 and between the 9.0-kb fragment of Ch.4:48
and the 5.6-kb fragment of Ch.4:60. This suggested that we had
cloned overlapping fragments of chromosomal DNA.

Figure 3. Agarose gel electrophoresis of cesium-chloride-purified
DNA from Charon 4:48 (left) and Charon 4:60 (right) after digestion
with EcoRI and staining with ethidium bromide. A Hind III digest
of phage lambda (not shown) was performed to provide molecular
sizing markers (indicated by arrows; kilobase pairs). In each lane,
the bands corresponding to 19.8 and 10.9 kb are the Charon 4
arms.

Use of cloned DNA to characterize capsule-deficient mutants.
Either Ch.4:48 or 60 could elicit type b transformants in some,
but not all, of a series of capsule-deficient mutants. Five mutants,
Sec 1, Sec 5, S2, M 34, and Rt 43, which elaborated reduced
amounts of PRP, could be transformed to type b; in contrast,
mutants Rt 20 and M 38 (which made no PRP) could not be
transformed. These findings suggested that Ch.4:48 and 60 con-
tained some but not all genes necessary for type b capsule elab-
oration.

The capsule-deficient mutants that elaborated reduced
amounts of PRP were distinctive in appearance; when stained
with fluorescein-conjugated antibodies (Fig. 4) they had an ir-
regular patchy distribution of PRP on the bacterial cell surface.
This appearance contrasted with the regular, plump rings of
brilliant fluorescence exhibited by type b clinical isolates or type
b transformants. Thus, the mutants elaborating reduced amounts
of PRP apparently have mutations in one or more genes affecting
either the quantity and/or the assembly of PRP on the bacterial
surface; furthermore, there were DNA sequences capable of
restoring the full type b capsular phenotype present in both
Ch.4:48 and 60. In an attempt to localize the relevant sequences
more precisely, the 4.4- and 5.6-kb EcoRI fragments of Ch.4:48
were gel purified and tested to determine whether one, the other,
or both fragments could restore full type b capsule production
to each of the mutants. Sec 1 was transformed by the 4.4-kb
fragment alone, but the other mutants (S2, Sec 5, Rt 43, and
M 34) required both fragments. Since Sec 1 spontaneously reverts
to type b, it appears likely that a point-mutation that maps
within the 4.4-kb fragment is responsible for its leaky phenotype.
The genetic changes resulting in capsule-deficiency among the
other mutants must be more complex, since restoration of type
b capsule required DNA from both the 4.4- and 9.0-kb fragments.

Restoration of virulence to capsule-deficient mutants by cloned
DNA. We found that all type b transformants elicited by the
cloned DNA were highly virulent for rats. In typical experiments,
10 independent type b transformants (e.g., of strain S2) elicited
by Charon 4:48 DNA consistently caused bacteremia and meningitis
in rats following intraperitoneal inocula of 10^7 organisms.
Indeed, as few as two transformed organisms resulted in bac-
teremia. In contrast, none of the untransformed, capsule-defi-
cient mutants resulted in bacteremia. When an inoculum of
10^7 type b transformants of S2 was inoculated intranasally, bac-
teremia and meningitis occurred in 8 of 10 rats, whereas a
similar inoculum of untransformed S2 organisms colonized the
nasopharynx, but did not cause invasive infection. (All blood
and CSF cultures were sterile.)

In summary, all avirulent bacterial strains capable of being
transformed by the cloned DNA (including Sec 1 transformants
elicited by the isolated 4.4-kb EcoRI fragment) became as vir-
ulent as fully encapsulated type b clinical isolates.

Use of cloned DNA as probe for Southern hybridization anal-
ysis. We have used the 4.4-kb internal EcoRI fragment of Ch.4:48
as a probe in Southern hybridization analysis of EcoRI digests
of chromosomal DNA from different H. influenzae. Fig. 5 shows
that the probe hybridized to a 4.4-kb EcoRI fragment present

301 Molecular Basis of Haemophilus influenzae Virulence
in strain Eag. Similar results were obtained from capsule-deficient mutants making reduced amounts of PRP (as exemplified in Fig. 5 by S2 and M 34). In contrast, strain’s Rd-KW20 and M 38, mutants making undetectable PRP, had no homology to the probe. Their type b transformants, exemplified by Rd-KW20b (Fig. 5, lane 4), acquired a 4.4-kb EcoRI fragment that was homologous with the probe. Thus, type b transformation using donor DNA from strain Eag was associated with the acquisition of a 4.4-kb EcoRI fragment of DNA that shared sequence homology with the cloned 4.4-kb EcoRI fragment of Ch.4:48 and 60. Fig. 5 (lanes 7, 8, and 9) also shows three representative examples of the results obtained when we probed eight independently isolated type b strains cultured from children with systemic *H. influenzae* infections who lived in different regions of the USA. Thirty encapsulated, non-type b isolates (representing all serotypes) also showed single bands of homology, but the probe hybridized to EcoRI fragments of different sizes which, nonetheless, proved to be highly characteristic of the particular capsular serotypes (Fig. 6). These results can be summarized as follows: the probe hybridized to EcoRI fragments of 5.4 kb in seven type a strains, 2.3 kb in four type c strains, 4.0 kb in four type d strains, 1.6 kb in seven type e strains, and 2.3 kb in eight type f strains. After these studies were completed, three additional type a isolates from Apache Indian children with systemic *H. influenzae* infection (two cases of meningitis and one of pneumonitis) were studied and found to exhibit an exceptional pattern of hybridization with the 4.4-kb EcoRI probe. Instead of the typical homology to a 5.4-kb fragment characteristic of type a strains, the probe hybridized to a 4.4-kb EcoRI fragment typical of type b strains. Additional studies by Dr. G. Losonsky and Dr. A. Zwahlen of this laboratory have shown that these isolates elaborate no detectable PRP (ELISA), have an identical Kilian biotype II, as well as similar outer membrane protein and lipopolysaccharide profiles. Thus, it is likely that these isolates represent the same or a closely related strain.

A series of encapsulated transformants of Rd-KW20 (type a-f) prepared by Dr. Zwahlen also showed the characteristic hybridization to the probes. A type ab transformant (which exhibited simultaneous production of type a and type b polysaccharides) obtained from Grace Leidy, Department of Pediatrics of this institution, displayed the two characteristic bands of hybridization of 5.4- and 4.4-kb, respectively (Fig. 6). Since all encapsulated strains (41 clinical isolates) showed hybridization to the probe, we examined 17 capsule-deficient (nontypable) clinical isolates. We were particularly interested to determine whether or not nontypable *H. influenzae* causing systemic in-
isolates, infections were importance 16-023, from conversely, and, especially virulence. lymerization, 5. producing media for ress mapping of techniques different transformant b and isolate in influenzae and isolate in influenzae producing antibodies in influenzae type b meningitis. The arrow indicates the gel-purified 4.4-kb fragment of Ch.4:48.

Infections showed homology to the probe. None of three CSF isolates showed homology to the probe. Of the remaining 14 isolates, 3 possessed chromosomal EcoRI fragments (6.6, 6.1, and 6.0 kb, respectively) with homology to the probe. These isolates were obtained from a child with otitis media (BD-125), and from two individuals with asymptomatic colonization who were contacts of cases with systemic H. influenzae b infection (A16-023, A08-34).

Discussion

The importance of the polysaccharide (PRP) capsule in virulence and, conversely, of serum anti-PRP antibodies in protection has been a logical and dominant feature of research into mechanisms of pathogenesis and prevention of systemic H. influenzae infections, especially meningitis (1). However, there have been no definitive studies on the genetics of type b capsule expression and virulence. Thus, details of the biosynthesis, transport, polymerization, and surface assembly of PRP are unknown. Progress has been thwarted since H. influenzae requires a complex defined media for its growth, and suitable vectors, such as transducing phages, have not been available. As a result, only limited chromosomal mapping (9) and a few defined mutants of H. influenzae are available. In the present studies, we used the techniques of molecular cloning and transformation to identify and isolate chromosomal DNA from one or more of the genes necessary for expression of type b capsule. In contrast to the cloning of virulence determinants (usually proteins) in other bacterial pathogens, our task was further complicated since none of the genes involved in expression of the polysaccharide capsule was known. Earlier studies, however, had indicated that a chromosomal region, perhaps as large as 50 kb, might be required (9). Thus, we considered it unrealistic to attempt isolation of all the genes necessary to elaborate PRP using presently available cloning vectors. Our approach, therefore, was to obtain one or more clones from the Charon 4 library that could restore, by transformation, full type b expression to a mutant deficient in at least one of the genes necessary for PRP elaboration. The library was shown to contain cloned DNA sequences capable of restoring capsule elaboration to a capsule-deficient mutant by using the rat as a biological cell selector. This approach had the advantage of permitting the detection of extremely small numbers of type b transformants. Once it was established that the library contained DNA capable of restoring type b capsule expression, we proceeded to isolate individual clones that could restore capsule expression to Sec 1.

The successful isolation of Ch.4:48 and Ch.4:60 has facilitated the identification and preliminary characterization of one or more genes necessary, but not sufficient, for type b capsule elaboration and virulence. Four independently derived mutants, shown to make reduced amounts of PRP, could be restored to full capsule production and virulence by both Ch.4:48 or 60. In the case of Sec 1 (which spontaneously reverts), the transforming DNA has been further localized to the 4.4-kb EcoRI fragment common to both Ch.4:48 and 60. Additional studies are underway to characterize further this region. Since Sec 1 exhibited irregular, patchy distribution of PRP, it is possible that Sec 1 lacks expression of a gene that is involved in surface assembly of PRP. If so, the gene (product) might be a potential target for specific antibodies and therapeutic agents and offer a novel approach to attenuating virulence. Alternatively, Sec 1 may lack full expression of the gene involved in PRP biosynthesis, thus resulting in quantitatively altered PRP production. In subsequent studies, using EcoRI fragments from Ch.4:48 and 60 as probes, we have identified an additional 50 recombinant phage from the Charon 4 library that share overlapping homology with these probes. Using this approach, or by identifying larger pieces of DNA from a cosmids bank, we hope to identify additional sequences that will enable us to define the entire region involved in type b capsule expression.

We are impressed by the similarities between capsule expression in H. influenzae as compared with other encapsulated bacterial pathogens, particularly Streptococcus pneumoniae (27). The general phenomonology, known for many years but never explained, includes the following features: spontaneous loss of the capsular and virulence phenotype at variable and sometimes high frequencies; the occurrence of leaky or tight capsule-deficient mutants which may, but usually do not, revert spontaneously to full capsule production (28); strains of one type do not spontaneously change to another, but both intertype and intratypetype change can occur through DNA transformation. Thus, our studies in H. influenzae may prove to be a good model for
understanding the genetic mechanisms that underlie capsule expression in several pathogenic bacteria. Indeed, the availability of a well studied, biologically relevant model of *H. influenzae* systemic infection allows us to analyze the independent contribution of the type b capsule at each of several critical stages (e.g., nasopharyngeal colonization, bloodstream dissemination, meningeal invasion, etc.) of the pathogenic sequence. Furthermore, our Charon 4 library has also been used to isolate and perform preliminary characterization of a gene encoding an *H. influenzae* IgA I protease, a potentially important virulence determinant for both local and systemic *H. influenzae* infections (29).

The 4.4-kb EcoRI fragment has proved to be a useful probe for characterizing the chromosomal DNA of encapsulated and capsule-deficient strains. It is interesting that all encapsulated strains showed homology (using conditions of high stringency) to this 4.4-kb EcoRI fragment. This finding suggests that one or more genes within this region may be required for common steps in capsule elaboration (e.g., exporting the capsule from the cytoplasm to the bacterial cell surface). Owing to the distinctly different chemical composition of several of the *H. influenzae* capsular polysaccharides, at least some of the biosynthetic genes should prove to be unique for a particular serotype. It also seemed noteworthy to us that, with some interesting exceptions,
the 4.4-kb probe hybridized to chromosomal EcoRI fragments of a size consistently characteristic of the different serotypes. The interesting exceptions (among 41 independently isolated, encapsulated clinical isolates) were obtained from three young Apache Indians in Arizona. These type a H. influenzae (serotype was confirmed independently by G. Leidy) caused typical systemic infections (meningitis, pneumonia) and were collected as part of an ongoing prospective study of systemic infections occurring in this community. All three isolates were biotype II and shared similar outer membrane protein and lipopolysaccharide profiles (Losonsky, G., and A. Zwahlen, personal communication), so we presume they are closely related. These type a isolates represented 20% (3/15) of all systemic infections occurring during a 14-mo period, an incidence of type a infection substantially higher than expected based on extensive experiences in the USA and elsewhere (30–32). The possession by these type a isolates of an EcoRI fragment similar to that found in type b strains is provocative. Exchange of capsule genes among type a and type b strains might be expected owing to the similarities in structure between the respective polysaccharides. Indeed, Leidy and Alexander have described an "ab" transformant that elaborated both polysaccharides simultaneously (15). We showed that this type ab transformant possessed two chromosomal EcoRI fragments, each of typical size (Fig. 6), whereas its isogenic type a and type b variants each had only one. Could the clinical isolates from Arizona represent a more virulent recombinant derived through exchange of genes from type b to type a strains? Such an hypothesis would require that the chromosome retained the structural genes essential for biosynthesis of type a polysaccharide, but acquired type b sequences involved in other aspects of capsule elaboration. In this case, transfer of DNA from a type b parent might also confer enhanced virulence mediated through expression of linked genes distinct from those involved in capsule expression.

In summary, these preliminary findings indicate the potential of molecular cloning techniques for analyzing H. influenzae virulence. An understanding of the genetic basis of capsule expression in H. influenzae should indicate some of the principles underlying virulence expression by encapsulated bacterial pathogens as well as provide a molecular explanation for the extraordinary propensity of type b strains to cause invasive infections of humans.

Acknowledgments

Much of this work was performed in the laboratory of Dr. Hamilton O. Smith (Department of Molecular Biology and Genetics, Johns Hopkins University). We are greatly indebted to him and to his colleagues for their advice and encouragement. We are grateful to Rhonda Mithler and Audrey Baker for their help in the preparation of this manuscript. We wish to thank Dr. John Robbins, Ann Sutton, Dr. Porter Anderson, Dr. Robert Munson, Dr. Robert Leggiadro, Dr. Robert Daum, Dr. Helen Makaela, Dr. Grace Leidy, Dr. Mathuram Santosham, and Dr. Sarah Sell, for sending us strains of H. influenzae.

This work was supported by grant NS 12554 from the National Institutes of Health, Research Career Development Award KO4-AI-0030, and the National Cancer Institute, under contract NO1-CO-23909 with Litton Bionetics, Inc.

References


