Pathogenesis of Periodontitis: A Major Arginine-specific Cysteine Proteinase from Porphyromonas gingivalis Induces Vascular Permeability Enhancement through Activation of the Kallikrein/Kinin Pathway

Takahisa Imamura,* Robert N. Pike, Jan Potempa,† and James Travis
The Department of Biochemistry, University of Georgia, Athens, Georgia 30602; *Division of Molecular Pathology, Department of Neuroscience and Immunology, Kumamoto University Graduate School of Medical Sciences, Kumamoto 860, Japan; and †Department of Microbiology and Immunology, Institute of Molecular Biology, Jagiellonian University, 31-120 Krakow, Poland

Abstract

To elucidate the mechanism of production of an inflammatory exudate, gingival crevicular fluid (GCF), from periodontal pockets in periodontitis, we examined the vascular permeability enhancement (VPE) activity induced by an arginine-specific cysteine proteinase, Arg-gingipain-1 (RGP-1), produced by a major periodopathogenic bacterium, Porphyromonas gingivalis. Intradermal injections into guinea pigs of RGP-1 (10^{-4} M), or human plasma incubated with RGP-1 (10^{-5} M), induced VPE in a dose-dependent manner but with different time courses for the two routes of production. VPE activity induced by RGP-1 was augmented by kininase inhibitors, inhibited by a kallikrein inhibitor and unaffected by an antithrombin drug.

The VPE activity in human plasma incubated with RGP-1 was also correlated closely with generation of bradykinin (BK). RGP-1 induced 30–40% less VPE activity in Hageman factor−deficient plasma and no VPE in plasma deficient in either prekallikrein (PK) or high molecular weight kininogen (HMWK). After incubation with RGP-1, plasma deficient in PK or HMWK, reconstituted with each missing protein, caused VPE, as did a mixture of purified PK and HMWK, but RGP-1 induced no VPE from HMWK. The VPE of extracts of clinically isolated P. gingivalis were reduced to about 10% by anti-RGP-1-IgG, leupeptin, or tosyl-L-lysine chloromethyl ketone, which paralleled effects observed with RGP-1. These results indicate that RGP-1 is the major VPE factor of P. gingivalis, inducing this activity through PK activation and subsequent BK release, resulting in GCF production at sites of periodontitis caused by infection with this organism. (J. Clin. Invest. 1994. 94:361–367.)

Key words: bradykinin • prekallikrein • high molecular weight kininogen • bacteria • gingival crevicular fluid

Introduction

The declining incidence of dental caries in the general population has resulted in periodontal disease assuming major impor-

Address correspondence to J. Travis, Department of Biochemistry, University of Georgia, Athens, GA 30602.

Received for publication 6 December 1993 and in revised form 4 March 1994.

© The American Society for Clinical Investigation, Inc.

0021-9738/94/07/0361/07 $2.00

Vascular Permeability Enhancing Proteinase from Porphyromonas Gingivalis

1. Abbreviations used in this paper: BK, bradykinin; FPR-CK, H-D-Phe-Pro-Arg-chloromethylketone; GCF, gingival crevicular fluid; HF, Hageman factor; HMWK, high molecular weight kininogen; PK, plasma prekallikrein; RGP-1, Arginine-specific gingipain-1; SBTI, soybean trypsin inhibitor; TLCK, tosyl-L-lysine chloromethylketone; VPE, vascular permeability enhancement; Z-PK-CK, benzoyloxycarbonyl-Phe-Lys-Clr,OOC-(2,4,6-Me$_2$)Ph·HCl.
bacterium. Recently, we purified and characterized arginine-specific gingipain-I (RGP-1), 50 kD (34) and lysine-specific, 105 kD (KGP-1) (35) cysteine proteinases from *P. gingivalis*. The data presented below clearly indicate the potency of RGP-1 for inducing VPE, in vivo, and the mechanism by which this occurs.

Materials

Materials. Bradykinin, angiotensin I converting enzyme inhibitor SQ 20,881 (pGlu-Trp-Pro-Arg-Pro-Gln-Ile-Pro-Pro), 1,10-phenanthroline, soybean trypsin inhibitor (SBTI), tosyl-L-lysine chloromethyl ketone (TLCK), histamine, diphenhydramine, Evans blue dye, and plasma deficient in HF, PK, or HMWK were purchased from Sigma Chemical Co. (St. Louis, MO). Leupeptin was a product of Boehringer Mannheim Corp. (Indianapolis, IN). Benzoylxy carbonyl-Phe-Lys-CH₂O-CO-(2,4,6-Me₃) Ph-HCl (Z-FK-CK) was kindly donated by Dr. A. Krantz (Syntex, Toronto, ON, Canada). H-D-Phe-Pro-Arg-chloromethylketone (FPR-CK) was from BACHEM Bioscience, Inc. (Philadelphia, PA). Purified PK and HMWK were purchased from Enzyme Research Laboratories, Inc. (South Bend, IN). These proteins were homogenous as judged by 10% SDS-PAGE gels and showed no reduction after boiling in the presence of 5% DTT. Markit-A bradykinin kit was purchased from Dainippon Pharmaceuticals (Osaka, Japan). Normal human plasma was obtained from healthy volunteers by adding 9 vol of freshly drawn blood to 1 vol of 3.8% (wt/vol) sodium citrate, followed by centrifugation. Albino-Hartley strain male guinea pigs (300–400 g body weight) were obtained from Charles River Lab (Wilmington, MA).

Proteinase purification. RGP-1 was purified according to the method of Chen et al. (34) and migrated as a single band on SDS-PAGE gels as shown previously (34, 35). The amount of active enzyme present in the purified proteinase was determined by active site titration using FPR-CK (Potempa et al., manuscript in preparation). Briefly, activated RGP-1 was preincubated with increasing amounts of FPR-CK, followed by measurement of residual enzyme activity with BAPNA. The concentration of RGP-1 was calculated from the amount of inhibitor needed for complete RGP-1 inactivation.

VPE assay. Guinea pigs were anesthetized with an intramuscular injection of Ketamine (80 mg/kg body weight). 30 mg/kg body weight of Evans blue dye (2.5% solution in 0.6% saline) was then administered intravenously, followed by an intradermal injection of 0.1 ml of RGP-1 solution (previously dialyzed against 10 mM Tris-HCl, 150 mM NaCl [TBS] and diluted with 1 mM DTT, 100 µg/ml BSA in TBS) into the clipped flank of the guinea pig. VPE activity of the sample was determined by quantitatively measuring the Evans blue dye extravasated (usually 15 min after injection), according to the method of Udaka et al. (36). Activity was expressed in micrograms of dye released. Dye leakage at a site injected with TBS was used as a control.

Measurement of the activity generated when human plasma was incubated with RGP-1 was obtained by first incubating 50 µl of plasma, supplemented with 1,10-phenanthroline (2 mM), with an equal volume of RGP-1 (treated as above), at 25°C, for varying time periods. The reaction was stopped by adding 400 µl of TBS, supplemented with 1,10-phenanthroline (1 mM), SBTI (2 x 10⁻³ M), and FPR-CK (20 µM) (stop solution), and the VPE activity of the sample was assayed, as described above.

BK assay. Bradykinin quantification using a Markit-A bradykinin kit was carried out according to the manufacturers instructions.

Preparation of bacterial cell extract. *P. gingivalis* OMGS 100 was grown for 3 to 4 d in 95% N₂ and 5% CO₂ saturated anaerobic chambers on *Brucella* agar (BBL Microbiology Systems, Cockeysville, MD), supplemented with 0.5 ml of horse blood and 0.05 ml of hemolyzed human erythrocytes per liter, and 5 mg of menadione per ml. Bacterial cells collected from the agar surface were washed twice in PBS and lyophilized. Crude extracts were obtained by suspending 25 µg of the lyophilized cells in 1 ml of 10 mM Tris-HCl, 150 mM NaCl, 1 mM DTT, pH 7.4, followed by lysis of the cells by ultrasonication (6 kHz for 30 min on ice, including 1 s pauses every 2 s of sonication). Unbroken cells and large cell debris were removed by centrifugation at 13,000 g for 15 min, and the clear supernatant which contained bacterial membranes, in addition to soluble components, was retained.

Enzyme activity assay. The amidolytic, trypsin-like activity of crude *P. gingivalis* cell extract and purified RGP-1 was determined using Bz-L-Arg-pNA. Samples were preincubated in 0.1 M Tris-HCl, 200 mM Gly-Gly, 5 mM CaCl₂, 10 mM cysteine, pH 7.6, for 5 min at 37°C, and then assayed for amidase activity, using 1 mM substrate. The formation of *p*-nitroaniline was monitored spectrophotometrically at 405 nm.

Production of rabbit anti- gingipain IgG. Antibodies against gingipain were raised by subcutaneous inoculation of rabbits with 50 µg of enzyme emulsified in Freund’s complete adjuvant. Booster injections with the same dose of enzyme, emulsified in Freund’s incomplete adjuvant, were given after 2 wk and then monthly. Rabbits were bled after 10 wk by cardiac puncture and IgG prepared from the sera using PEG precipitation, according to the method of Polson et al. (37).

Inhibition of RGP-1 or *P. gingivalis* extracts by anti-RGP-1-IgG or proteinase inhibitors. RGP-1 (2.5 µg) was preincubated with 200 µg of either specific rabbit anti-RGP-1 IgG or non-specific rabbit IgG, 200 µM leupeptin, 4 mM TLCK, or 20 µM Z-FK-CK in 260 µl of 10 mM Tris-HCl, 150 mM NaCl, 1 mM cysteine, pH 7.4, containing 0.1 mg BSA/ml (final enzyme concentration: 5 x 10⁻⁸ M) for 30 min at room temperature, before being used in in vitro experiments. *P. gingivalis* extracts, adjusted to an equivalent RGP-1 concentration in terms of relative BAPNA hydrolyzing activity, were treated in the same way.

Results

VPE by RGP-1 injected into guinea pig skin. Direct intradermal injection of RGP-1 induced VPE at concentrations of 10⁻⁸ M and above in a dose-dependent manner, but RGP-1 inactivated with TLCK had no effect (Fig. 1). As expected, BK also induced VPE in a dose-dependent manner. The activity induced by RGP-1 showed a steeper stimulation than that found with BK, which showed an almost linear generation of VPE with a logarithmic increase of concentration (Fig. 1). Using 10⁻⁸ M RGP-1, VPE increased until 15 min after injection (19-fold) and then diminished slowly, while BK-induced activity decreased rapidly after injection, most of the activity being eliminated in 15 min (Fig. 2). These results indicate that the delayed genera-

![Figure 1. Dose- and proteinase-dependence of vascular permeability](image-url)
tion of VPE activity by RGP-1, in relation to direct injections of BK, is associated with its enzymatic activity and suggests that a cascade reaction may be involved in its production.

Characterization of VPE. To identify the mechanism by which RGP-1 induced VPE, the effect of a variety of inhibitors was tested. VPE production was not inhibited by simultaneous injection of diphenhydramine, an anti-histamine drug, whereas in controls the VPE generated by histamine was completely blocked (Fig. 3). The simultaneous injection of SQ 20,881, an inhibitor of angiotensin I converting enzyme (38), which is a BK inactivator, stimulated the VPE induced by RGP-1 (Fig. 3). In controls this compound also augmented the VPE induced by BK but did not affect the VPE mediated by histamine. The simultaneous injection of SBTI completely inhibited the VPE produced by RGP-1, at a concentration at which this proteinase inhibitor does not affect the proteinase activity of RGP-1 (Fig. 3), while having no effect on the VPE produced by BK or histamine. Plasma kallikrein releases BK from HMWK and SBTI inhibits the hydrolytic (39) and VPE-inducing (26) activities of plasma kallikrein. Thus, these results indicate that the VPE generated by RGP-1 is caused by the ultimate release of BK and is probably mediated by the initial activation of plasma prekallikrein to kallikrein.

VPE by human plasma treated with RGP-1. To investigate whether RGP-1 caused the production of VPE in man, human plasma was incubated with RGP-1, followed by injection into guinea pig skin. Human plasma-induced VPE in a dose-dependent manner after incubation with RGP-1 at concentrations as low as 10⁻⁸ M (Fig. 4). The VPE of human plasma incubated with RGP-1 decreased markedly in the presence of SBTI or in the absence of 1,10-phenanthroline (Fig. 4) (an inhibitor of kininases [40]). The VPE of plasma incubated with RGP-1 (10⁻⁷ M) increased linearly with incubation time (Fig. 5), indicating that no plasma proteinase inhibitors were affecting its production. TLCK-inactivated RGP-1 did not generate VPE activity from plasma even after longer incubation periods (Fig. 5). These results indicate that RGP-1 acts in the same way in human plasma, inducing VPE through plasma kallikrein-mediated BK generation.

VPE by deficient plasmas treated with RGP-1. To further investigate the mechanism of VPE production in human plasma treated with RGP-1, we examined its action in plasmas deficient in HF, PK, or HMWK. The enzyme generated VPE activity in HF-deficient plasma in a dose-dependent manner, but the VPE was 30–40% less than that of normal plasma (Fig. 6). Plasma deficient in either PK or HMWK did not stimulate VPE after incubation with RGP-1 (Fig. 6). However, RGP-1 induced VPE from HMWK-deficient plasma reconstituted to normal levels by addition of HMWK (41) or PK-deficient plasma reconstitu-

Vascular Permeability Enhancing Proteinase from Porphyromonas Gingivalis

Figure 2. Time-course of vascular permeability enhancement activity in guinea pig skin. 100 µl of RGP-1 (10⁻⁵ M) or BK (10⁻⁶ M) was intradermally injected into a guinea pig 3, 7, 15, 30, and 60 min before intravenous injection of Evans blue. Dye leaked at the injected sites was quantified as described in Fig. 1. The dye leakage at injection sites immediately after intravenous injection of Evans blue was shown as 0 min. (○) 10⁻⁵ M RGP-1; (△) 10⁻⁶ M BK.

Figure 3. The effect of inhibitors on vascular permeability enhancement activity of RGP-1. 100-µl of histamine (10⁻³ M), BK (10⁻⁷ M) or RGP-1 (3 × 10⁻⁴ M) was intradermally injected into a guinea pig simultaneously with diphenhydramine (10⁻⁴ M), SQ 20,881 (10⁻⁵ M), or SBTI (10⁻⁵ M), after intravenous injection of Evans blue into the animal. The dye in each injected site was measured as described in Fig. 1. (●) histamine; (x) BK; (●) RGP-1.

Figure 4. Generation of vascular permeability enhancement activity from normal human plasma by RGP-1 and the effect of inhibitors. (A) Plasma (50 µl) supplemented with 1,10-phenanthroline (2 mM), was incubated with an equal volume of varying concentrations of RGP-1 at 25°C for 5 min, followed by the addition of 400 µl stop solution. This solution (100 µl) was injected intradermally into a guinea pig, pretreated with Evans blue. The VPE activity (○) was assayed as described in Fig. 1. (B) The same experiment as above was repeated, in the presence of inhibitors, at one RGP-1 concentration (10⁻⁶ M). (●) plasma incubated with RGP-1 as above; (●) plasma incubated with RGP-1 in the presence of SBTI (●) plasma incubated with RGP-1 in the absence of 1,10-phenanthroline; and (●) plasma incubated with RGP-1 inactivated with TLCK.
followed by the addition of 400 μl of stop solution. This solution (100 μl) was injected intradermally into a guinea pig, pretreated with Evans blue. The VPE activity was assayed as described in Fig. 1. (○) RGP-1; (●) RGP-1 inactivated with TLCK.

Release of BK from plasma by RGP-1. To confirm the release of BK by RGP-1 in human plasma, BK antigen in plasma treated with RGP-1 was quantified. Release of BK antigen in normal plasma, treated with RGP-1, increased in a dose-dependent manner (Table 1), as it did in HF-deficient plasma, but in this case the BK release was much less than that from normal plasma. The release of BK antigen from PK or HMWK-deficient plasmas was lower than the detection limit (Table 1). Considering the dose–response of VPE generated by BK (Fig. 1), the concentrations of BK released from RGP-1–treated plasma correlated closely to the VPE of RGP-1–treated normal plasma or plasma deficient in PK, or HMWK (Fig. 6).

VPE by a mixture of purified PK and HMWK treated with RGP-1. To confirm the mechanism of VPE by RGP-1, we examined the generation of VPE activity from HMWK or the mixture of PK and HMWK, after treatment with enzyme. RGP-1 did not induce VPE from HMWK alone but could be demonstrated in a mixture of PK and HMWK, which was also dependent on

Table 1. Release of BK from Plasma Incubated with RGP-1

<table>
<thead>
<tr>
<th>Plasma</th>
<th>RGP-1 concentration</th>
<th>BK release</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M*</td>
<td>ng</td>
</tr>
<tr>
<td>Normal</td>
<td>3 × 10⁻⁸</td>
<td>64.8</td>
</tr>
<tr>
<td>Normal</td>
<td>10⁻⁸</td>
<td>8.4</td>
</tr>
<tr>
<td>Normal</td>
<td>3 × 10⁻⁹</td>
<td>< 4</td>
</tr>
<tr>
<td>Normal</td>
<td>(−)</td>
<td>< 4</td>
</tr>
<tr>
<td>HF-deficient</td>
<td>3 × 10⁻⁸</td>
<td>9.0</td>
</tr>
<tr>
<td>HF-deficient</td>
<td>(−)</td>
<td>< 4</td>
</tr>
<tr>
<td>PK-deficient</td>
<td>3 × 10⁻⁸</td>
<td>< 4</td>
</tr>
<tr>
<td>HMWK-deficient</td>
<td>3 × 10⁻⁸</td>
<td>< 4</td>
</tr>
</tbody>
</table>

50 μl of plasma supplemented with 2 mM 1,10-phenanthroline was incubated with 50 μl of RGP-1 at 25°C for 5 min, followed by 400 μl of TBS, containing 1,10-phenanthroline (1 mM), SBTI (10⁻⁵ M), and H-D-FPR-CK (20 μM). After adding 100 μl of 20% trichloroacetic acid, the solution was centrifuged and the BK content in the supernatant assayed. The average value in the duplicate assay is shown. (−), TBS supplemented with 1 mM dithiothreitol and 100 μg/ml bovine serum albumin was added to plasma instead of RGP-1; *, the concentration in the reaction mixture; < 4 means lower than 4 ng, the detection limit.

Figure 5. Time-course of generation of vascular permeability enhancement activity from normal human plasma by RGP-1. Plasma (50 μl), supplemented with 2 mM 1,10-phenanthroline and 2 mM cysteine was incubated with 50 μl of RGP-1 (2 × 10⁻⁸ M) for various periods, followed by the addition of 400 μl of stop solution. This solution (100 μl) was injected intradermally into a guinea pig, pretreated with Evans blue. The VPE activity was assayed as described in Fig. 1. (○) RGP-1; (●) RGP-1 inactivated with TLCK.

Figure 6. Comparison of plasma deficient in HF, PK, or HMWK with normal plasma in generation of vascular permeability enhancement activity by RGP-1. Normal plasma (50 μl), or plasma deficient in HF, PK, or HMWK, supplemented with 1,10-phenanthroline (2 mM), were incubated with RGP-1 for 5 min. The reaction was stopped by adding 400 μl of stop solution and 100 μl of the solution was injected intradermally into a guinea pig, pretreated with Evans blue. The VPE activity was assayed as described in Fig. 1. The concentrations in the reaction mixtures are shown. (○) normal plasma; (△) HF-deficient plasma; (□) PK-deficient plasma; (●) HMWK-deficient plasma.

Figure 7. Generation of vascular permeability enhancement activity by incubation of RGP-1 with deficient plasmas reconstituted with each deficient factor. Five microliters of TBS, HMWK (700 μg/ml), or PK (150 μg/ml) were added to 45 μl of normal plasma, or plasmas deficient in HMWK or PK, respectively. Then, 50 μl of RGP-1 (6 × 10⁻⁸ M) or TBS was added to the plasma and incubated for 5 min at 25°C. The reaction was stopped by adding 400 μl of stop solution and 100 μl of the solution was injected intradermally into a guinea pig, pretreated with Evans blue. The VPE activity was assayed as described in Fig. 1. (○) Plasma incubated with RGP-1; (●) reconstituted plasma incubated with RGP-1; (△) reconstituted plasma incubated with TBS used for dilution of RGP-1.
have examined the larvicide factors from Porphyromonas gingivalis. OMGS strain was isolated P. gingivalis proteinases (35), inhibited by RGP-1 (3 × 10⁻⁸ M) or extracts with equivalent Bz-L-Arg-pNA-cleaving activity. The VPE activity was expressed as the percentage of VPE by plasma incubated with nontreated RGP-1 or extract. (a) RGP-1; (●) incubated with TBS used for dilution of RGP-1.

Discussion

In an effort to systematically characterize the effects of virulence factors from *P. gingivalis* on the human system, particularly in view of their relationship to periodontal disease, we have examined the effect of cysteine proteinases from this or-

![Figure 8. Generation of vascular permeability enhancement activity by incubation of RGP-1 with the mixture of PK and HMWK. HMWK and PK were diluted with TBS containing BSA (1 mg/ml) and polybrene (0.25 mg/ml). 30 μl of normal plasma supplemented with 1,10-phenanthroline (2 mM) and polybrene (0.25 mg/ml), HMWK, or the mixture of HMWK and PK were incubated with 50 μl of RGP-1 (2 × 10⁻⁸ M) or TBS for 5 min at 25°C. The reaction was stopped by adding 400 μl of stop solution and 100 μl of the solution was injected intradermally into a guinea pig, pretreated with Evans blue. The VPE activity was assayed as described in Fig. 1. The concentrations of HMWK, PK*, or PK** were 70 μg/ml, 0.3 μg/ml, and 1 μg/ml, respectively. (●) Incubated with RGP-1; (●) incubated with TBS used for dilution of RGP-1.

![Figure 9. The effect of anti-RGP-1-IgG or proteinase inhibitors on the vascular permeability enhancement activity of both RGP-1 and Porphyromonas gingivalis extracts. RGP-1 or extracts were treated with anti-RGP-1-IgG (a-RGP-1-IgG), nonspecific IgG (non-spe.IgG), leupeptin, Z-FK-CK, or TLCK. Plasma (50 μl), supplemented with 1,10-phenanthroline (2 mM), was incubated at 25°C for 5 min with either 50 μl of treated RGP-1 (3 × 10⁻⁸ M) or extracts with equivalent Bz-L-Arg-pNA-cleaving activity. The VPE activity was expressed as the percentage of VPE by plasma incubated with nontreated RGP-1 or extract. (a) RGP-1; (●) the extract of *P. gingivalis*.](https://example.com/figure9)

organism on VPE (and thus GCF production). All of the data obtained clearly indicate that the arginine-specific proteinase, RGP-1, has significant VPE inducing activity, with its mechanism of production being carefully characterized.

Although the biological concentration of RGP-1 in GCF or dento-gingival pockets is not yet known, RGP-1 produced BK at low concentrations in human plasma (Table 1) and induced VPE at 10⁻⁹ M (Fig. 4), indicating that the enzyme would be functional in this system even at trace amounts. The data obtained by using deficient plasmas and purified PK and HMWK, clearly indicate that the major target for RGP-1 in the activation of the cascade to release bradykinin is prekallikrein. While the mechanism of activation of PK by RGP-1 is not known, the cleavage site of prekallikrein by activated HF (β-HF) is at the Arg₁₇₁-Ile₁₇₂ bond (42). Since RGP-1 is strictly arginine specific (34), it probably cleaves the same site as that by β-HF. This specificity for PK may not be complete, however, since 30–40% less VPE was induced in HF-deficient plasma (Fig. 6), implying that RGP-1 may also activate HF. Kallikrein also activates HF to form β-HFα which converts prekallikrein to kallikrein (43–48). Accordingly, kallikrein generation by RGP-1 in normal plasma could be augmented by this mechanism, while its production by RGP-1 in HF-deficient plasma would lack this additional pathway, thus explaining why VPE is reduced relative to normal plasma. In a similar manner, *Pseudomonas aeruginosa* elastase has been found to specifically activate human PK (49), with the generation of kallikrein from HF-deficient plasma also being much less than from normal plasma (50). Moreover, the VPE of plasma incubated with a low concentration of RGP-1 (10⁻⁹ M) increased linearly in an incubation time-dependent manner (Fig. 5), which suggests that there are no proteinase inhibitors in human plasma controlling RGP-1, as noted previously (34).

It is known that some bacterial and mite proteinases can generate BK through activation of HF and/or PK (28–30, 49–53). Proteinases from *Serratia marcescens*, house dust mite
Dermatophagoides farinae, and Pseudomonas aeruginosa generate BK through either a combination of the activation of HF and/or PK or direct cleavage of HMWK. However, these proteinases require relatively high enzyme concentrations and long incubation periods at 37°C to activate the human proteins (30, 49, 50, 52, 53), and the results have not been confirmed in vivo. In our studies, however, RGP-1 generated BK from human plasma at a much lower concentration and in a shorter incubation time at 25°C (Fig. 4), indicating that it is probably the most potent BK releasing enzyme among the bacterial proteinases studied to date.

In order to generate BK, RGP-1 must be in contact with PK and HMWK. Most of the trypsin-like activity of P. gingivalis (54, 55), including RGP-1, is localized in the extracellular membrane vesicles and cell membranes of invasive strains of the bacteria (Potempa, J., unpublished observation). Hence, RGP-1 should be in contact with PK and HMWK present in periodontal interstitial fluid or plasma leaked into periodontal tissues, thereby producing kallikrein and, ultimately, the liberation of BK from HMWK. This would result in a continual cycle of plasma leakage, since VPE induced by RGP-1 would result in the further recruitment of BK around RGP-1 due to continued plasma leakage after VPE induction. This is the most likely explanation for the clinical observation that exudation of GCF is continuous, with an estimated 1 ml of GCF passing from the gingiva into the mouth each day (57).

Most of the VPE activity of P. gingivalis extracts was abolished by RGP-1–specific IgG, which also inhibited the VPE induced by RGP-1 (Fig. 7). Therefore, RGP-1 is probably the major VPE factor of P. gingivalis. This is supported by data indicating that extracts in vivo were almost completely devoid of VPE inducing activity in leupeptin or TLCK-treated samples, both of which inhibit the proteinase activity of RGP-1, while Z-FK-CK (Fig. 7), which only partially reduces the enzymatic activity of RGP-1, also lowered VPE production. The cleavage sites to release BK from HMWK are at Ly532-Arg534, and Arg371-Ser372 (57). Since P. gingivalis contains both arginine and lysine-specific enzymes it is possible that these could be direct release of BK from HMWK by the concerted action of these two enzymes. We have recently isolated a lysine-specific proteinase (KGP-1) from P. gingivalis (35), but it alone did not induce VPE in vivo unless high concentrations were used (Imamura et al., unpublished observation). The addition of small amounts of RGP-1 to the KGP-1 preparation did allow the induction of VPE in plasma, however, including PK-deficient plasma, indicating a direct release of BK from HMWK. Since the lys-specific proteinase (KGP) from P. gingivalis is totally inhibited by Z-FK-CK (Pike, R. N., unpublished observation), the finding that the VPE induced by extracts, in vivo, was only partially inhibited by this compound (Fig. 7), indicates that KGP is not a major VPE factor of P. gingivalis.

Scott et al. purified a lysine-specific cysteine proteinase from P. gingivalis, which was claimed to directly cleave human HMWK, releasing BK antigen, as judged by an in vitro immuno-assay (58). The mechanism for BK release by a lysine-specific proteinase is somewhat puzzling and it is more likely that, as indicated in their results, the enzyme preparation was significantly contaminated by activity cleaving after arginine residues (probably by RGP-1). Thus, it is likely that the release of BK in these assays was due to cleavage by both enzymes at the positions shown above in HMWK. An arginine-specific proteinase isolated by Hinode et al. (59) did not generate BK directly from HMWK in vitro, consistent with our results; however, another proteinase has been claimed to cleave after both arginine and lysine bonds, generating BK from HMWK directly (60). Thus, although it may be possible to directly release BK from HMWK, much higher concentrations of the enzymes are required which, together with inhibitor studies, suggests that this would not be a significant mechanism in vivo, in relation to the activation of PK by low concentrations of RGP-1 as elucidated here.

The immunization of animals with whole cells of P. gingivalis or its components, has been shown to be protective against experimental infection with the bacteria (61–63). Since the existence of P. gingivalis and other periopathogens in the dentogingival crevice depends heavily on the continuous supply of nutrients delivered to periodontitis sites by GCF, it can be speculated that inhibition of GCF production may affect bacterial growth and/or virulence. Because RGP-1 is the major VPE factor of P. gingivalis and the VPE activity was blocked by RGP-1–specific antibody (Fig. 7), it can be envisaged that immunization with purified RGP-1 may protect against P. gingivalis infection, a hypothesis which is now under investigation in our laboratory using a mouse model.

Acknowledgments

This work was supported in part by National Institutes of Health grant.

References

366 Imamura et al.
Vascular Permeability Enhancing Proteinase from Porphyromonas gingivalis