Familial Chylomicronemia (Type I Hyperlipoproteinemia)
Due to a Single Missense Mutation in the Lipoprotein Lipase Gene

Detlev Ameis,* Junji Kobayashi,* Richard C. Davis,* Osnat Ben-Zeev,* Mary J. Malloy,*
John P. Kane,† Gregory Lee,* Howard Wong,* Richard J. Havel,* and Michael C. Schotz*†

*Veterans Administration Wadsworth Medical Center, Los Angeles, California 90073, and Department of Medicine,
University of California, Los Angeles, California 90024; †Cardiovascular Research Institute,
and Departments of Pediatrics and Medicine, University of California, San Francisco, California 94143

Abstract

Complete deficiency of lipoprotein lipase (LPL) causes the chylomicronemia syndrome. To understand the molecular basis
of LPL deficiency, two siblings with drastically reduced postheparin plasma lipolytic activities were selected for analysis of
their LPL gene. We used the polymerase chain reaction to ex-
amine the nine coding LPL exons in the two affected siblings
and three relatives. DNA sequence analysis revealed a single
nucleotide change compared with the normal LPL cDNA: a
G → A substitution at nucleotide position 680. This transition
caused a replacement of glutamic acid for glycine at amino acid
residue 142 of the mature LPL protein. Amino acid sequence
comparisons of the region surrounding glycine-142 indicated
that it is highly conserved among lipases from different species,
suggesting a crucial role of this domain for the LPL structure.
Expression studies of the mutant LPL cDNA in COS-7 cells
produced normal amounts of enzyme mass. However, the mu-
tated LPL was not catalytically active, nor was it efficiently
secreted from the cells. This established that the Gly → Glu
substitution at amino acid 142 is sufficient to abolish enzymatic
activity and to result in the chylomicronemia syndrome ob-
served in these patients. (J. Clin. Invest. 1991. 87:1165–1170.)

Key words: polymerase chain reaction • triglyceride

Introduction

Familial chylomicronemia (type I hyperlipoproteinemia) is a
rare disorder of lipid metabolism characterized by a massive
increase in chylomicron levels in fasting plasma and a marked
increase in plasma triglyceride levels (1). This metabolic alter-
ation is associated with a variety of clinical features, including
recurrent abdominal pain, pancreatitis, hepatosplenomegaly,
eruptive cutaneous xanthomas, and retinal lipemia (1). Two
variants, deficiencies of lipoprotein lipase (LPL)† (2) and of
apolipoprotein C-II (3), have been identified as causes of this
disease. A rarer disorder, transmitted as an autosomal domi-
nant trait, results from the presence of a circulating inhibitor
of LPL (4). In addition, an autoimmune mechanism has been
proposed in a recently reported case of chylomicronemia (5).

LPL, the hydrolytic enzyme involved in a majority of cases
with familial chylomicronemia, plays a pivotal role in the me-
tabolism of plasma lipoproteins (6, 7). This enzyme is synthe-
sized by the parenchymal cells of many tissues, most notably
adipose tissue, heart and muscle, and is transported to the lu-
minal surface of vascular endothelial cells, where it presumably
binds to heparan sulfate (8, 9). At this site, LPL is rate-limiting
for the hydrolysis and removal of triglycerides associated with
chylomicrons and very low density lipoproteins (VLDL). Intra-
venous heparin releases LPL into the blood where its enzym-
atic activity (10, 11) and its mass (12, 13) can be assayed. The
absence or near absence of LPL activity in postheparin plasma
establishes the diagnosis of LPL deficiency.

Functional LPL is a homodimeric glycoprotein with a sub-
unit of 448 amino acids (14). The LPL gene has been mapped
to the short arm of human chromosome 8 (15) and recent
 genomic cloning has shown it to be composed of 10 exons
 spanning ~ 30 kb (16, 17). Genomic and cDNA sequence
comparisons have localized a region on exons 4 and 5 demonstrat-
ing a remarkably high degree of homology to other lipases (18–
28) and a significant homology to serine proteases (29) and
Drosophila yolk proteins (30). The availability of these human
LPL clones and genomic sequence information has made pos-
sible two diagnostic approaches to assess directly the molecular
basis of LPL deficiency. First, transmission of LPL mutations
in families can be traced using restriction fragment length poly-
morphisms (RFLP). Recent studies utilizing this technique
identified gross alterations in the LPL gene responsible for pri-
mary LPL deficiency in a significant number of type I hyperli-
 poproteinemias (31, 32). An alternative and more sensitive ap-
proach, based on DNA sequence analysis, involves the direct
identification of the deficiency-causing mutation in the LPL
gene. Two recent studies have employed this technique to char-
acterize the genetic defect of LPL-deficient individuals, both
demonstrating a catalytically inactive enzyme and some im-
paired binding to heparin (33, 34).

In this report, we searched for point mutations affecting
the structural gene for LPL in two type I hyperlipoproteinemic
siblings from a family of Northern European descent. The geno-
ic sequence obtained revealed a single-base change in these
individuals resulting in a substitution of glutamic acid for gly-
cine at amino acid residue 142. This substitution occurs within
a region of the LPL gene that is highly conserved among lipases
from different species, suggesting that this region is essential for
functional activity of these enzymes. Introduction of this muta-
tion into the normal LPL cDNA and cellular expression stud-
ies confirm that substitution of glutamic acid for glycine 142 is sufficient to virtually abolish enzymatic activity. Thus, this phenotype is consistent with the enzymatic deficiency in the type I hyperlipoproteinemic subjects described in this report.

Methods

Subjects. We studied five members of a family of northern European ancestry with LPL deficiency (Table I). The proband, age 22, whose parents are first cousins and had received genetic counseling, was 3.5 kg at birth after a normal gestation period and was delivered at 42 wk. At age 27 he had an episode of melena with normal upper GI series. The bleeding ceased after vitamin K treatment. Plasma triglyceride levels were 337 mmol/liter (30,000 mg/dl). The infant had lipemia retinialis and several eruptive xanthomas and no hepatosplenomegaly. On a fat-free formula, the serum triglycerides were 25.3 mmol/liter (2,250 mg/dl) and 9.5 mmol/liter (844 mg/dl) by the 10th and 15th day, respectively. The proband has continued to eat a moderately low-fat diet and has maintained serum triglycerides below 11.2 mmol/liter (1,000 mg/dl). Occasionally, xanthomas have recurred but he has had no abdominal pain or overt pancreatitis. His apolipoprotein E phenotype is E4/2 (35). The appearance of his apolipoprotein C-II band is normal on isoelectric focusing (36). A female sibling developed at 3 mo generalized eruptive xanthomas and had an episode of melena. Over the past 25 years she has had a history of recurrent abdominal discomfort, two episodes of acute pancreatitis, and recurrent eruptive xanthomas. She has frequently had triglyceride levels in the range of 22.5 mmol/liter (2,000 mg/dl); neither the liver nor the spleen have been enlarged. The second episode of pancreatitis occurred during the third month of her pregnancy. With a calorie- and fat-controlled diet, she had no further problems and delivered a normal infant. Her apolipoprotein C-II band appeared normal on isoelectric focusing; her apolipoprotein E phenotype is E2/2.

Preparation of DNA and oligonucleotide primers. DNA was extracted either from peripheral-blood mononuclear cells or from Epstein-Barr-virus–transformed lymphoblastoid cell lines (37, 38). Buffy-coat leukocytes were isolated from blood collected into tubes containing EDTA (Vacutainer, Becton Dickinson, Rutherford, NJ). Chromosomal DNA was released by lysis of cells in 10 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1.5 mM MgCl2, 0.5% Triton X-100, and 1% SDS containing 500 μg/ml of proteinase K (Merck, Darmstadt, FRG). The lysates were incubated for 16 h at 37°C with gentle agitation. After extraction with phenol and chloroform, DNA was recovered by ethan precipitation. DNA was dissolved at 37°C for 2 h before spectrophotometric quantitation. Oligonucleotide primers were synthesized on an model 381A synthesizer (Applied Biosystems, Inc., Foster City, CA) using the β-cyanoethyl phosphoramidite method, and were purified by reverse-phase chromatography cartridges (OPC, Applied Biosystems, Inc.). The polymerase chain reaction (PCR) primers were constructed complementary to DNA sequences flanking exons 1–9 of the LPL gene (17).

PCR amplification and direct sequence determination of amplified DNA. Target sequences were amplified (39) in a 100-μl reaction volume containing 0.5 μg of chromosomal DNA; 50 pmol of each oligonucleotide primer; 200 μM of each dATP, dCTP, dGTP, and dTTP; 1× reaction buffer (50 mM KCl, 10 mM Tris-HCl, pH 8.4, 3 mM MgCl2, 0.05% polysorbate (Tweeen) 20, 0.05% Triton X-100 (40), 200 μg/ml of gelatin); and 2 U of Tag DNA polymerase (Stratagene, Inc., San Diego, CA). 30 cycles of PCR amplification were performed on a thermocycler (Ericomp, San Diego, CA). Each cycle consisted of 1 min denaturation at 94°C, 1 min at 55°C to anneal the oligonucleotide primers to their target sequences, and 2 min at 72°C for chain elongation. Amplified DNA was desalted and excess oligonucleotide primers and deoxynucleotide triphosphates removed by spin-dialysis on a Centricon-30 microconcentrator (Amicon Corp., Danvers, MA) or by electroelution using 1% agarose gels. The PCR products were resolved by electrophoresis on 1.4% SeaKem agarose gels (FMC Corp., Marine Colloids Division, Rockland, IL) in Tris-borate buffer containing 0.5 μg/ml of ethidium bromide (41). Sequence analysis was performed with gel-purified PCR products using the dideoxy-chain termination method (42). 50% of the amplification product was denatured using 2N NaOH at room temperature for 10 min. The DNA was precipitated with ethanol and the resuspended product was annealed to 1 pmol of oligonucleotide primer for 20 min at 37°C. DNA was sequenced using [α-35S]-dATP (600 Ci/mmole, Amersham Corp., Arlington Heights, IL) and T7 DNA polymerase (United States Biochemical Corp., Cleveland, OH). Sequencing reaction mixtures were subjected to electrophoresis on 6% acrylamide gels containing 8 M urea. Gels were exposed to Kodak XAR film for 48 h.

Site-directed mutagenesis and expression. The human cDNA clone for LPL was directionally transferred to the Sal I/Eco RI site of Phage-script (Stratagene, Inc.), an M-13–based bacteriophage. Oligonucleotide-directed mutagenesis was performed using materials and instructions from Amersham Corp. The mutant oligonucleotide consisted of 21 bases corresponding to codons 139–145 of normal human LPL except for the middle G residue in codon 142 which was changed to A, T, or C.

Table I. Lipid and Lipoprotein Concentrations, LPL Activity, and Mass in the LPL-deficient Kindred

<table>
<thead>
<tr>
<th></th>
<th>Subject/age (yr)</th>
<th></th>
<th></th>
<th>Paternal grandfather/75</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Proband/22</td>
<td>Sibling/26</td>
<td>Father/49</td>
<td>Mother/49</td>
</tr>
<tr>
<td>Triglycerides*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>12.3 (1094)</td>
<td>12.5 (1113)</td>
<td>1.36 (121)</td>
<td>0.91 (81)</td>
</tr>
<tr>
<td>VLDL</td>
<td>10.7 (953)</td>
<td>11.2 (998)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDL</td>
<td>0.28 (25)</td>
<td>0.28 (25)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDL</td>
<td>0.22 (20)</td>
<td>0.44 (39)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cholesterol*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3.3 (127)</td>
<td>6.7 (257)</td>
<td>4.2 (162)</td>
<td>4.3 (165)</td>
</tr>
<tr>
<td>VLDL</td>
<td>2.3 (89)</td>
<td>5.2 (202)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDL</td>
<td>0.54 (21)</td>
<td>0.73 (28)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDL</td>
<td>0.21 (8)</td>
<td>0.34 (13)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPL activity†</td>
<td>15</td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPL mass‡</td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* In mmol/l (mg/dl). † LPL activity in nmol/ml/min; control (n = 4) 180±45. ‡ LPL mass in ng/ml; control (n = 8) 602±277.
resulting in a triplet encoding for glutamic acid rather than glycine (5'GGC ATT GCA GAA AGT CTG ACC'). After verification of the sequence (42), the mutant cDNA was transferred to the Xho I/Bam HI site of the plasmid expression vector pSVL (Pharmacia Fine Chemicals, Piscataway, NJ). The entire mutant clone was subsequently sequenced to verify the presence of the desired mutation and the absence of other sequence alterations. COS-7 cells were transfected with normal or mutant LPL in pSVL using lipofection as indicated by the supplier (Bethesda Research Laboratories, Gaithersburg, MD). 48 h after transfection, the cell medium was supplemented with heparin (5 U/ml). After an additional 18 h, culture media and cell extracts from three 60-mm plates were pooled and assayed for LPL activity and mass.

Lipoprotein lipase assays. LPL activity was assayed using synthetic triacylglycerol substrates (10, 43). 1 mU of enzyme activity represents the release of 1 nmol of free fatty acid per min. Enzyme mass was determined by a previously described enzyme-linked immunosorbent assay (12).

Results

To determine the molecular defect in familial chylomicronemia, we assessed the structure of the LPL gene in the two siblings with primary LPL deficiency (Table I). The enzyme deficiency was diagnosed by the greatly reduced postheparin plasma LPL activity. The structure of the complete LPL gene was investigated using Southern blot analysis with 32P-labeled LPL cDNA probes (LPL 35, 37, and 46; reference 14). No major alteration of the LPL gene was detected in the two LPL-deficient patients (data not shown). The LPL gene was then examined in detail, using the PCR technique (39) and double-stranded DNA sequence analysis (41). To amplify LPL exons, we synthesized a pair of oligonucleotide primers specific for each exon. These primers were complementary to intron sequences flanking the individual exons, as illustrated for exon 4 in Fig. 1. Additional primers were used to perform DNA sequence analysis. Using this approach, the nine coding exons of LPL were amplified and sequenced. When compared to a control subject and to the LPL cDNA sequence (14), a single base change was observed in exon 4 in the two LPL-deficient subjects (Fig. 2). The detected single base mutation, a G-to-A tran-

Figure 1. Schematic representation of the human lipoprotein lipase gene and amplification strategy for exon 4. (A) Solid boxes indicate the position of exons 1–10 of the LPL gene (17). The region containing exon 4 of the LPL gene (Glu 117–Thr 153) is indicated by the box in B. The core of this exon (Val 126–Ser 143) is highly conserved between LPL, hepatic lipase, and pancreatic lipase from a variety of species (20–28). This region is demarcated by hatched lines. Horizontal lines on either end of the exon box denote flanking intron sequences. The exon-intron boundaries are indicated by numbers 604 and 714, referring to their nucleotide position on the human LPL cDNA (14). The segment chosen for PCR amplification is shown by the binding-sites for oligonucleotide primers FE 4 and RE 4 whose 5' to 3' orientation is indicated by arrows. The length of the PCR-amplified region, a 416-bp DNA fragment, is represented by a dotted line. (C) DNA sequences of the oligonucleotide primers used in the polymerase chain reaction assay (FE4 and RE4) and in the subsequent DNA sequencing (FSE4 and RSE4).
the codon

Figure

The order
gels.

substitution of
FSE4.

was
cient family; the father and mother of the proband (II-2 and -3) are first cousins. Five members of the family were available for detailed study. Open symbols denote individuals not available; deceased individuals are indicated by symbols with slashes. Solid symbols indicate homozygous LPL-deficiency in the proband (III-4) and his sibling (III-5). Heterozygous subjects are indicated by half-solid symbols. The lower half of the figure shows direct DNA sequencing from the 416-bp fragment (Fig. 1) amplified from the indicated family members. DNA sequence analysis was performed with oligonucleotide primers FSE 4 and RSE 4 (Fig. 1) and analyzed by electrophoresis on 6% acrylamide/8 M urea sequencing gels. The order of lanes on the corresponding autoradiograms is A, C, G, and T, showing the DNA sequence derived from oligonucleotide primer FSE4. Because PCR amplifies both LPL alleles, heterozygotes show both a C (normal nucleotide) and a T (mutant nucleotide) in the middle of the codon for amino acid 142. The two homozygous probands show only a T at this position (asterisk). This missense mutation translates as a substitution of glutamic acid for glycine at position 142.

Discussion

We have analyzed nine exons comprising the complete coding region of the LPL gene in two subjects from a kindred with familial LPL deficiency. A single missense mutation was identified in exon 4 of these two LPL-deficient patients. This mutation, a G-to-A transition at nucleotide 680, results in the substitution of glutamic acid for glycine at position 142 (Fig. 2). Both

Figure 3. Region surrounding the nonconservative amino acid substitution (glycine-142 to glutamic acid) in four mammalian and one avian species. The normal human amino acid sequence for LPL (14) and the mutant with the substitution of glutamic acid for glycine (shown in box) are compared to the analogous sequences of bovine (21), murine (22), cavian (23), and avian (24) enzymes. The consensus sequence, glycine-x-serine-x-glycine, is encountered in all known lipases, some esterases, and a wide variety of serine proteases (29). Dashes indicate amino acid identity with the normal human sequence.

Figure 4. Effect of substitution of glutamic acid for glycine-142 on LPL expression in COS cells. COS cells were transfected with pSVL vector, denoted mock transfection, or with pSVL vector carrying the normal LPL cDNA (14), indicated as LPL cDNA, or with LPL cDNA containing the Glu-142 mutation, denoted mutant cDNA. No transfection refers to cells directly extracted and analyzed. (A) LPL activity determination in mU/ml; (B) LPL mass in nanograms per milliliter as measured by an enzyme-linked immunosorbent assay (12). In both panels, LPL activity and mass were determined in cell homogenates (solid bars) and tissue culture medium (hatched bars).
affected subjects were shown to be homozygotes for the mutation. As expected in diseases with autosomal recessive inheritance, both parents were heterozygotes for the G-to-A transition. Inheritance of the mutant allele could be traced to the paternal grandfather, who also demonstrated heterozygosity (Fig. 2).

Analysis of evolutionary relationships among different lipase genes shows that LPL is a highly conserved protein (26). In particular, the amino acid sequence surrounding glycine-142 is highly homologous in the several mammals whose LPL sequences are known (3); glycine is the only residue utilized at the analogous position in these species. The reason for this high local sequence conservation perhaps derives from its proximity to the catalytic center of the enzyme. LPL serine-132 has been proposed as the catalytic serine on the basis of sequence homologies with a variety of serine esterases (44). This is supported by two recent experiments. First, human pancreatic lipase was recently crystallized and the three-dimensional structure shows serine-152 (analogous to human LPL serine-132) to be par of an aspartate/histidine-serine triad proposed to be essential for catalysis (45). Second, conservative amino acid substitution at the analogous residue in rat hepatic lipase (serine-147) dramatically reduces catalytic activity (44). Thus, the mutation identified in this kindred which substitutes a large, negatively charged glutamic acid in place of a small, neutral glycine residue within 10 amino acids of the proposed active site may be expected to disrupt enzymatic function.

The functional consequences of the detected mutation were confirmed utilizing site-directed mutagenesis to introduce the codon-142 mutation in the normal LPL cDNA. Expression studies indicated that mammalian cells transfected with the LPL mutant produced normal amounts of enzyme mass. The mutated LPL was not catalytically competent, nor was it efficiently released into the culture media. These results strongly suggest that the glutamic acid for glycine substitution at position 142 has a major adverse effect on the tertiary structure of the LPL molecule leading to a functionally deficient protein. Thus, the properties of the expressed mutant LPL were found to be consistent with the LPL-deficient phenotype observed in the proband.

LPL gene aberrations may be due to gross alterations or to specific point mutations. Recently, DNA analyses employing Southern hybridization indicated that gross alterations in the LPL gene in the form of insertion/deletion-type changes and duplication events were responsible for primary LPL deficiency in a significant number of type I hyperlipoproteinemic subjects (31, 32). LPL deficiency may also arise from mutations resulting in minor changes in enzyme structure that affect various properties, such as enzymatic half-life, substrate affinity, interaction with hepatic sulphate or with the cofactor apolipoprotein C-II. The mutation described in this report points to a single base change at amino acid 142, in very close proximity to the putative catalytically active site serine 132. The recent mutational analysis of two additional pedigrees has shown effects of point mutations in other regions of the LPL molecule (33, 34). Sequence analysis of a kindred from Bethesda has revealed a single amino acid substitution of Ala for Thr at position 176, leading to an inactive enzyme with reduced binding to heparin (33). A large family of Northern European ancestry was found to be LPL-deficient due to an amino acid substitution of Gly-188 to Glu, likewise resulting in a catalytically inactive protein with a lower affinity for heparin (34).

Thus, the mutation described in this report as well as the ones detected at different locations along the molecule (33, 34) suggest that LPL is very sensitive to single amino acid exchanges, frequently resulting in loss of enzymatic activity. Identification of additional naturally occurring mutants in other chylomicroemeric individuals and the use of site-directed mutagenesis to systematically alter the LPL molecule will help to analyze the molecular properties of LPL and further our knowledge of their influence on triglyceride metabolism.

In addition to homozygous LPL-deficient subjects, the much larger population of heterozygotes carrying various LPL mutations may also be clinically affected. Although not evident in this kindred, some heterozygous LPL-deficient subjects have recently been shown to have familial combined hyperlipidemia (13, 46) which manifests itself as hypertriglyceridemia, hypercholesterolemia, or a combination of both. This condition is associated with premature atherosclerosis (47-49). Thus, heterozygous LPL-deficient patients in which mutations in the LPL gene may affect normal enzymatic function appear to form a subset of familial combined hyperlipidemia. The PCR technique in conjunction with direct DNA sequence analysis utilized in this study will undoubtedly facilitate the characterization of the structural variants of LPL. These variants will further aid in characterizing the possible role of LPL mutations in type I hyperlipoproteinemia, familial combined hyperlipidemia, and related disorders of lipid metabolism.

Acknowledgments

We are indebted to Dr. Jerome H. Rotter for lymphoblastoid cell lines of patients; and to Drs. Neil Kaplowitz, Andrew Stolz, Mark Doolittle, and Karen Reue for critically reading this manuscript.

This work was supported by grants HL 28481 and HL 14237 from the National Institutes of Health, the Veterans Administration, and the American Heart Association, Greater Los Angeles Affiliate (492-IG 15). Dr. Ameis was supported in part by the Deutsche Forschungsgemeinschaft (Am 65/2-1), and Dr. Kobayashi was supported in part by Mochida funds (Japan).

References


Lipoprotein Lipase Deficiency

11. Greten, H. R., Degregola, G. Klose, W. Rascher, J. L. de Gennes, and E. G. Manassian. Expression of two plasma triglyceride lipases by an immunochemo-


15. Sparkes, R. S., Z. Zollman, I. Klisak, T. G. Kirchgesner, M. C. Komar-


31. Langlois, S., S. Deeb, J. D. Brunzell, J. J. Kastelein, and M. R. Hayden. 1989. A major insertion accounts for a significant proportion of mutations underly-

32. Devlin, R. H., S. Deeb, J. Brunzell, and M. R. Hayden. 1990. Partial gene duplication involving exon-Alu interchange results in lipoprotein lipase defi-


35. Pagnan, A., R. J. Havel, J. P. Kane, and L. Kotite. 1977. Characterization of human very low density lipoproteins containing two electrophoretic popula-

36. Menzel, E., W. Leibold, and G. Klein. 1975. Biological differences be-


38. Innis, M. A., K. B. Myambo, D. H. Gelfand, and M. A. D. Brow. 1988. DNA sequencing with Thermus aquaticus DNA polymerase and direct sequenc-


47. Hark, J. P., and R. J. Havel. 1989. Disorders of the biogenesis and secre-