von Willebrand Factor Binding to Platelet Gp Ib
Initiates Signals for Platelet Activation

Michael H. Kroll, Terese S. Harris, Joel L. Moake, Robert I. Handin, and Andrew I. Schafer
Houston Veterans Affairs Medical Center, Baylor College of Medicine, and Rice University, Houston, Texas 77030; and Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115

Abstract
The hypothesis that von Willebrand factor (vWF) binding to platelet membrane glycoprotein Ib (Gp Ib) initiates intracellular pathways of platelet activation was studied. We measured the biochemical responses of intact human platelets treated with ristocetin plus vWF multimers purified from human cryoprecipitate. vWF plus ristocetin causes the breakdown of phosphatidylinositol 4,5-bisphosphate, the production of phosphatidic acid (PA), the activation of protein kinase C (PKC), increase of ionized cytoplasmic calcium ([Ca$^{2+}$]), and the synthesis of thromboxane A$_2$. PA production, PKC activation, and the rise of [Ca$^{2+}$] stimulated by the ristocetin-induced binding of vWF multimers to platelets are inhibited by an anti-Gp Ib monoclonal antibody, but are unaffected by anti-GpIIb-IIIa monoclonal antibodies. Indomethacin also inhibits these responses without impairing platelet aggregation induced by vWF plus ristocetin. These results indicate that vWF binding to platelets initiates specific intraplatelet signaling pathways. The mechanism by which this occurs involves an arachidonic acid metabolite-dependent activation of phospholipase C after vWF binding to platelet membrane Gp Ib. This signal then causes PKC activation and increases of [Ca$^{2+}$], which promote platelet secretion and potentiate aggregation. (J. Clin. Invest. 1991. 88:1568-1573.) Key words: thrombosis • adhesion • phospholipases • protein kinase C • calcium

Introduction
Platelet plug formation is initiated by the adherence of platelets to sites of vascular injury. The components of this response include the subendothelial extracellular matrix, von Willebrand factor (vWF), and platelet membrane glycoprotein (Gp) Ib. The multivalent vWF protein bridges constituents of the subendothelium to Gp Ib on the surface of circulating platelets. The fundamental importance of this adhesion event in normal hemostasis is demonstrated by the severe hemorrhagic diathesis suffered by individuals with quantitatively deficient or qualitatively aberrant vWF (1).

Under physiological conditions, platelet aggregation and secretion follow vWF-mediated adhesion. These functional responses are essential for establishing a hemostatically effective platelet plug, and are the culmination of a series of regulated intracellular biochemical reactions (2). Although much is known about the molecular mechanisms of platelet adhesion and activation, little data are available regarding the mechanism by which the adhesion and activation phenomena are coupled. Adhesion-activation coupling may be indirect, i.e., the adherent platelet may be subjected to exogenous stimuli arising from damaged endothelium, other blood cells, soluble clotting factors, or vasoreactive molecules (2–4). Alternatively, platelet adhesion may trigger activation through biochemical pathways directly coupled to the adhesive ligand-receptor interaction. Weiss et al. showed that normal platelets in platelet-rich plasma release ADP and serotonin in response to ristocetin, a macrolide antibiotic known to cause Gp Ib-dependent binding of vWF to unstimulated human platelets (5). More recently, it has been shown that asialo vWF, which is capable of ristocetin-independent binding to Gp Ib of resting platelets, causes the release of platelet adenine nucleotides, the synthesis of thromboxane A$_2$, and the binding of fibrinogen to GpIIb-IIIa (6–9). Moake et al. have shown that high shear forces induce large vWF multimers to bind to platelet Gp Ib in the absence of ristocetin or chemical modification of vWF, and this ligand-receptor interaction leads to the release of ADP and platelet aggregation (10).

This report presents data from experiments examining the hypothesis that vWF mediates adhesion-activation coupling in human platelets. Our results indicate that vWF binding to platelet Gp Ib initiates specific platelet signal transduction pathways that may couple adhesion to subsequent aggregate formation.

Methods
Materials. Human alpha thrombin was from United States Biochemical Corp. (Cleveland, OH), Ristocetin, creatinine phosphate (CP), creatine phosphokinase (CPK), Sepharose 2B-300, fatty acid-free BSA, and indomethacin were from Sigma Chemical Co. (St. Louis, MO). Lipid standards were from Sigma Chemical Co. and Calbiochem-Behring Corp. (San Diego, CA). [32P]Orthophosphoric acid and [14C]-arachidonic acid were from New England Nuclear (Boston, MA). Fura2 acetoxymethyl ester was from Molecular Probes, Inc. (Eugene, OR). Whatman silica gel K5 and LKSD plates were from Fisher Scientific Co. (Fairlawn, NJ). HPLC grade organic solvents were from American Burdick and Johnson (Muskegon, MI). Monoclonal antibodies 7E3, 10E5, and 6D1 were provided generously by Dr. Barry Collier (SUNY Health Sciences Center, Stony Brook, NY).

Preparation of von Willebrand factor. vWF was purified from normal human cryoprecipitate as previously described (11), and quantified by solid-phase immunoradiometric assay (12). The multimeric
composition of the vWF preparations was determined by SDS-agarose
gel electrophoresis using 1% agarose and a continuous buffer system,
followed by gel overlay with rabbit 125I-antihuman vWF IgG and auto-
radiography (11).

Platelet preparation. Venous blood from healthy volunteer donors
who had not taken medications affecting platelets for at least 10 d
before blood drawing was collected in 15% (vol/vol) acid-citrate-dex-
trose (ACD, NIH formula A). Blood was centrifuged at 180 g for 12
min and the platelet-rich plasma was acidified to pH 6.5 with ACD
and treated with creatine phosphate and creatine phosphokinase (5 mM
and 25 U/ml, respectively). This preparation was layered over a gra-
dient of fatty-acid free BSA and centrifuged at 1,500 g for 15 min,
as described by Walsh et al. (13). Interface platelets were collected and
subjected to repeat albumin density gradient separation. Platelets iso-
lated in this manner were then suspended in buffer A containing 6 mM
bicarbonate, 130 mM NaCl, 9 mM NaHCO3, 10 mM Na citrate, 10 mM
Tris base, 3 mM KCl, 2 mM Hepes, and 0.9 mM MgCl2, pH 7.35.

The collected platelets were suspended in a small volume of buffer
A (except where noted) and either radiolabeled or loaded with fura2 by
incubating the platelets with the appropriate reagent for 1 h at 37°C in
a gently shaking water bath. Platelets were radiolabeled with 0.5 mCi
[32P]orthophosphate or 20 μCi [14C]arachidonic acid; or were loaded
with 2 μM fura2 acetoxymethyl ester. After this, the platelet suspen-
sion was gel-filtered through Sepharose 2B-300 equilibrated with buffer
A, and resuspended in buffer A containing 1 mM CaCl2 at a concentra-
tion of 2.5 × 107 platelets/ml (except where noted). All reactions were
conducted in a dual channel spectrophotometer (Payton Scientific, Buffalo,
NY) in stirring platelet aliquots at 37°C.

Analyses of phospholipids and protein phosphorylation. 32P-labeled
platelets were mixed for 30 s with 1 mg/ml ristocetin, followed by
the addition of purified vWF (antigen level = 100% of normal plasma [100
U/dl], unless otherwise stated). For platelet lipid measurements, the
reactions were terminated at the designated time points by adding 3.8
× reaction volume of ice-cold MeOH/CHCl3 (2:1, vol/vol) and extract-
ing the lipids as previously described (14). 32P]Orthophosphate-labeled
phospholipids were separated on Whatman K5 plates previously
dipped in 1% K oxalate/2 mM EDTA, using the solvent system
according to the method of van Dongen et al. (15). For platelet protein
phosphorylation experiments, 3H-labeled platelets were stimu-
lated as described and the reactions stopped by the addition of a solu-
tion of 50% glycerol, 10% dithiothreitol, 8% SDS, and trace bromo-
phenol blue, followed by immediate boiling for 5 min. SDS-PAGE was
performed on 7–17% gradient slab gels as described by Laemmli (16).
The gels were stained with Coomassie brilliant blue R, destained, fixed,
dried, and the radiofluorophorlated proteins located by autoradiogra-
phy. Protein phosphorylation was quantified by transmittance densi-
tometry using a laser densitometer (LKB Instruments, Bromma, Swe-
den). Lipid bands were detected by autoradiography, identified by
cromatography with unlabeled standards, scraped, and counted for
radioactivity.

Arachidonic acid release experiments. [14C]Arachidonate-labeled
platelets were assayed for free [14C]arachidonic acid on Whatman
LK5D plates using the solvents diethyl ether/hexane/glacial acetic acid
(60:40:1, vol/vol) as previously described (14). Lipid bands were
detected and reported by autoradiography.

Thromboxane A2 measurements. Production of thromboxane A2
was quantified by radioimmunoassay of its stable breakdown product,
TXB2, using a polyclonal rabbit antiserum from Seragen (Boston,
MA), as previously described (14).

Measurement of platelet cytosolic calcium. Measurements of plate-
let ionized cytosolic calcium ([Ca2+]i) were made in a Deltascan spec-
trofluorometer (Photon Technologies International, Princeton, NJ)
having dual wavelength excitation capacity. Albumin-washed platelets
were loaded with 2 μM fura 2 acetoxymethyl ester, gel-filtered, and
resuspended in buffer B (10 mM Na Hepes, 135 mM NaCl, 5 mM KCl,
5.5 mM glucose, and 1 mM MgCl2, pH 7.3) with 1 mM CaCl2. [Ca2+]i
was measured in a 1.5-ml cuvette of stirring fura 2-loaded platelets at
37°C by measuring absorbance at 510 nm after excitation at 340 and
380 nm. The ratio of absorbance 340/380 nm was used to calculate
[Ca2+]i, using a k2 for fura 2 of 224 nM, as described by Grynkiewicz et
al. (17).

Results

The responses of 32P-labeled platelets to ristocetin-induced
binding of purified vWF multimers to GpIb molecules on intact
human platelets were studied. Fig. 1 shows SDS-polyacryl-
amide and agarose gel electrophoretograms of the purified vWF
used in these studies. The largest vWF multimers found in normal
plasma were present in the purified vWF prepara-
tions.

Washed stirred platelets treated with 1 mg/ml ristocetin
alone, or washed unstirred platelets treated with ristocetin plus
vWF, do not demonstrate any biochemical responses (data not
shown). Fig. 2 shows that ristocetin-induced vWF binding to
platelets, under stirred conditions, stimulates platelet produc-
tion of phosphatidic acid (PA), a product of phosphoinositide
turnover that may be an intracellular stimulatory molecule
(14). Because PA can be generated as a consequence of the
phospholipase C–mediated hydrolysis of phosphatidylinositol
4,5-bisphosphate (PIP2), we measured changes in PIP2 after
ristocetin-induced vWF binding. The breakdown of PIP2 pre-
cedes PA production: PIP2 decreases to 69.3 ± 5.2% of basal
levels (mean ± SEM; n = 6) 45 s after the addition of purified
vWF multimers.

Phospholipase C–mediated signal transduction in platelets
results in the activation of protein kinase C (PKC) and eleva-
tion of [Ca2+]i. To determine if the binding of purified vWF

von Willebrand Factor-induced Platelet Activation 1569
multimers to platelets activates PKC, the phosphorylation of its M_r 47,000 substrate (p47) was measured in 32P-labeled platelets exposed to ristocetin. Fig. 3 shows that p47 phosphorylation of platelets binding vWF increases over a period of 4 min. To determine if platelet [Ca$^{2+}$], changes after ristocetin-induced binding of purified vWF multimers, fura 2-loaded platelets were analyzed spectrofluorometrically. Fig. 4 shows that platelet [Ca$^{2+}$], responses to ristocetin plus vWF occur, and that [Ca$^{2+}$], increases as the vWF antigen concentration is raised from 10 to 100%. A similar dose-response relationship was observed for platelet PA production and p47 phosphorylation (data not shown).

To determine the receptor specificity of vWF-induced signals, platelets were preincubated with monoclonal antibodies to platelet GpIb (6D1, [18]) or GpIIb-IIIa (7E3 [19] or 10E5 [20]). Fig. 5 shows that platelet PA production and p47 phosphorylation 2 min after the ristocetin-induced binding of purified vWF multimers are completely inhibited by 6D1, but are unaffected by 7E3. Fig. 6 shows similar results for [Ca$^{2+}$], changes associated with the ristocetin-induced binding of purified vWF multimers after platelets were incubated with 6D1 or 10E5, and demonstrates that the inhibition by 6D1 observed at 2 min in Fig. 5 is due to an ablated response, rather than due to a delayed response.

An important consequence of some platelet activation signals is the production of thromboxane A$_2$ (TXA$_2$). This eicosanoid has proaggregatory and vasoconstrictor properties that amplify the initiating stimulus and contribute to platelet plug formation. It is produced as a consequence of release of free arachidonic acid from membrane phospholipids, followed by the metabolism of this substrate to prostaglandin endoperoxides (catalyzed by cyclooxygenase) which are converted to TXA$_2$ (catalyzed by TXA$_2$ synthase). To directly demonstrate this, we measured the release of 14C-arachidonic acid and the production of TXB$_2$, the stable breakdown product of TXA$_2$, in platelets after the ristocetin-induced binding of purified vWF multimers. Fig. 7 demonstrates the time-course of platelet arachidonic acid release and TXB$_2$ production after ristocetin-induced binding of purified vWF multimers to platelets. This figure also shows that TXB$_2$ generation is slower than with thrombin (1 U/ml). The release and metabolism of arachidonic acid observed in these experiments appear to occur after the elevation of [Ca$^{2+}$], (Fig. 4). This suggests that this eicosanoid-generating signal pathway is activated as a consequence of the rise of [Ca$^{2+}$],, probably resulting in the stimulation of platelet phospholipase A$_2$ (2). Another molecule that is released from aggregating platelets is ADP. ADP is secreted from platelet dense granules, and can further activate and thereby recruit circulating platelets into the developing thrombus (2). To determine if ADP released as a consequence of platelet aggregation affects platelet signal generation, we pretreated platelets with CP/CPK (5 mM/25 U/ml, respectively), and measured PA production and p47 phosphorylation in response to ristocetin and vWF. CP/CPK, which scavenges ADP and eliminates the effect of released ADP on platelets, has no significant inhibitory effect on platelet PA production and p47 phosphorylation in response to ristocetin and vWF (data not shown).

The weak agonists ADP and epinephrine activate platelets through a mechanism that depends on the release and metabolism of small (and generally unmeasurable) amounts of arachidonic acid (2, 21). To determine if the vWF-GpIb interaction initiates a cyclooxygenase-dependent pathway of intracellular signal generation that subsequently activates platelet phospholipase C, platelets were pretreated with indomethacin, stimulated with purified vWF multimers and ristocetin, and assayed

Figure 2. Ristocetin-induced vWF multimer binding stimulates platelet phosphatidic acid (PA) generation. Stirring 32P-loaded aliquots of 2.5×10^8 platelets/ml in buffer A with 1 mM CaCl$_2$ were pretreated for 30 s with ristocetin (1 mg/ml) to which was added purified vWF multimers (antigen level = 100%). Radiolabeled PA was extracted from platelet phospholipids, separated by thin-layer chromatography, and quantified by liquid scintillation counting. The ordinate is the percent increase in PA production above basal levels at time 0. Each point represents the mean±SEM of four separate experiments.

Figure 3. The ristocetin-induced binding of vWF multimers to platelets is associated with an increase in the phosphorylation of p47, a M_r 47,000 substrate of platelet protein kinase C. Stirring 32P-loaded aliquots of 2.5×10^8 platelets/ml in buffer A with 1 mM CaCl$_2$ were treated for 30 s with ristocetin (1 mg/ml) and then mixed with purified vWF multimers (antigen level = 100%). Platelet phosphoproteins were separated by 7–17% gradient SDS-PAGE, fixed, dried, and reported by autoradiography. The phosphorylation response of platelets treated with 1 U/ml thrombin (Thr) is given for comparison. This autoradiogram is representative of eight separate experiments.
for changes in lipid and protein phosphorylation. Fig. 8 shows that platelet PA production and p47 phosphorylation 2 min after the initiation of vWF-mediated aggregation are inhibited by indomethacin, and Fig. 9 shows that indomethacin inhibits the platelet [Ca\(^{2+}\)] response to ristocetin plus vWF.

The aggregation of platelets induced by vWF multimers and ristocetin does not require a living cell. To corroborate that platelet signals generated during ristocetin-induced vWF binding are not due to passive platelet agglutination, we measured simultaneously, in separate aliquots, aggregation and [Ca\(^{2+}\)], of indomethacin-pretreated, fura 2-loaded platelets. Fig. 9 shows that indomethacin inhibits changes of [Ca\(^{2+}\)], without inhibiting vWF-induced platelet aggregation. This divergence of the platelet aggregation response from the [Ca\(^{2+}\)] response is also observed with a lower concentration of purified vWF multimers in the absence of indomethacin: a 10% antigen level causes full aggregation of intact platelets (not shown) but no change in their [Ca\(^{2+}\)]. (Fig. 4).

Discussion

Data presented here demonstrate that ristocetin-induced vWF binding to platelets initiates specific intracellular signals for platelet activation. We have found that vWF and ristocetin cause platelets to hydrolyze PIP\(_2\), generate PA, phosphorylate p47, and increase [Ca\(^{2+}\)]. Because the platelet has two binding sites for vWF, GpIb, and GpIIb-IIIa, the receptor specificity of platelet biochemical responses to vWF and ristocetin was examined. We found that platelet signals in response to vWF and ristocetin are inhibited by a monoclonal antibody to platelet GpIb, but not by antibodies to GpIIb-IIIa. This suggests that
the specific interaction between vWF and platelet GpIb leads directly to intraplatelet biochemical responses.

The kinetics of vWF-mediated generation of platelet signals are different from those observed with the strong agonist thrombin, which rapidly (within 15 s) activates platelet PKC and stimulates changes in [Ca2+]i (2). The lag phase of signal generation that was observed in our experiments is similar to that reported by Weiss et al. who measured the release of ADP and serotonin from intact platelets in platelet-rich plasma treated with ristocetin (5). The reason for this delay is not known. We have considered that the lag phase of platelet signal generation in response to the binding of large vWF multimers may be due to an initial requirement for the release and metabolism of arachidonic acid, as occurs with the weak platelet agonists ADP or epinephrine (21). When ADP or epinephrine binds to its specific platelet receptor, phospholipase C is activated as a consequence of an initiating cyclooxygenase metabolite-dependent signal. Our observations that indomethacin inhibits vWF/ristocetin-mediated platelet PA production, PKC activation, and changes of [Ca2+]i, without suppressing platelet aggregation, are consistent with this hypothesis. Because phospholipase A2 (PLA2)-mediated hydrolysis of membrane phospholipids is the major pathway of mobilization of endogenous arachidonic acid for prostaglandin endoperoxide and TXA2 synthesis in stimulated platelets, our data are consistent with the hypothesis that there is an initial activation of PLA2 after vWF binding to GpIb, and that this then leads to the release of free arachidonic acid and to the formation of cyclooxygenase products capable of activating phospholipase C.

The molecular mechanisms of vWF/GpIb-induced platelet signal generation are not known. Studies of thrombin-platelet interactions have demonstrated that this platelet agonist binds to GpIb, but the consequences of this for platelet signal transduction are uncertain (22, 23). GpIb is a transmembraneous heterodimer that may interact with other platelet surface glycoproteins, including the Fc receptor and the CD9 complex, both of which are putative extracellular signal-transducing proteins (24, 25). No unequivocally established signaling function has been demonstrated for platelet GpIb although there is, in addition to evidence for its possible role in mediating thrombin-induced platelet activation, further indirect evidence that GpIb is a signal transducing protein: cAMP phosphorylates the β chain of GpIb (26), decreases thrombin binding to platelets (27), and inhibits platelet activation (2). Our data suggest the possibility that platelet membrane GpIb, after the binding of vWF, undergoes a conformational change that directly, or indirectly through a coupling protein, causes the activation of platelet PLA2 to initiate the sequence of intracellular signaling events reported in this study. vWF/GpIb-mediated signaling may also require interplatelet bridging through this specific receptor/ligand interaction. This hypothesis is based on our observations that the biochemical responses of platelets to ristocetin plus vWF do not occur in unstirred platelet suspensions where platelet–platelet interactions are minimal. Such platelet–platelet interactions, although they may be required for vWF-induced activation to occur, are insufficient for platelet signals to be generated: indomethacin inhibits signals in response to vWF binding to GpIb without inhibiting aggregation.

In summary, we have demonstrated that ristocetin-induced vWF binding to platelet membrane GpIb initiates specific biochemical pathways of platelet activation. These results suggest that platelet adhesion mediated by vWF multimers may lead directly to platelet secretion and aggregation through a mechanism that is intrinsic to the adherent platelet. The relevant ligand is vWF (derived from plasma, platelets, or the subendothelium), and the receptor that couples this extracellular signal to an intracellular response is platelet membrane GpIb. vWF binds to GpIb, thus mediating not only the process of adhesion, but also simultaneously activating intracellular signal pathways that cause PKC activation and the elevation of [Ca2+]i. These signals then lead to the release reaction and the

Figure 8. Indomethacin (0.27 mM) inhibits vWF-induced platelet phosphatidic acid (PA) production and protein kinase C-dependent protein (p47) phosphorylation. Staining 32P-loaded aliquots of 2.5 × 106 platelets/ml in buffer A with 1 mM CaCl2 were treated for 30 s with ristocetin (1 mg/ml) followed by vWF (antigen level = 100%) for 2 min. Platelet phosphoproteins were separated by 7-17% gradient SDS-PAGE, fixed, dried, and autoradiographed. p47 phosphorylation and PA production were quantified as described in Methods. Each bar represents the mean±SEM of the increase from basal levels for three separate experiments.

Figure 9. Indomethacin (0.27 mM) inhibits vWF-induced elevations of platelet cytosolic calcium ([Ca2+]i) without inhibiting platelet aggregation. Washed platelets loaded with fura 2, in buffer B with 1 mM CaCl2, were treated for 30 s with ristocetin (1 mg/ml) and then mixed with purified vWF multimers (antigen level = 100%). [Ca2+]i, was determined as described in Methods. Aggregation of identically prepared platelets was measured simultaneously by light transmittance in an aggregometer (Chronolog, Haverton, PA).
recruitment of circulating platelets to the site of vascular injury. It is not yet known if, in vivo, vWF-mediated platelet adhesion to subendothelium is directly coupled to activation pathways that promote platelet aggregate formation. Studies of the molecular mechanisms of these responses, and of ristocetin-independent vWF binding to platelets, should help to clarify the physiological importance of vWF-mediated adhesion-activation coupling.

Acknowledgments

The authors thank Dr. J. David Hellums for helpful discussions and Nancy Turner for preparation of the purified vWF. Supported in part by grants HL2311, HL36045, HL35387, HL18584, and HL34787 from the National Institutes of Health, and by grants provided by the Veterans Affairs (to M. H. Kroll and A. I. Schafer). M. H. Kroll is the recipient of a Clinical Investigator Award from the National Heart, Lung and Blood Institute and an award from the Biomedical Research Support Group of the Baylor College of Medicine (PHS RR-05425).

References

10. Moake, J. L., N. A. Turner, N. A. Stathopoulos, L. Nolasco, and J. D. Hellums. 1988. Shear-induced platelet aggregation can be mediated by vWF released from platelets, as well as by exogenous large or unusually large vWF multimers, requires adenosine diphosphate, and is resistant to aspirin. Blood. 71:1366–1374.