Abnormal Regulation of Renal Vitamin D Catabolism by Dietary Phosphate in Murine X-linked Hypophosphatemic Rickets

Harriet S. Tenenhouse and Glenville Jones

Medical Research Council Genetics Group, Department of Pediatrics, McGill University, Montreal, Quebec, Canada; and Departments of Medicine and Biochemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada

Abstract

Hyp mice exhibit increased renal catabolism of vitamin D metabolites by the C-24 oxidation pathway (1988. J. Clin. Invest. 81:461–465). To examine the regulatory influence of dietary phosphate on the renal vitamin D catabolic pathway in Hyp mice, we measured C-24 oxidation of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) in renal mitochondria isolated from Hyp mice and normal littermates fed diets containing 0.03% (low-Pi), 1% (control-Pi), and 1.6% (high-Pi) phosphate. In normal mice the low-Pi diet led to a rise in serum 1,25(OH)2D3 (22.2±1.8 to 48.1±6.8 pg/ml, P < 0.05) and no change in C-24 oxidation products (0.053±0.006 to 0.066±0.008 pmol/mg protein per min) when compared with the control diet. In Hyp mice the low-Pi diet elicited a fall in serum 1,25(OH)2D3 (21.9±1.2 to 8.0±0.2 pg/ml, P < 0.05) and a dramatic increase in C-24 oxidation products (0.120±0.017 to 0.526±0.053 pmol/mg protein per min, P < 0.05) when compared with the control diet. The high-Pi diet did not significantly alter serum levels of 1,25(OH)2D3 or C-24 oxidation products in normal Hyp mice. Hyp mice on the high-Pi diet exhibited a rise in serum 1,25(OH)2D3 (21.9±1.2 to 40.4±7.3, P < 0.05) and a fall in C-24 oxidation products (0.120±0.017 to 0.043±0.007 pmol/mg protein per min, P < 0.05). The present results demonstrate that the defect in C-24 oxidation of 1,25(OH)2D3 in Hyp mice is exacerbated by phosphate depletion and corrected by phosphate supplementation. The data suggest that the disorder in vitamin D metabolism in the mutant strain is secondary to the perturbation in phosphate homeostasis. (J. Clin. Invest. 1990. 85:1450–1455.) Hyp mouse • 1,25-dihydroxyvitamin D3 • 1,24,25-trihydroxyvitamin D3 • C-24 oxidation • 25-hydroxyvitamin D3-24-hydroxylase

Introduction

The murine hypophosphatemic (Hyp)1 mutation, a homologue of X-linked hypophosphatemia in man, is a Mendelian disorder of phosphate homeostasis characterized by hypophosphatemia, rickets, and a specific impairment in renal brush border membrane phosphate transport (1, 2). The demonstration of normal plasma concentrations of 1,25-dihydroxyvitamin D(1,25(OH)2D) in adult Hyp mice (3) and in patients with X-linked hypophosphatemia (4), in the face of significant hypophosphatemia, suggested that the X-linked mutation also perturbs the regulation of renal vitamin D metabolism. Indeed, Hyp mice exhibit a blunted response to activators of renal 1,25(OH)2D3 synthesis when compared with normal littermates (3, 5–10), and also demonstrate increased renal catabolism of 1,25(OH)2D3 (11) and other vitamin D metabolites (12). Studies in our laboratories have demonstrated that accelerated renal degradation of vitamin D metabolites in the mutant strain can be attributed to increased renal 25-hydroxyvitamin D3-24-hydroxylase (24-hydroxylase) activity, the first enzyme in the C-24 oxidation pathway, which converts the vitamin D hormone to 1,24,25-trihydroxyvitamin D3, a metabolite with reduced biological activity (11).

The renal 25-hydroxyvitamin D3-1-hydroxylase response to dietary phosphate intake is physiologically inappropriate in Hyp mice when compared with normal littermates (9, 10). Whereas phosphate restriction stimulates renal 1,25(OH)2D3 production in normal mice, the low-phosphate diet elicited an inhibition of vitamin D hormone synthesis in the mutant strain (9, 10). In addition, it was also reported that whereas phosphate supplementation did not significantly alter 1,25(OH)2D3 production in normal mice, high-phosphate diets led to a marked increase in renal 1,25(OH)2D3 synthesis in the mutant strain (10).

It is well established that both the synthetic (1-hydroxylase, 25-hydroxyvitamin D3-1-hydroxylase) and the catabolic (24-hydroxylase) enzymes for 1,25(OH)2D3 are expressed in mammalian kidney (13). However, with the exception of those studies that examined renal 1,25(OH)2D3 synthesis in vitamin D– and calcium-deprived Hyp mice, where renal 24-hydroxylase activity was completely suppressed (5–7), and where the production of 1,24,25-trihydroxyvitamin D3 was monitored and not detected (14), 1,25(OH)2D3 synthesis in the mutant strain has been quantitated in renal preparations capable of both the synthetic and catabolic pathways (8–10). Accordingly, it is difficult to establish whether the net decrease in 1,25(OH)2D3 synthesis observed in phosphate-deprived Hyp mice (9, 10) is due to decreased synthesis or increased catabolism of the hormone. Similarly, the net increase in 1,25(OH)2D3 synthesis in the phosphate-supplemented Hyp mice (10) may be ascribed to increased synthesis or decreased catabolism. This problem may be further complicated if both the vitamin D hormone synthetic and catabolic pathways are differentially regulated in...
each genotype, i.e., if the Hyp mutation perturbs not only the response of Hyp mice to regulators of vitamin D hormone synthesis (6, 7) but also to factors that influence 1,25(OH)2D3 catabolism.

The present study was undertaken to investigate the effect of the Hyp mutation on the regulation of the renal vitamin D catabolic pathway by dietary phosphate. We examined C-24 oxidation of 1,25(OH)2D3 in renal mitochondria isolated from Hyp mice and normal littermates fed diets containing 0.03% (low-Pi), 1% (control-Pi), and 1.6% (high-Pi) phosphate for 4 d. We report that, whereas dietary phosphate does not appear to significantly influence the vitamin D catabolic pathway in normal mice, phosphate deprivation dramatically increases and phosphate supplementation decreases renal C-24 oxidation of 1,25(OH)2D3 in the mutant strain. Furthermore, after phosphate supplementation, genotype differences in renal 1,25(OH)2D3 catabolism are no longer apparent.

Methods

Mice. Normal (+/+Y) and hemizygous mutant male (Hyp/Y) mice were bred and raised at the Montreal Children’s Hospital (Montreal, Quebec, Canada). The initial breeding pairs (C57Bl/6J males and Hyp/+ females) were obtained from Jackson Laboratories (Bar Harbor, ME). The mice were raised on Wayne Lab Blox (Allied Mills Inc., Chicago, IL) containing 1.2% calcium, 0.99% phosphorus, and 4.41 IU vitamin D3/g. To examine the effect of dietary phosphate on renal C-24 oxidation of vitamin D metabolites, 4-5-mo-old +/Y and Hyp/Y littermates were fed test diets containing 0.03% (low-Pi), 1% (control-Pi), and 1.65% (high-Pi) phosphate (test diets 86128, 86129, and 88345, respectively; Teklad, Madison, WI) for 4 d before killing. The diets contained 1% calcium and 2.2 IU vitamin D3/g and were identical in all respects except for phosphate content.

Measurement of serum and urine parameters. Serum and urine phosphate and calcium were assayed as described previously (7). The urine creatinine concentration was assayed with a Creatinine II Rapid Stat Kit (Sherwood Medical Industries, Inc., St. Louis, MO). The serum concentration of 1,25(OH)2D3 was measured using a calf thymus radioreceptor assay kit (Incstar, Stillwater, MN). The urine concentration of cAMP was determined by competitive binding assay using a commercial kit (Amersham Canada Ltd., Oakville, Ontario, Canada).

Renal metabolism of vitamin D3 metabolites. Mitochondria were prepared from renal cortex of individual mice according to the method of Vieth and Fraser (15). In our standard assay, 1 ml of oxygenated mitochondria containing ~ 2 mg mitochondrial protein in 125 mM KCl, 20 mM Hepes, 10 mM malic acid, 2 mM MgSO4, 1 mM dithiothreitol, and 0.25 mM EDTA, adjusted to pH 7.4, was incubated at 25°C with either 50 nM [3H]1,25(OH)2D3 (~ 2,000 cpm/pmol) or 500 nM [3H]25(OH)D3 (~ 200 cpm/pmol) for 5-15 min as described previously (11). Reaction mixtures in which boiled mitochondria were incubated with [3H]vitamin D3 substrates served as background in the quantitation of product formation. Enzyme activity was estimated under initial rate conditions by the sum of C-24 oxidation products for 1,25(OH)2D3, defined as 1,24,25-trihydroxyvitamin D3, 24-oxo-1,25-dihydroxyvitamin D3, and 24-oxo-25-hydroxyvitamin D3, and for 25(OH)D3, defined as 24,25-dihydroxyvitamin D3 (24,25(OH)2D3), 24-oxo-25-hydroxyvitamin D3, and 24-oxo-23,25-dihydroxyvitamin D3. Under these conditions of high substrate concentrations and short incubation times, no appreciable amounts of other lipid-soluble C-24 oxidation products (e.g., tetranor-1,23-(OH)2D3) or water-soluble C-24 oxidation products (e.g., calcitriol) were formed. The reactions were stopped by the addition of 3.75 ml chloroform/methanol (1:2) and samples stored at ~20°C under N2 until extraction and analysis. [3H]Vitamin D3 metabolites were purchased from Amersham, Canada Ltd., and crystalline vitamin D3 me-
tabolites were gifts from Hoffmann-LaRoche Ltd., Etobicoke, Ontario, Canada.

Extraction and assay of vitamin D3 metabolites. Extraction of reaction mixtures was performed twice as described by Bligh and Dyer (16). Approximately 90% of 3H-label was recovered from incubations with either intact or boiled mitochondria (where no significant conversion of substrate is apparent). Chromatographic separation of 1,25(OH)2D3, 1,24,25-trihydroxyvitamin D3, 24-oxo-1,25-dihydroxyvitamin D3, and 24-oxo-1,23,25-trihydroxyvitamin D3 was achieved on Zorbax silica (6.2 mm × 25 cm) with hexane/isopropanol/methanol (88:10:2) (11). Rechromatography of C-24 oxidation peaks from Zorbax silica on Zorbax CN (4.6 mm × 25 cm) with hexane/isopropanol/methanol (91:7:2) confirmed that the 1,24,25-trihydroxyvitamin D3 and 24-oxo-1,25-dihydroxyvitamin D3 peaks were pure. The 24-oxo-1,23,25-trihydroxyvitamin D3 peak contained ~ 20% 1,23,25-trihydroxyvitamin D3, a percentage which did not change with dietary phosphate. Under our incubation conditions, 24-oxo-1,23,25-trihydroxyvitamin D3 comprised ~ 20% of total product formed from 1,25(OH)2D3 (11). Thus, C-23 oxidation, which is defined as the production of 1,23,25-trihydroxyvitamin D3, accounted for <4% of total catabolic activity in these studies. Chromatographic separation of 25(OH)D3, 24,25(OH)2D3, 24-oxo-25-hydroxyvitamin D3, and 24-oxo-23,25-dihydroxyvitamin D3 was achieved on Zorbax CN (4.6 mm × 25 cm) with hexane/isopropanol/methanol (94:5:1) as described previously (16, 17). The identity of products was confirmed by cochromatography with standards authenticated by mass spectrometry.

Statistical methods. Data were analyzed using SAS software by two-way analysis of variance (2 × 3 factorial analysis). For variables that did not show a significant diet-genotype interaction (serum calcium, urine phosphate/creatinine, urinary calcium/creatinine, urine cAMP/creatinine), the effect of diet within each genotype was analyzed by Tukey’s multiple comparison approach. For variables that showed a significant diet-genotype interaction (C-24 oxidation products of 1,25(OH)2D3 and 25(OH)D3, serum 1,25(OH)2D3, six groups were compared by Tukey’s multiple comparison approach. A simple t test was used to compare genotypes on the control diet; this approach was appropriate because the hypothesis of genotype difference on the control diet can be considered an apriori hypothesis on the basis of past studies in which significant genotype differences were reported (5, 11, 12, 14).

Results

Effect of phosphate deprivation. The effect of dietary phosphate deprivation on serum and urine parameters in +/Y and Hyp mice is shown in Table I. The low-Pi diet elicited a fall in serum phosphate, which was more pronounced in the urine phosphate/creatinine ratio, a small rise in serum calcium, and a marked increase in the urine calcium/creatinine ratio in both genotypes. In addition, both genotypes experienced a decrease in urinary cAMP excretion, relative to creatinine, in response to phosphate deprivation. The urine creatinine concentration (3.76 ± 0.02 mM, mean ± SEM, n = 47) was not influenced by either dietary phosphate or the Hyp mutation.

The effect of dietary phosphate deprivation on renal mitochondrial catabolism of 1,25(OH)2D3 in normal and Hyp mice is shown in Fig. 1. In normal mice, the low-Pi diet had no effect on the rate of appearance of C-24 oxidation products (0.053 ± 0.006 vs. 0.066 ± 0.008 pmol/mg protein per min for control-Pi and low-Pi diets, respectively). In contrast, Hyp mice responded to dietary phosphate restriction with a marked increase in C-24 oxidation of 1,25(OH)2D3 (0.120 ± 0.017 vs. 0.526 ± 0.053 pmol/mg protein per min for control-Pi and low-Pi diets, respectively). These results clearly demonstrate that the genotype difference in 1,25(OH)2D3 catabolism is
Table 1. Effect of Dietary Phosphate on Serum and Urine Parameters in +/Y and Hyp/Y Mice

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Low-Pi diet</th>
<th>Control diet</th>
<th>High-Pi diet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum Pi (mg%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+/Y</td>
<td>3.68±0.12*</td>
<td>7.76±0.25</td>
<td>8.83±0.35*</td>
</tr>
<tr>
<td>Hyp/Y</td>
<td>2.90±0.31*</td>
<td>4.74±0.22</td>
<td>5.77±0.21*</td>
</tr>
<tr>
<td>Serum Ca (mg%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+/Y</td>
<td>9.84±0.24*</td>
<td>8.64±0.16</td>
<td>8.60±0.28</td>
</tr>
<tr>
<td>Hyp/Y</td>
<td>9.04±0.16*</td>
<td>8.16±0.28</td>
<td>8.28±0.16</td>
</tr>
<tr>
<td>Urine Pi/creatinine (mg/mg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+/Y</td>
<td>0.02±0.00*</td>
<td>7.54±0.09</td>
<td>21.21±1.56*</td>
</tr>
<tr>
<td>Hyp/Y</td>
<td>0.03±0.00*</td>
<td>8.06±0.62</td>
<td>19.96±2.78*</td>
</tr>
<tr>
<td>Urine Ca/creatinine (mg/mg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+/Y</td>
<td>2.26±0.13*</td>
<td>0.06±0.02</td>
<td>0.06±0.02</td>
</tr>
<tr>
<td>Hyp/Y</td>
<td>2.37±0.18*</td>
<td>0.08±0.02</td>
<td>0.06±0.02</td>
</tr>
<tr>
<td>Urine cAMP/creatinine (nmol/mg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+/Y</td>
<td>15.0±1.1*</td>
<td>27.5±2.3</td>
<td>52.6±5.9*</td>
</tr>
<tr>
<td>Hyp/Y</td>
<td>15.1±1.1*</td>
<td>38.4±4.8</td>
<td>52.4±4.8*</td>
</tr>
</tbody>
</table>

Values are means±SEM derived from five to eight mice in each group. Data were analyzed as described in Methods. A significant diet-genotype interaction was observed for serum Pi (F[2,3] = 14.63, P = 0.0001).

* Effect of diet P < 0.05; † effect of genotype P < 0.05.

more pronounced on the low-Pi diet than on the control diet (Fig. 1).

The effect of phosphate restriction on the renal catabolism of 25-hydroxyvitamin D$_3$ (25(OH)D$_3$) in +/Y and Hyp mice is shown in Fig. 2, and is similar to that seen for 1,25(OH)$_2$D$_3$ (Fig. 1), i.e., the low-Pi diet stimulates the catabolic pathway in mutant mice (0.594±0.109 vs. 1.993±0.451 pmol/mg protein per min for control-Pi and low-Pi diets, respectively), but has no effect in normal littersmates (0.305±0.034 vs. 0.353±0.060 pmol/mg protein per min for control-Pi and low-Pi diets, respectively). Again, the genotype difference in the vitamin D catabolic pathway is significantly greater in mice fed the low-Pi diet.

Fig. 3 depicts the effect of phosphate deprivation on the serum concentration of 1,25(OH)$_2$D. In agreement with previous reports (3, 14), genotype differences were not apparent in mice fed the control diet (22.2±1.8 vs. 21.9±1.2 pmol/ml in +/Y and Hyp/Y, respectively). However, whereas normal mice respond to phosphate restriction with a 2.2-fold increase in the circulating concentration of 1,25(OH)$_2$D (48.1±6.8 pmol/ml), Hyp mice fed the low-Pi diet exhibit a significant fall in the serum level of vitamin D hormone (8.0±0.2 pmol/ml).

Effect of phosphate supplementation. Table 1 summarizes the effects of phosphate supplementation on serum and urine parameters in normal and Hyp mice. In both genotypes, the high-Pi diet led to a significant rise in serum phosphate and to an increase in the urinary excretion of phosphate and cAMP relative to creatinine. Neither genotype experienced a change in serum calcium or urine calcium/creatinine excretion on the high-Pi diet (Table 1).

The high-Pi diet had no significant effect on the catabolism of 1,25(OH)$_2$D$_3$ (0.053±0.006 vs. 0.070±0.009 pmol/mg protein per min in control-Pi and high-Pi diets, respectively, Fig. 1) or 25(OH)D$_3$ (0.305±0.034 vs. 0.408±0.060 pmol/mg protein per min in control-Pi and high-Pi diets, respectively, Fig. 2) in normal mice. In contrast, renal C-24 oxidation of both vitamin D metabolites (Figs. 1 and 2) was significantly reduced by phosphate supplementation of mutant mice (for 1,25(OH)$_2$D$_3$, 0.120±0.017 vs. 0.043±0.007 pmol/mg protein per min in control-Pi and high-Pi diets, respectively; and for 25(OH)D$_3$, 0.594±0.109 vs. 0.293±0.050 pmol/mg protein per min in control-Pi and high-Pi diets, respectively). Finally, whereas the high-Pi diet did not affect the serum concentration

[13H]1,25(OH)$_2$D$_3$ for 7.5 min at 25°C. Extraction and HPLC of vitamin D$_3$ metabolites were performed as described in Methods. Each bar depicts mean±SEM and is based on values derived from five to eight mice in each group. Data were analyzed as described in Methods. A significant diet-genotype interaction was observed (F[2,35] = 60.00, P = 0.0001). *Effect of diet, P < 0.05; † effect of genotype, P < 0.05.
of 1,25(OH)2D in normal mice (22.2±1.8 vs. 19.0±5.7 pg/ml in control-Pi and high-Pi diets, respectively), phosphate-supplemented mutant mice exhibited an increase in the circulating levels of the vitamin D hormone (21.9±1.2 vs. 40.4±7.3 pg/ml in control-Pi and high-Pi diets, respectively).

Fig. 4 A depicts the relationship between the steady-state serum concentration of 1,25(OH)2D and the serum phosphate concentration in normal and Hyp mice. It is clear that the serum 1,25(OH)2D response to changes in serum phosphate is opposite in direction in Hyp mice when compared with normal littermates. In Hyp mice the hormone level increases with a rise in serum phosphate, whereas in normal littermates the hormone level decreases with a rise in serum phosphate. Fig. 4 B depicts the relationship between renal C-24 oxidation of 1,25(OH)2D1 and the serum phosphate concentration in normal and Hyp mice. At serum phosphate concentrations < 5 mg%, the renal catabolism of vitamin D hormone is higher in Hyp mice than in normal littermates.

Discussion

The present study demonstrates for the first time that the renal catabolism of the vitamin D hormone, 1,25(OH)2D3, as measured by the production of C-24 oxidation products, is markedly stimulated by phosphate deprivation and inhibited by phosphate supplementation in X-linked Hyp mice. In contrast to the mutant strain, 1,25(OH)2D3 catabolism does not appear to be modulated by dietary phosphate in normal mice. Our data also demonstrate that dietary phosphate deprivation lowers the serum concentration of 1,25(OH)2D in Hyp mice, while dietary phosphate supplementation increases the circulating hormone level. In normal mice, dietary phosphate supplementation has no effect on the circulating levels of 1,25(OH)2D, whereas phosphate deprivation is accompanied by an increase in serum 1,25(OH)2D as reported previously (3).

Our data suggest that the failure of Hyp mice to respond to dietary phosphate deprivation with increased serum levels of 1,25(OH)2D may be ascribed to the substantial increase in renal vitamin D hormone catabolism as well as to the reported decrease in 1,25(OH)2D3 synthesis (9, 10) observed in the mutant strain under these conditions. Conversely, the significant rise in serum 1,25(OH)2D elicited by phosphate supplementation of Hyp mice may be attributed to the decrease in renal vitamin D hormone degradation as well as to the reported increase in 1,25(OH)2D3 synthesis (10) that occurs after feeding high-Pi diets to the mutant strain. Our results also demonstrate that the renal vitamin D catabolic pathway is a more important determinant of the steady-state serum concentration of 1,25(OH)2D in the mutant mice than in normal littermates where the synthetic pathway alone appears to play a regulatory role.

The present study emphasizes the need to consider 1,25(OH)2D3 breakdown in investigations designed to assay 1,25(OH)2D3 synthesis. In these 25(OH)D3-1-hydroxylase assay systems, small amounts of 1,25(OH)2D3 synthesized may be susceptible to further metabolism by C-24 oxidation enzymes, and therefore rendered unmeasurable by the 1,25(OH)2D3 detection techniques. Furthermore, physiological factors that alter the rate of 1,25(OH)2D3 catabolism might lead to alterations in the stability of the 1,25(OH)2D3 produced. One way to overcome this problem may be to use high concentrations of the 25(OH)D3 substrate to saturate the C-24 oxidation enzymes. Previous studies that demonstrated reduced 1,25(OH)2D3 synthesis in phosphate-deprived Hyp mice (9, 10) and increased 1,25(OH)2D3 synthesis in phosphate-supplemented mutants (10) used such high 25(OH)D3 concentrations. However, until 1,25(OH)2D3 catabolism is examined directly under the conditions used to assay 1,25(OH)2D3 synthesis, it is not clear whether the reported changes in 1,25(OH)2D3 synthesis in Hyp mice (9, 10) can be ascribed to alterations in vitamin D hormone synthesis, catabolism, or both.

Dietary phosphate and/or phosphate availability have long been recognized as important determinants in the regulation of 1,25(OH)2D3 synthesis by mammalian and avian kidney (19–21). However, the precise role of phosphate in the regulation of the vitamin D catabolic pathway is not as clear. In vivo studies demonstrated that the production of 24,25(OH)2D3 from intravenously injected [3H]25(OH)2D was reciprocally related to the production of 1,25(OH)2D3 over a wide range of serum phosphate concentrations, achieved by modulating dietary phosphate intake in thyroparathyroidectomized rats (19). Since 24-hydroxylase is the first enzyme in the C-24 oxidation pathway, these results suggested, albeit indirectly, that the catabolic pathway is inhibited by phosphate deprivation and stimulated by phosphate supplementation. Studies in isolated renal mitochondria derived from phosphate-deprived normal mice and phosphate-supplemented Hyp mice led to similar conclusions; namely, that phosphate restriction inhibited 24-hydroxylase activity in normal mice and phosphate supplementation stimulated 24,25(OH)2D3 synthesis in Hyp mice (22). However, these data are not compatible with those of the present study, in which we clearly demonstrate that in normal mice dietary phosphate intake does not have a significant effect on the degradation of vitamin D3 metabolites, whereas in Hyp mice the catabolic pathway is stimulated by phosphate restriction and inhibited by phosphate supplementation. Our results in normal mice are consistent with those of Portale et al. (23), who demonstrated that dietary phosphate-induced changes in the serum concentration of 1,25(OH)2D in normal men could be accounted for entirely by changes in the production rate of the hormone and not by changes in the
metabolic clearance rate. To our knowledge, the metabolic clearance rate of 1,25(OH)\(_2\)D and its modulation by dietary phosphate have not been examined in patients with X-linked hypophosphatemia. However, a study with the murine homologue showed that plasma clearance of high doses of exogenous 1,25(OH)\(_2\)D\(_3\) is more rapid in Hyp mice than in normal littermates (24), in agreement with our present and previous data (11).

The effect of the Hyp mutation on the vitamin D catabolic pathway in target tissues other than the kidney is of specific interest. In this regard, we have been unable to detect C-24 oxidation of 1,25(OH)\(_2\)D in duodenal homogenates derived from either normal or mutant mice (25). In addition, we failed to demonstrate genotype differences in 1,25(OH)\(_2\)D\(_3\)-inducible intestinal 24-hydroxylase activity (25). We also found that, in contrast to the kidney, duodena from phosphate-deprived Hyp mice failed to exhibit an increase in 24-hydroxylase activity (Tomon, M., and H. S. Tenenhouse, unpublished results). Similarly, Delvin et al. (26) recently reported no difference in 1,25(OH)\(_2\)D\(_3\)-inducible 24-hydroxylase activity in primary osteoclastic cultures from normal and Hyp mice. Taken together, these results suggest that the disorder in vitamin D catabolism, like the impairment in phosphate transport (27), is only expressed in the kidney of the mutant strain.

In this study we demonstrate that the renal defect in 1,25(OH)\(_2\)D\(_3\) catabolism in Hyp mice can be corrected by phosphate supplementation. These results suggest that the disorder in the regulation of renal vitamin D metabolism in the mutant strain is secondary to the perturbation in phosphate homeostasis. Although we have not directly investigated the effect of phosphate supplementation on the renal brush border membrane phosphate transport defect, it is clear from our in vivo data that the high-Pi diet did not normalize the fractional excretion index for phosphate in Hyp mice when compared with +/Y littermates (urine phosphate/urine creatinine/serum phosphate = 2.40 and 3.46 for phosphate-supplemented normals and mutant mice, respectively; derived from data in Table 1). In an earlier study we showed that 1,25(OH)\(_2\)D\(_3\) treatment of Hyp mice also failed to correct the brush border membrane phosphate transport defect, although it improved phosphate homeostasis in Hyp mice by stimulating intestinal phosphate absorption (28). Taken together, the data suggest that the primary defect in Hyp mice is a disorder in phosphate homeostasis, which most likely involves the renal brush border membrane phosphate transporter or a regulator thereof.

It is of interest that the low-Pi diet elicits a significant rise in serum calcium and a substantial hypercalcemic response in both genotypes, yet only the normal mice respond to phosphate deprivation with increased serum levels of 1,25(OH)\(_2\)D. These data suggest that the calcemic and calciuric responses to phosphate deprivation are not dependent on the elevation in serum 1,25(OH)\(_2\)D as was previously suggested (29). Although the calciuric response may be ascribed to a fall in the circulating concentration of PTH, evidenced by the diet-induced fall in urinary cAMP, it is difficult to explain the increase in serum calcium by the same mechanism.

The present study provides a further rationale for the efficacy of combined therapy with oral phosphate and 1,25(OH)\(_2\)D\(_3\) in the treatment of patients with X-linked hypophosphatemia (2, 4, 30). Phosphate supplementation, which is necessary to stimulate bone mineralization in these patients, may also play an important role in the maintenance of the steady-state serum concentration of 1,25(OH)\(_2\)D by reducing its rate of degradation and promoting its rate of synthesis by the kidney.

Acknowledgments

We thank Georgia Kalavritinos, John Lee, and Valerie Byford for excellent technical assistance, Moira Mills for the urine cAMP assay, Antonio Ciampi and Danielle Boutin for statistical analysis, and Lynne Prevost for preparation of the manuscript.

This work was supported by the MRC Genetics Group grant (to H. S. Tenenhouse) and by grants MA-9475 and DG-305 from the Medical Research Council of Canada (to G. Jones).

This is publication no. 90-013 from the McGill University-Montreal Children's Hospital Research Institute.

References

