Parathyroid Hormonelike Protein from Human Renal Carcinoma Cells
Structural and Functional Homology with Parathyroid Hormone

Veterans Administration Medical Center and University of California, San Francisco, California 94121; the Department of Pharmacology, Northwestern University Medical School, Chicago, Illinois 60611; and Merck Sharp and Dohme Research Laboratories, West Point, Pennsylvania 19486

Abstract

A variety of solid tumors secrete proteins that are immunologically distinct from parathyroid hormone (PTH) but activate PTH-responsive adenylate cyclase. Such PTH-like proteins have been proposed as mediators of the hypercalcemia and hyperphosphatemia frequently associated with malignancies. We purified apparent homogeneity a PTH-like protein with a molecular weight of 6,000, that is produced by human renal carcinoma cells. The amino-terminal sequence of the PTH-like protein and that of human PTH were found to display at least five identities in the first 13 positions. The purified protein bound to PTH receptors, activated adenylate cyclase in renal plasma membranes, and stimulated cAMP formation in rat osteosarcoma cells. The PTH-like protein reproduced two additional effects of PTH, stimulation of bone resorption in fetal rat limb bone cultures and inhibition of phosphate uptake in cultured opossum kidney cells. These properties are consistent with a role for PTH-like proteins as mediators of the syndrome of malignancy-associated hypercalcemia.

Introduction

The possibility that malignant tumors could cause hypercalcemia by producing a substance resembling PTH was first suggested in 1941 by Albright, based on the coexistence of hypophosphatemia and hypercalcemia in a patient with renal carcinoma (1). It was subsequently noted that radioimmunoassays for PTH detected a cross-reacting substance in serum from patients with malignancy complicated by hypercalcemia (2). In most patients with squamous carcinomas or renal adenocarcinomas, hypercalcemia was characterized by a decreased renal phosphate threshold and by increased urinary excretion of nephrogenous cAMP, the PTH-dependent component of urinary cAMP (3).

Recently, squamous and renal carcinomas have been shown to secrete proteins that, like PTH, activate adenylate cyclase in bone and kidney, yet are immunologically distinct from PTH (4, 5). These proteins may also reproduce some of the physiological effects of PTH, as partially purified preparations have bone-resorbing (6, 7) and phosphaturic activity (8). Elaboration of PTH-like proteins by solid tumors is strongly correlated with development of hypercalcemia (6). These findings suggest a causative role of tumor-derived PTH-like proteins in hypercalcemia complicating solid tumors.

The human renal carcinoma cell line 786-O was obtained from a hypercalcemic patient and produces hypercalcemia when grown as xenografts in the nude mouse (4). Here we report that a purified protein from 786-O cultures binds to high affinity PTH receptors in renal plasma membranes and mimics the physiologic effects of PTH in renal cells and bone explants. Homology between the amino-terminal sequence of the tumor protein and human PTH may account for their shared properties.

Methods

Purification. 4-d collections of medium containing 5 μM leupeptin and 1 μM pepstatin were obtained from confluent 786-O cells (clone KEC), which were maintained as described (4). Conditioned medium (12–14 liter, stored at −20°C) was thawed and stirred for 2 h with 2.5 g/liter controlled-pore glass beads (Sigma Chemical Co., St. Louis, MO). After beads were washed with 50% ethylene glycol, activity was eluted with 2 M tetramethylammonium chloride. The eluate was dialyzed into 0.05 M sodium acetate, pH 6.2, and applied to a column of Sephadex CM-25, which was eluted with a linear gradient of 0-1 M NaCl. Active fractions (eluting at 18-25 mMl) were made 0.1% in TFA1 and applied to a 25 cm × 4.6 mm HPLC column (Vydac 218 TP54; The Separations Group, Hesperia, CA); activity was eluted with a gradient (0–95%) of N-propanol in 0.1% TFA at 0.16% min−1. Fractions with activity were lyophilized and redissolved in 0.1% TFA, then injected onto a 2.1 cm × 4.6 mm HPLC column (Vydac 218TP52.1), which was developed with an N-propanol gradient (0–47.5%) in 0.1% TFA at 0.079% min−1. Active fractions were lyophilized and incubated for 2 h at 37°C in 1% SDS, 10% glycerol, 0.0625 M Tris, pH 6.8. Gel electrophoresis was then carried out on a 9-26% polyacrylamide gra-

1. Abbreviations used in this paper: bPTH(1-34), bovine parathyroid hormone (1-34); Gpp(NH)p, 5′-guanylyl imidodiphosphate; OK, opossum kidney; TFA, trifluoroacetic acid.
dient in 0.1% SDS (9) with equine myoglobin and its cyanogen bro-
mide fragments (Diversified Biotech, Biotechnology Center, MA) as stan-
dards. Gel slices (1 mm) were eluted into 0.01 M acetic acid containing
10% (vol/vol) Extractagel D (Pierce Chemical Co., Rockford, IL).

PTH bioassays. PTH-like bioactivity was assayed as stimulation of
cAMP formation in cultures of UMR-106 rat osteosarcoma cells (10)
or stimulation of adenylate cyclase activity in canine renal plasma
membranes (4). Results at serial dilutions were averaged, and are
reported as the quantity of bPTH(1-34) required to produce an equiva-
lent response.

Receptor binding assay. Binding of 125I-labeled PTH-like protein to
the PTH receptor in canine renal plasma membranes was assayed as
described for 125I-bPTH(1-34) (11), except that bound and free hor-
mones were separated by microcentrifugation rather than filtration.
When present, Gpp(NH)p was incubated with the reaction mixture for
25 min at 30°C before addition of labeled peptides. The PTH-like
protein in 100 μl of gel eluate was labeled with chloramine T (12). The
labeled protein was separated from reagents by chromatography on
Sephadex LH-20 as described (11), and purified by HPLC on a Vydac
218TP52.1 column, using a 0–95% gradient of N-propanol in
0.1% TFA.

Bone-resorbing activity. Bone resorbing activity was determined as
previously reported (13), as release of 45Ca from prelabeled 19-d fetal
rat limb bones cultured for 72 h in Dulbecco's modified Eagle's me-
dium supplemented with 15% heat-inactivated horse serum and 0.5
μM indomethacin.

Sodium-dependent phosphate uptake. Opossum kidney (OK) cells
(clone IG-9) were grown to confluence in 24 well plates (Costar, Hia-
leah, FL), as described (14). Cultures were transferred to 0.25 ml of
uptake medium (14) and incubated for 2 h at 37°C with test agents.
Influx measurements were begun by addition of fresh uptake medium
containing 0.1 mM [32P]PiK2PO4 (1 μCi/well). After 3 min at 37°C,
wells were rapidly washed thrice with 3 ml of ice-cold wash solution
(14). The monolayer was solubilized in 0.1% SDS for determination of
phosphate uptake. Sodium-independent phosphate uptake, deter-
mined by replacement of NaCl in uptake medium by 137 mM N-
methyl-D-glucamine chloride, was subtracted from total uptake to cal-
culate sodium-dependent uptake. Total and Na-independent phos-
phate uptake was linear for at least 5 min.

Sequence determination. Polyacrylamide gels (0.5 or 0.75 mm)
were electrophoresed for 1 h with 0.5 mM sodium thioglycolate in
the upper reservoir; during electrophoresis the upper reservoir con-
tained 0.1 mM glutathione. Gel slices were eluted into 10 mM acetic
acid. Eluates with PTH-like activity were spotted on aminopropyl-
substituted glass fiber filters, prepared as described (Applied Biosys-
tems Protein Sequencer User Bulletin 25; Applied Biosystems, Foster
City, CA), and electroeluted for 40 min at 30 V in 0.15 M N-ethyl-
morpholine, pH 8.3. Filters were soaked in polybrene (60 mg/ml) and
dried. Automated Edman degradation was performed on an Applied
Biosystems model 470A Protein Sequencer.

Results

Polypeptides with PTH-like bioactivity were purified from me-
dium conditioned by 786-0 cells. The results in Table I are repre-
sentative of three separate preparations. A 6,000-mol wt species (esti-
mated by SDS gel electrophoresis) had 55–80% of the total PTH-like activity. Minor species (in descending order of abundance) had molecular weights of ~3,400, 8,000, and 15,000 (data not shown). The small quantity of purified mate-
rial precluded precise assessment of mass and hence specific activity.
However, the purified 6,000 D component containing 2.4 μeq of activity had ~2 μg protein by Coomasie Blue staining, giving an estimated specific activity of 1.2 mg eq
bPTH(1-34)/mg protein in the osteosarcoma cell bioassay.

<table>
<thead>
<tr>
<th>Table 1. Purification of PTH-like Protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Conditioned medium</td>
</tr>
<tr>
<td>1. Controlled pore glass</td>
</tr>
<tr>
<td>2. CM-Sephadex</td>
</tr>
<tr>
<td>3-4. HPLC × 2</td>
</tr>
<tr>
<td>5. SDS gel electrophoresis</td>
</tr>
<tr>
<td>3400 D</td>
</tr>
</tbody>
</table>

* Activity in renal adenylate cyclase assay.

The potencies, relative to bPTH(1-34), of the purified 6,000 D and
3,400 D forms were about 20-fold lower in the renal aden-
ylate cyclase assay than in the osteosarcoma cell assay. Simi-
lar potency differences were previously found using partially
purified material (10). The 6,000 D species in gel eluates was
further characterized, as described below.

It had previously been inferred that to activate adenylate
cyclase, tumor-derived PTH-like proteins bind to the PTH
receptor (4, 5). This issue was investigated in ligand-binding
studies. Purified PTH-like protein retained bioactivity after
iodination with chloramine T (data not shown). Labeled
PTH-like protein bound to canine renal plasma membranes
competitively with PTH (Fig. 1). Similar concentrations of
unlabeled bPTH(1-34) (EC50 = 0.1 nM) were required to
inhibit the binding of 125I-labeled PTH-like protein and 125I-
bPTH(1-34), suggesting that both labeled peptides occupied
the same binding sites. Addition of Gpp(NH)p (0.1 mM) re-
sulted in 96% inhibition of labeled PTH binding and 72%
inhibition of binding of the labeled PTH-like protein.

The most prominent skeletal effect of PTH is activation of
bone resorption. Table II shows that the PTH-like protein also
had bone-resorbing activity. Although the experiments do not
permit a precise assignment of potency, effects of 1 nM PTH

Figure 1. Competitive inhibition by bPTH(1-34) of the binding of la-
beled PTH and labeled PTH-like protein to canine renal membranes.
Added was 8300 cpm 125I-bPTH(1-34) (e) and 6600 cpm 125I-la-
beled PTH-like protein (o). Binding in the absence of membranes
was 11.3 cpm for 125I-

bPTH(1-34) and 90.8 cpm for 125I-labeled PTH-like protein and was
subtracted. Nonspecific binding was <5% of total binding for 125I-
bPTH(1-34) and was 25% of total binding for 125I-labeled PTH-like
protein. Results are presented as mean ± SEM of duplicate deter-
ninations from one experiment. The experiment was performed three
times with similar results.
Table II. PTH-like Protein has Bone-resorbing Activity

| Addition | Concentration | Na release | P value
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nM or nMeq</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>(osteosarcoma assay)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exp. 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>17.6 ± 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bPTH (1-34)</td>
<td>6.5 (0.3)†</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>PTH-like protein</td>
<td>22.4 ± 4.3</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Eluate control</td>
<td>21.2 ± 0.6</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Exp. 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>50.5 ± 7.5</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>bPTH (1-34)</td>
<td>70.1 ± 5.3</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>87.1 ± 3.4</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>75.2 ± 4.9</td>
<td><0.001</td>
<td></td>
</tr>
</tbody>
</table>

Eluate control bones were incubated with a gel eluate from a lane with no sample. Values are mean±SEM of responses of four bones per point.

† Compared with no additions by ANOVA.

Discussion

The predominant form of a PTH-like protein purified from conditioned culture medium of a human renal carcinoma cell line has a molecular weight of ~6,000 by gel electrophoresis. Evidence for purity of this form includes the finding of a single stained band corresponding to the peak of activity, and the finding of a single amino-terminal peptide sequence in two independent preparations. Insufficient quantities of the purified material were available to allow determination of mass, but based on estimates from protein staining, the potency for stimulation of cAMP in osteosarcoma cells is similar to that of PTH. However, the PTH-like protein is about 20-fold less potent (relative to PTH) in a renal adenylate cyclase assay than in the osteosarcoma cell bioassay. The relative insensitivity of renal adenylate cyclase to the PTH-like protein has been reported previously (10). Although no evidence was found for preferential degradation of the PTH-like protein under adenylate cyclase assay conditions (10), differential degradation of the protein, heterogeneity of PTH receptors, and differences in receptor-adenylate cyclase coupling remain as possible explanations for this finding.

The PTH receptor identified by radioligand binding studies in canine renal plasma membranes is coupled to adenylate cyclase (11). The present finding that a PTH-like protein shares this site thus provides direct support for the view that activation of renal adenylate cyclase by this protein results from occupation of the PTH receptor. This confirms previous inferences based upon inhibition of adenylate cyclase activation by competitive antagonists of PTH (4, 5). Further evidence that the PTH-like protein, as well as PTH, binds to adenylate cyclase-coupled receptors is provided by the inhibition of binding by Gpp(NH)p. The sensitivity of PTH binding to guanine nucleotides probably results from an interaction of the PTH receptor with a guanine nucleotide binding component of the adenylate cyclase complex (11).

The purified PTH-like protein, like PTH itself, produced dose-dependent inhibition of sodium-coupled phosphate transport in OK cells. This transporter (14) is similar to the apical transporter in mammalian kidney, whose inhibition by PTH produces phosphaturia via a cAMP-dependent mechanism. PTH-induced inhibition of sodium-dependent phosphate uptake in OK cells also appears to be mediated by cAMP.
(16). It is thus likely that the PTH-like protein inhibits phosphate transport by activating adenylate cyclase-coupled PTH receptors. Inhibition of renal phosphate transport in vivo by a partially purified preparation of PTH-like factor has previously been reported (8).

The purified PTH-like protein is also a potent bone-resorbing substance. The potency of conditioned medium of 786-0 cells for stimulation of bone resorption was about five-fold greater than the potency for activation of renal adenylate cyclase (7). The potency of purified PTH-like protein for stimulation of bone resorption is similar. Thus much of the bone-resorbing activity secreted by 786-0 cells may be attributable to the PTH-like protein.

The purification of PTH-like proteins from extracts of human breast carcinoma (17) and from conditioned medium of a human squamous lung carcinoma cell line, BEN (18), has recently been accomplished. The amino-terminal sequence of the PTH-like protein from both sources is identical to that reported here (18, 19), with additional identities to human PTH at three positions not identified in the present work (4Glu, 9His, and 12Gly), for a total of eight identities in the amino-terminal 13 residues. Alanine, identified at the amino-terminus in the PTH-like protein, is present at that position in bovine and rat PTH. It is likely that high-affinity binding of PTH-like protein to the PTH receptor is attributable to its structural similarity to PTH. The substitution of 7Leu for 4Met probably accounts for the resistance of PTH-like protein to inactivation under oxidizing conditions (17) (eg, iodination with chloramine T), as the sensitivity of PTH to oxidation has been attributed to formation of 8-methionine sulfone (20).

The PTH-like proteins isolated from BEN cells and breast carcinoma have molecular weights of about 17,000–18,000. Extracts of a human lung carcinoma contain a 7,000–9,000 molecular weight PTH-like protein with an N-terminal sequence identical to that of the larger form (19). This smaller form, as well as the multiple species isolated from 786-0 medium in the present study, could be proteolytic fragments of a larger protein similar or identical to that from BEN cells and breast carcinoma. If so, the finding of bioactive 6,000 and 3,400 molecular weight forms may indicate that, as with PTH, the biologic activity of PTH-like proteins resides in a relatively restricted (presumably amino-terminal) domain.

Further studies are needed to establish the role, if any, for PTH-like proteins and for bone-resorbing growth factors and cytokines in the syndrome associated with hypercalcemia in malignancy. However, the similarities between PTH-like proteins and PTH itself, both in amino-terminal sequence and in biological activity, raise the possibility that PTH-like proteins could be responsible for the syndrome, including excessive bone resorption, increased nephrogenous cAMP, and phosphaturia. It should now be possible to clarify the normal and pathophysiological roles of the PTH-like proteins.

Acknowledgments

We thank Dinh Diep and Shirley Snerling for skilled technical assistance; Claude D. Arnaud and Richard D. Williams for encouragement and advice; Carl Bennett and Pau Yuan for help with sequencing; and T. John Martin and Andrew F. Stewart for providing results before publication.

This work was supported by grants PDT-229 from the American Cancer Society, AM-35323, AM-11262, and CA-34738 from the National Institutes of Health and by funds from the Medical Research Service of the Veterans Administration.

References

