Heparin-enhanced plasma phospholipase A2 activity and prostacyclin synthesis in patients undergoing cardiac surgery.

H Nakamura, … , G Koski, J V Bonventre

Although eicosanoid production contributes to physiological and pathophysiological consequences of cardiopulmonary bypass (CPB), the mechanisms accounting for the enhanced eicosanoid production have not been defined. Plasma phospholipase A2 (PLA2) activity, 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha), and thromboxane B2 (TXB2) levels were measured at various times during cardiac surgery. Plasma PLA2 activity increased after systemic heparinization, before CPB. This was highly correlated with concurrent increases in plasma 6-keto-PGF1 alpha, TXB2 concentrations did not increase with heparin administration but did increase significantly after initiation of CPB. High plasma PLA2 activity, 6-keto-PGF1 alpha, and TXB2 concentrations were measured throughout the CPB period. Protamine, administered to neutralize the heparin, caused an acute reduction of both plasma PLA2 activity and plasma 6-keto-PGF1 alpha, but no change in plasma TXB2 concentrations. Thus the ratio of TXB2 to 6-keto-PGF1 alpha increased significantly after protamine administration. Enhanced plasma PLA2 activity was also measured in patients with lower doses of heparin used clinically for nonsurgical applications. Human plasma PLA2 was identified as group II PLA2 by its sensitivity to deoxycholate and dithiothreitol, its substrate specificity, and its elution characteristics on heparin affinity chromatography. Heparin addition to PMNs in vitro resulted in dose-dependent increases in cellular PLA2 activity and release of PLA2. The PLA2 released from the PMN had characteristics similar to those of post-heparin plasma PLA2. In conclusion, plasma […]

Find the latest version:

http://jci.me/117752-pdf
Heparin-enhanced Plasma Phospholipase A$_2$ Activity and Prostacyclin Synthesis in Patients Undergoing Cardiac Surgery

Harumasa Nakamura, Dae Kyong Kim, Daniel M. Philbin, Myron B. Peterson, Fred DeBros, Greg Koski, and Joseph V. Bonventre

Medical Services and Henry K. Beecher Memorial Research Laboratories and Cardiac Anesthesia Group, Massachusetts General Hospital, Boston, Massachusetts; and Departments of Medicine and Anesthesia, Harvard Medical School and the Pediatric Intensive Care Unit, New England Medical Center, Tufts University School of Medicine, Boston, Massachusetts

Abstract

Although eicosanoid production contributes to physiological and pathophysiological consequences of cardiopulmonary bypass (CPB), the mechanisms accounting for the enhanced eicosanoid production have not been defined. Plasma phospholipase A$_2$ (PLA$_2$) activity, 6-keto-prostaglandin F$_{1\alpha}$ (6-keto-PGF$_{1\alpha}$), and thromboxane B$_2$ (TXB$_2$) levels were measured at various times during cardiac surgery. Plasma PLA$_2$ activity increased after systemic heparinization, before CPB. This was highly correlated with concurrent increases in plasma 6-keto-PGF$_{1\alpha}$, TXB$_2$ concentrations did not increase with heparin administration but did increase significantly after initiation of CPB. High plasma PLA$_2$ activity, 6-keto-PGF$_{1\alpha}$, and TXB$_2$ concentrations were measured throughout the CPB period. Protamine, administered to neutralize the heparin, caused an acute reduction of both plasma PLA$_2$ activity and plasma 6-keto-PGF$_{1\alpha}$, but no change in plasma TXB$_2$ concentrations. Thus the ratio of TXB$_2$ to 6-keto-PGF$_{1\alpha}$ increased significantly after protamine administration. Enhanced plasma PLA$_2$ activity was also measured in patients with lower doses of heparin used clinically for nonsurgical applications. Human plasma PLA$_2$ was identified as group II PLA$_2$, by its sensitivity to deoxycholate and diethiothreitol, its substrate specificity, and its elution characteristics on heparin affinity chromatography. Heparin addition to PMNs in vitro resulted in dose-dependent increases in cellular PLA$_2$ activity and release of PLA$_2$. The PLA$_2$ released from the PMN had characteristics similar to those of post-heparin plasma PLA$_2$.

In conclusion, plasma PLA$_2$ activity and 6-keto-PGF$_{1\alpha}$ concentrations are markedly enhanced with systemic heparinization. Part of the anticoagulant and vasodilating effects of heparin may be due to increased plasma prostacyclin (PGI$_2$) levels. In addition the pulmonary vasoconstriction sometimes associated with protamine infusion during car-
diac surgery might be due to decreased plasma PLA$_2$ activity, with an associated increased TXB$_2$/6-keto-PGF$_{1\alpha}$ ratio (J. Clin. Invest. 1995. 95:1062–1070.) Key words: phospholipids • polymorphonuclear leukocytes, signal transduction • cardiopulmonary bypass • thromboxane • protamine

Introduction

Cardiopulmonary bypass (CPB)1 has been associated with increased plasma concentrations of prostacyclin (PGI$_2$) and thromboxane A$_2$ (TXA$_2$), measured as the stable metabolites, 6-keto-prostaglandin F$_{1\alpha}$ (6-keto-PGF$_{1\alpha}$) and thromboxane B$_2$ (TXB$_2$) (1–5). Another eicosanoid, leukotriene B$_4$, also has been found in pulmonary edema fluid after CPB (6). PGI$_2$, the major arachidonate metabolite of endothelial cells, is a potent vasodilator and inhibits platelet aggregation. TXA$_2$, the predominant cyclooxygenase product of arachidonic acid in platelets, induces vasoconstriction and platelet aggregation and has been implicated in the etiology of pulmonary hypertension sometimes seen with cardiac surgery after protamine infusion for neutralization of heparin (7–11). It has been suggested that increased synthesis or imbalance in the relative synthesis of these potent vasoactive eicosanoids may contribute to organ dysfunction in various pathological states (12) and result in depressed renal, pulmonary, and cardiac function as well as thrombocytopenia, significant problems after cardiac surgery. It is not known, however, why eicosanoid production is enhanced with CPB.

Phospholipases A$_2$ (PLA$_2$) comprise a family of enzymes that hydrolyze membrane phospholipids at the sn-2 position to release fatty acids and lysophospholipids (13). Different forms of PLA$_2$ are involved in digestion, inflammation, and intracellular and intercellular signaling. Some forms are secreted, while others act intracellularly. When PLA$_2$ acts upon lipids containing arachidonic acid in the sn-2 position the resulting free arachidonic acid can serve as a substrate for cyclooxygenases and lipoxygenases. Platelet damage or excess secretion of humoral factors such as catecholamines or angiotensin II during cardiac surgery (14–16) has been implicated in the elevation of cellular PLA$_2$ activity. Complement activation during CPB (17) causes chemotaxis and leukosequestration, together with the production of oxygen free-radicals by neutrophils, which is thought to affect PLA$_2$ activity (18).

We report that high-dose heparin administration during surgery, before CPB, increases plasma PLA$_2$ activity. Furthermore, this increase in plasma PLA$_2$ activity is directly correlated with

*

1. Abbreviations used in this paper: 2-[1-14C]AA-GPC, 1-steaoyl-2-[1-14C]arachidonyl-sn-glycerol-3-phosphocholine; 2- [1-14C]AA-GPE, 1-acyl-2-[1-14C]arachidonyl-sn-glycerol-3-phosphoethanolamine; BPB, 6-bromophenacyl bromide; CPB, cardiopulmonary bypass; cPLA$_2$, cytosolic phospholipase A$_2$; PLA$_2$, phospholipase A$_2$.

Received for publication 26 April 1994 and in revised form 14 November 1994.

J. Clin. Invest. © The American Society for Clinical Investigation, Inc. 0021-9738/95/03/1062/09 $2.00 Volume 95, March 1995, 1062–1070
plasma concentrations of 6-keto-PGF₁α. The PLA₂ activity is identified as a group II form of the enzyme and may derive, at least in part, from polymorphonuclear leukocytes (PMNs) since the administration in vitro of heparin to these cells results in enhancement of cellular and released PLA₂ activities, which have identical characteristics to those of post-heparin plasma PLA₂. Our study suggests that heparin-stimulated PLA₂ activity may be partially responsible for the anticoagulant action of heparin in vivo due to conversion of arachidonic acid, liberated by PLA₂, to PG₂ in the endothelial cell.

Methods

Materials

Radioactively labeled phospholipid substrates, 1-acetyl-2-[1-14C]arachidonoyl-sn-glycerol-3-phosphoethanolamine (2-[1-14C]AA-GPE) and 1-stearoyl-2-[1-14C]arachidonoyl-sn-glycerol-3-phosphocholine (2-[1-14C]AA-GPC) were obtained from Amersham Corp. (Arlington Heights, IL). Arachidonic acid (AA), porcine pancreatic PLA₂, and molecular weight standards for gel filtration (vitamin B₁₂, cytochrome c, blue dextran, ovalbumin, and human serum albumin) were obtained from Sigma Chemical Co. (St. Louis, MO), and Silica gel LKSD plates were from Whatman Inc. (Clifton, NJ). Scintillation fluid (Ecosint®) was purchased from National Diagnostics, Inc. (Atlanta, GA) and lymphocyte separation medium from Organon Teknika (Rockville, MD). The heparin-5PW HPLC column was purchased from TosohHAAAS (Montgomeryville, PA). Heparin sodium, derived from porcine intestines, was obtained from Elkins-Sinn, Inc. (Cherryville, NJ). Protamine sulfate was obtained from Eli Lilly & Co. (Indianapolis, IN).

Patients

12 patients scheduled for elective aorto-coronary artery bypass grafting were selected for study with institutional approval and informed consent. Each patient was anesthetized with fentanyl (100 μg/kg) and muscle relaxants. All received identical preoperative and perioperative medications, except one patient who received low dose (500 U/h) heparin infusion preoperatively for anticoagulation therapy. For CPB, a bubble oxygenator and nonpulsatile flow pump were used and systemic hypothermia (24°C) was maintained. 10 serial measurements were performed as follows: period 1, Control: after placement of monitoring catheters before induction of anesthesia; period 2, Anesthesia: 10 min after induction of anesthesia before incision; period 3, Before heparin: after incision, before heparin administration; period 4, 5 min after heparin administration (300 U/kg intravenously); periods 5–7: at 15, 30, and 60 min on CPB, respectively; period 8: Before protamine administration; period 9: 5 min after protamine administration (3 mg/kg); and period 10: at the end of the operation. At each point, hemodynamic determinations and arterial blood gas measurements were performed. Arterial blood samples were transferred immediately into glass tubes containing EDTA for measurement of PLA₂ activity. Indomethacin was added to samples to be analyzed for plasma 6-keto-PGF₁α and TXB₂. Samples were centrifuged at 1,700 g for 20 min at 4°C, and plasma was stored at −70°C until assayed. Plasma heparin levels were determined by the heparin anti-10A functional assay (chromostrate assay; Organon Teknika).

Experiments were performed to determine if lower doses of heparin also resulted in elevation in plasma PLA₂ activity. In three patients blood was taken before and 5 min after a bolus of 5,000–6,000 U of heparin and in two patients blood was taken while they were receiving 1,400–1,500 U/h of heparin by continuous infusion.

Plasma prostaglandin assays

Plasma stable metabolites of TXA₂ and PG₁, TXB₂ and 6-keto-PGF₁α, respectively, were measured by double antibody radioimmunoassay (19).

Isolation of polymorphonuclear leukocytes

Polymorphonuclear leukocytes (PMNs) were prepared from fresh human blood using a method described previously (20) with minor modifications. After sedimentation of erythrocytes in 3% (wt/vol) dextran at room temperature for 45 min, lymphocyte separation medium was added to the leukocyte-rich supernatant which was then centrifuged at 500 g for 35 min. The supernatant was discarded and residual erythrocytes were destroyed by hypotonic (0.2% NaCl) lysis. Hypertonic NaCl (1.6%) was then added to return the solution to isotonicity. Lysis was repeated, and PMNs were suspended in buffer (2.5 × 10⁶ cells/ml) consisting of 250 mM sucrose and 50 mM Heps, pH 7.5, that contained the protease inhibitors pepstatin 20 μM, leupeptin 20 μM, Trasylol 1,000 kallikrein inactivating unit/ml, and phenylmethyl sulfonyl fluoride 0.1 mM. Cell preparations were examined after Wright staining and found to contain > 95% PMNs.

Plasma PLA₂ assay

Plasma PLA₂ activity was measured using methods described previously (21) with some modifications. 2-[1-14C]AA-GPE was the most commonly used substrate. Preliminary experiments, using 2-1-[14C]AA-GPC and 2-1-[14C]AA-GPE as substrates, indicated that plasma PLA₂ activity was greatest when 2-1-[14C]AA-GPE was used. Sample protein concentrations were matched using a Bio-Rad Labs (Hercules, CA) protein kit with bovine serum albumin as a standard. 2-14CAA-GPE was dried under a stream of N₂ gas and resuspended in dimethylsulfoxide. 2-1-[14C]AA-GPE (final concentration, 15 mM) was added to microcentrifuge tubes. Reactions were initiated by the addition of plasma, diluted 100-fold in 250 mM Tris-HCl, pH 8.5, buffer containing 3 mM Ca²⁺. The mixture was incubated for 60 min at 37°C, and the reaction was terminated by the addition of ethanol containing 2% (vol/vol) acetic acid and 10% (vol/vol) AA. Aliquots of the reaction mixture were spotted onto a silica gel LK50DF thin-layer chromatography plate, and the plates were developed in the organic phase of ethyl acetate/isooctane/H₂O/ acetic acid (55:75:100:8). The lipids were visualized by I₂ staining. The phospholipid and arachidonate bands were scraped, and radioactivity was counted with a liquid scintillation counter (Hewlett-Packard Co., Palo Alto, CA) in 3 ml of Ecosint®. PLA₂ activity was defined as picomoles of radiolabeled AA released from 2-1-[14C]AA-GPE per minute per milligram of protein at 37°C. In some experiments, PLA₂ activity was determined using a different method (22). Substrate 2-1-[14C]AA-GPE was dried down with an N₂ gas stream and resuspended in ethanol by vigorous vortexing. The PLA₂ assay buffer (100 μl) contained 75 mM Tris-HCl, 5 mM CaCl₂, and 0.5 mmol of the phospholipid (~65,000 cpm) at pH 8.5. The reaction was carried out at 37°C for 30 min and was stopped by adding 0.56 ml of Dole’s reagent: 48.75% isopropyl alcohol, 50% n-heptane, 1.25% 1 N H₂SO₄, in water (23). Free fatty acid was extracted in the following manner: 0.11 ml of water was added and the sample was vortexed and centrifuged for 3 min. 0.15 ml of the upper phase was transferred to a new tube to which 25 mg silica gel and 0.8 ml of n-heptane were added. The samples were vortexed and centrifuged again for 3 min each. 0.8 ml of supernatant was then counted in a liquid scintillation counter.

PLA₂ activity intrinsic to PMNs and released from PMNs and endothelial cells

After incubation of PMNs for 20 min with various doses of heparin (0, 1, 10, and 100 U/ml) at 37°C, samples were centrifuged at 3,000 g for 30 min, and PLA₂ activity was measured in the supernatant to determine the release of enzymatic activity by PMNs into the medium. PMNs were washed twice with the same buffer not containing heparin, homogenized with 25 strokes of a tight Dounce homogenizer, and then centrifuged at 100,000 g at 4°C for 60 min. PLA₂ activity in the 100,000 g supernatant was measured as described above and taken to be the intrinsic soluble PMN PLA₂ activity. Human umbilical endothelial cells were grown in M199 medium with 20% fetal bovine serum. Endothelial cell medium PLA₂ activity was measured under control conditions and after exposure of the cells to heparin (15 U/ml) for periods up to 24 h.

Chromatographic characterization of PLA₂ activity

Superose 12 gel filtration FPLC column chromatography. Samples of plasma, PMN cellular extracts, or supernatants (400 μl) of intact PMNs
were loaded onto a Superose 12 (Pharmacia LKB Biotechnology Inc., Piscataway, NJ) 24-ml gel filtration column, previously equilibrated with buffer consisting of 250 mM Tris-HCl, pH 8.5, 0.15 M NaCl, 1 mM EDTA, and 1 mM EGTA buffer at 4°C. Proteins were eluted with this buffer at a flow rate of 0.5 ml/min. The column was calibrated using blue dextran (2,000 kD), bovine serum albumin (66 kD), ovalbumin (45 kD), porcine pancreatic PLA2 (13.5 kD), cytochrome c oxidase (12.8 kD), and vitamin B12 (1.35 kD). 1-ml fractions were collected and assayed for PLA2 activity. The protein concentration of each fraction was monitored by its absorbance at 280 nm.

Heparin-SFPW HPLC column chromatography. Human plasma samples were diluted 1:1 with buffer A (50 mM Tris-HCl, 1 mM EDTA, pH 7.4) and loaded onto a heparin-SFPW HPLC column (0.75 × 7.5 cm) pre-equilibrated with buffer A. Activity was eluted with buffer A (nonbinding fraction) at 1 ml/min for 20 min. Additional activity was then eluted with a linearly increasing gradient from 0 to 2 M of NaCl concentration in buffer A.

Ca2+ dependency of plasma PLA2 activity
Aliquots of plasma samples were diluted 1:8 with buffers containing 140 mM NaCl, 25 mM Heps, and varying amounts of CaCl2 with or without 1 mM EGTA, at pH 8.5. Enzymatic activity was determined after an aliquot of the mixture was taken to measure the free Ca2+ concentration. Enzymatic activity and free Ca2+ concentration were measured at 37°C. Ca2+ concentrations below 1 μM were determined using the dual wavelength fluorescence characteristics of Pura-2 free acid with a dual wavelength spectrofluorometer (Deltascan; Photon Technology Inc., Princeton, NJ). For concentrations > 1 μM, the free Ca2+ concentration of the assay buffer was determined with a Ca2+ selective electrode, which we constructed and calibrated as described previously (24).

pH dependency of plasma PLA2 activity
Plasma samples were diluted with buffers of different pH (pH 5.0–11.0). Tris-HCl buffers were used to make up solutions at pH ≤ 7.5, and glycine-NaOH buffers were used for pH 8.0 and above. Actual pH and PLA2 activity of each sample were determined in the presence of 3 mM Ca2+ (1 mM greater than the sum of the EGTA and EDTA concentrations in the assay buffer).

Effect of patients’ plasma on porcine pancreatic PLA2 activity
Porcine pancreatic PLA2 (50 ng) was incubated in 250 mM Tris-HCl, pH 8.5, at 37°C, for 15 min with or without plasma (25 μg protein) obtained intraoperatively. PLA2 activity was then measured as described above.

Statistics
All values are presented as the mean ± 1 standard error of the mean. Statistical significance was evaluated using one-way analysis of variance and the Student’s t test for paired comparisons. P < 0.05 was regarded as significant.

Results

Plasma PLA2 activity during CPB surgery. As shown in Fig. 1, plasma PLA2 activity before anesthesia was 7.5 ± 1.1 pmol/h/mg protein and did not change significantly either after induction of anesthesia or after skin incision before heparin. A marked increase in plasma PLA2 activity was seen before CPB after administration of heparin, from 7.4 ± 1.0 to 25.5 ± 3.5 pmol/h/mg, P < 0.001. PLA2 activity remained elevated throughout the CPB period. Protamine, administered to neutralize the heparin, resulted in a marked decrease of PLA2 activity (to 13.8 ± 2.1 pmol/h/mg, P < 0.01 compared with values before protamine infusion), although PLA2 activity remained significantly higher than values before heparin administration. Neither heparin nor protamine affected enzyme activity when added to plasma in vitro (data not shown). Plasma heparin concentrations measured 5 min after the administration of heparin were 6.0, 6.7, and 7.6 U/ml in three patients. The heparin concentration was slightly higher (8.5 U/ml) in one patient in which it was measured 25 min after heparin administration and lower (3.4 and 3.1 U/ml) in two patients in which it was measured 5 min before protamine administration.

Plasma 6-keto-PGF1α and TXB2 concentration. No significant changes in plasma 6-keto-PGF1α and TXB2 concentrations were observed after induction of anesthesia or after the initial surgical incision before heparin administration (Fig 2). Marked increases of plasma 6-keto-PGF1α concentrations were measured after heparin administration (from 96 ± 28 to 454 ± 92 pg/ml, P < 0.001), but heparin did not alter plasma TXB2. TXB2 concentrations increased significantly after initiation of CPB (from 124 ± 20 to 197 ± 36 pg/ml at 15 min on CPB, P < 0.05).

Figure 1. Plasma PLA2 activity changes during CPB surgery. Plasma samples were collected from 12 patients: just before and 10 min after induction of anesthesia (Anest); just before and 5 min after heparin administration; 15, 30, and 60 min on CPB; just before and 5 min after protamine administration; and at the end of the operation at skin closure. There was a significant increase in PLA2 activity after heparin administration. PLA2 activity remained elevated during CPB. Protamine infusion resulted in a marked decrease of plasma PLA2 activity, although PLA2 activity remained higher than values before heparin administration. *P < 0.05, **P < 0.001, compared with control values before anesthesia, and *P < 0.05, compared with the values before protamine.
Protamine infusion acutely reduced plasma 6-keto-PGF\(_{1\alpha}\), from 370±100 to 200±47 pg/ml (Fig. 2 A, P < 0.001). Protamine did not change plasma TXB\(_{2}\) concentrations. Thus, the ratio of TXB\(_{2}\) to 6-keto-PGF\(_{1\alpha}\) decreased after heparin from 2.22±0.64 to 0.49±0.21 and increased significantly after protamine infusion (to 1.85±0.57, Fig. 2 B, P < 0.05).

Correlation of plasma PLA\(_{2}\) activity and plasma 6-keto-PGF\(_{1\alpha}\) and TXB\(_{2}\) levels during CPB surgery. To determine inter-relationships between plasma PLA\(_{2}\) activity and plasma 6-keto-PGF\(_{1\alpha}\), mean 6-keto-PGF\(_{1\alpha}\) concentration at each operative period was plotted as a function of plasma PLA\(_{2}\) activity. As demonstrated in Fig. 2 C, there was a close correlation between plasma 6-keto-PGF\(_{1\alpha}\) levels and PLA\(_{2}\) activity during surgery (y = 9.772x - 63.34, \(r^2 = 0.879\)). No correlation was found between plasma TXB\(_{2}\) levels and PLA\(_{2}\) activity (Fig. 2 D).

Effects of lower clinical doses of heparin on plasma PLA\(_{2}\) activity. PLA\(_{2}\) activity was measured in another group of patients who received a bolus of only 5,000 or 6,000 U of heparin. This dose of heparin had a significant effect on plasma PLA\(_{2}\) activity (12.3±1.1 pmol/h/mg in post-heparin plasma vs. 1.2±0.2 pmol/h/mg in pre-heparin plasma, \(P < 0.005, n = 3\)). Thus, plasma PLA\(_{2}\) activity is increased in patients receiving amounts of heparin that are routinely used for therapy in the nonsurgical setting.

Characterization of plasma PLA\(_{2}\) activity. To further characterize post-heparin plasma PLA\(_{2}\) activity, samples were fractionated by Superose 12 gel filtration chromatography (Fig. 3). Recovery of activity from the column was between 90 and 110%. Plasma PLA\(_{2}\) activity, measured using 2-[\(^{14}\)C]AA-GPE as substrate, both before and after heparin, migrated as a single peak of activity eluting in the same fraction as porcine pancreatic PLA\(_{2}\) with mobility characteristics corresponding to an approximate molecular mass of 14 kD. Greater peak and integrated activities were observed consistently in post-heparin plasma than in pre-heparin plasma.

There were additional features of the post-heparin plasma PLA\(_{2}\), which clearly distinguished it as group II PLA\(_{2}\). No increase in plasma PLA\(_{2}\) activity was measured during surgery when 2-[\(^{14}\)C]AA-GPE was used as substrate in the assay, indicating that post-heparin PLA\(_{2}\) preferentially hydrolyzed 2-[\(^{14}\)C]AA-GPE when compared with 2-[\(^{14}\)C]AA-GPE. The phospholipid subclass substrate preference for 2-[\(^{14}\)C]AA-
plasma samples were collected and assayed for PLÅ activity. A representative elution profile is presented. PLÅ activity directed against 2-[1-14C]AA-GPE migrated as a single peak with mobility characteristics corresponding to an apparent molecular mass of 14 kD. Greater activity was seen in the peak from the post-heparin plasma. The column was calibrated using bovine serum albumin (66 kD), ovalbumin (45 kD), porcine pancreatic PLÅ (13.5 kD), and vitamin B12 (1.35 kD).

Figure 3. Fractionation of plasma by FPLC Superose 12 gel filtration chromatography. Pre- (open boxes) and post-heparin (filled boxes) plasma samples were applied to a 24-ml column and 1-ml fractions were collected and assayed for PLÅ activity. A representative elution profile is presented. PLÅ activity directed against 2-[1-14C]AA-GPE migrated as a single peak with mobility characteristics corresponding to an apparent molecular mass of 14 kD. Greater activity was seen in the peak from the post-heparin plasma. The column was calibrated using bovine serum albumin (66 kD), ovalbumin (45 kD), porcine pancreatic PLÅ (13.5 kD), and vitamin B12 (1.35 kD).

GPE over 2-[1-14C]AA-GPC of plasma PLÅ activity is characteristic of group II PLÅ as compared with group I PLÅ which is also ~14 kD in molecular mass but has greater hydrolytic activity against 2-[1-14C]AA-GPC than do group II forms of PLÅ in our assay (Fig. 4 A).

The identity of the post-heparin plasma PLÅ as a group I or II enzyme was further confirmed by its inhibition by p-bromophenacyl bromide (BPB) and dithiothreitol (DTT). BPB inactivates group I and group II PLÅ by reacting specifically with "4His at the catalytic site (25) which is conserved among group I and group II forms (26). BPB has no activity against cytosolic plasma PLÅ (cPLÅ) (22). BPB inhibited plasma PLÅ activity by ~80% (data not shown). DTT markedly inhibits human plasma PLÅ in a manner similar to its inhibition of group I and group II PLÅS (Fig. 4 B). DTT has no effect on the large molecular mass cPLÅ.

The calcium and pH dependencies of post-heparin PLÅ activities were also determined. The enzyme was Ca2+ dependent, was maximally active at Ca2+ concentrations ~50 μM, and had a pH optimum of ~8.5. Approximately one-half maximal activity was present at physiological pH of 7.4–7.5. These are properties typical for a group II PLÅ (data not shown).

We further characterized the PLÅ activity by heparin-5PW HPLC chromatography (Fig. 5). On this column, group I is clearly distinguished from group II PLÅ by elution at different NaCl concentrations. As shown in Fig. 5, the elution pattern of plasma enzymatic activity is clearly that of group II.

The concentration dependency of inhibition with sodium deoxycholate is typical for group II PLÅ (Fig. 6) and is distinct from the pattern seen with group I or cPLÅ. No PLC activity was identified since no radioactivity was found in the monoglyceride or diglyceride regions when PLÅ assay samples were separated by TLC.

Effects of patients’ plasma on porcine PLÅ activity. When plasma (containing 25 μg protein), taken at various times during surgery, was added to 50 ng of purified porcine pancreatic PLÅ, there was no modulation of PLÅ activity regardless of when, during the course of the operation, the plasma was collected. In addition, actual and predicted activity of PLÅ was the same when plasma samples, collected before and after heparin administration, were mixed at various ratios. Thus, the patients’ plasma did not contain any PLÅ activating or inhibiting factor detectable by this assay with pancreatic PLÅ even in the presence of heparin.

PLÅ activity in PMNs and release of PLÅ activity from PMNs into the medium by heparin. As demonstrated in Fig. 7 A, there was a dose-dependent increase in soluble PLÅ activity in PMNs when cells were treated with heparin. There was also a dose-dependent increase in PLÅ activity released into the medium when PMNs were incubated with heparin (Fig. 7 B). In additional experiments (not shown) we found that PMNs isolated from patients on CPB receiving high dose heparin also

Figure 4. (A) Phospholipid head group specificity of human plasma PLÅ activity. Cytosolic (porcine spleen), group I (porcine pancreas), and group II (rat platelet) PLÅ and post-heparin human plasma were tested for activity using 2-[1-14C]AA-GPE (open bars) and 2-[1-14C]AA-GPC (hatched bars) as substrates. (B) Effect of DTT on human plasma PLÅ activity. Partially purified porcine spleen (Cytosolic), purified porcine pancreatic (Group I), partially purified rat platelet (Group II), and human post-heparin plasma samples were preincubated in 50 mM Tris-HCl, 5 mM CaCl2, pH 8.5, without (open bars) or with 5 mM DTT (hatched bars) at 37°C for 30 min. The reactions were initiated by adding substrate, 2-[1-14C]AA-GPE, and assayed for PLÅ activity at 37°C for 30 min by the Dole’s extraction method as described in Methods. Data shown are reflective of three independent experiments. Each bar reflects the mean and standard error of triplicate determinations and is representative of similar results from three independent experiments.
had higher levels of cellular PLA₂ activity when compared with PMNs isolated before heparin therapy. PLA₂ activity was not increased in the culture medium of human umbilical endothelial cells after exposure to heparin for periods up to 24 h (data not shown). Exposure of PMNs to protamine had no effect on cellular (Fig. 8 A) or secreted (Fig. 8 B) PLA₂ activity, but pretreatment with protamine completely prevented the increases in cellular and medium activities observed after heparin treatment.

Gel filtration chromatography of PMN soluble extracts and medium after heparin exposure. To partially characterize the heparin-induced PLA₂ activation of PMNs, soluble cellular extracts and supernatants of intact PMNs exposed to heparin were fractionated by Superose 12 gel filtration chromatography. The

![Graph](image-url)

Figure 5. Heparin-5PW HPLC profile of post-heparin human plasma PLA₂ activity. Plasma PLA₂ was loaded onto a heparin affinity column. For comparison, rat platelet 100,000 g supernatant was used as a standard for group II PLA₂ and purified porcine pancreatic PLA₂ diluted with buffer A (see Methods) containing 1 mg/ml bovine serum albumin as a group I standard. Each sample was applied to the same column under the same conditions.

![Graph](image-url)

Figure 6. Effect of sodium deoxycholate on human plasma PLA₂ activity. The indicated concentrations of sodium deoxycholate were added to buffer containing 75 mM Tris-Cl (pH 9.0), 5 mM CaCl₂, and 20% glycerol. The mixture was vigorously vortexed for 15 s. Human post-heparin plasma or PLA₂ enzymes were then added and incubated at 37°C for 30 min. Released free fatty acid was extracted using Dole's extraction method as described in Methods. 100-kD cytosolic PLA₂ was partially purified from bovine platelets with sequential uses of DEAE-Sepharose, Butyl-Toyopearl, Sepharcl S-300, and DEAE-5PW HPLC as described previously (51). In sodium deoxycholate-free assay, porcine pancreatic, rat platelet, bovine platelets, and human plasma PLA₂ released 3,623, 2,810, 3,250, and 2,200 cpm, respectively. Data are presented as means of three experiments.

![Graph](image-url)

Figure 7. PLA₂ activity in soluble extracts of PMNs (A) and in media from heparin-activated PMNs (B). In PMNs exposed to heparin there was a dose-dependent enhancement of soluble PLA₂ activity (A) as well as a dose-dependent release of PLA₂ activity from cells (B). n = 7, *P < 0.05 compared with control values.
A

B

Figure 8. Effect of protamine on PLA2 activity in soluble extracts (A) and medium (B) of PMNs. PMNs were treated with heparin (100 U/ml), protamine sulfate (0.87 mg/ml), which will neutralize 100 U/ml of porcine intestine heparin, or protamine sulfate followed by heparin. Control cells were treated with vehicle: 0.9% sodium chloride, 0.01% benzyl alcohol (final vol/vol). PLA2 activities in media of intact PMNs and 100,000 g supernatants of PMN homogenates were measured by Dole's extraction method as described in Methods. Values shown reflect the results of three experiments.

Discussion

Enhanced eicosanoid production during cardiac surgery has been shown to contribute to pathophysiological responses associated with extracorporeal circulation. Platelets have been proposed to be the source of enhanced thromboxane generation (2). It has been suggested that PGl2 production is increased secondary to elevated levels of thromboxane or activation of the endothelial cell by CPB (4). Our data demonstrate that these explanations are inadequate since we have observed elevated plasma concentrations of 6-keto-PGF1α before increases in plasma thromboxane concentrations and before initiation of CPB (4, 5, 27). It has also been suggested previously that increases in PGl2 were due to manipulation of vascular endothelial cells during surgery rather than to the direct effects of CPB (19). In our study, although plasma levels of TXB2 were not increased until 15 min after initiation of CPB, increases in plasma 6-keto-PGF1α levels were seen before CPB, before cannulation of large vessels. Therefore, another explanation must be invoked to explain increased plasma PGl2 concentrations during CPB surgery.

Heparin is known to increase plasma lipolytic activities, including lipoprotein lipase (28, 29) and PLA2 (30) activities. Although release of lipolytic enzyme activity after heparin and CPB has been reported (31, 32), the enzymatic activity identified in these reports did not have PLA2 specificity. Previous studies have not identified heparin-stimulated PLA2 activity distinct from other lipase activity, nor have they characterized a possible cell source of the elevated plasma PLA2 activity. Furthermore, a relationship between changes in plasma PLA2 activity and changes in prostaglandin levels has not been previously delineated.

Our study demonstrates directly that heparin administration to humans results in a marked enhancement of plasma PLA2 activity. Activation of plasma PLA2 by heparin is not dependent upon an interaction between heparin and anesthetic agents, since plasma PLA2 activity was elevated in heparin-treated patients who received relatively low doses of heparin used for anticoagulation in the nonsurgical setting (5,000 U). PLA2 enzymatic activity was distinguished from sequential action of PLA1 and lysophospholipase by: Ca2+ dependency (33), inhibition by BPB, the alkaline pH optimum (34, 35), and migration as a single enzymatic activity on gel filtration chromatography, with an apparent M. similar to that of previously defined plasma or serum PLA2s (36, 37). Although AA could be released from phospholipids by the sequential hydrolysis of substrate via PLC and diacylglycerol lipase (13), this pathway is unlikely to be important because no radioactivity was found in mono- or diglyceride regions on TLC separations. The phospholipase activity we have measured is not due to lipoprotein lipase or hepatic triglyceride lipase, which have considerably larger molecular masses (67 and 65.5 kD, respectively [38]) than the PLA2 activity we have characterized (14 kD).

The increase of plasma PLA2 activity associated with heparin administration was highly correlated with concurrent increases in plasma 6-keto-PGF1α levels during surgery. In patients with coronary disease, heparin increases the PGI2 concentration in coronary sinus blood (39). Itoh and colleagues (40) demonstrated that heparin enhances thrombin and Ca2+ ionophore-stimulated PGI2 production by cultured endothelial cells, which, related to enhanced intracellular PLA2 activity associated with heparin-induced physical changes in cell membranes. Our study suggests that heparin-stimulated PLA2 activity may be partially responsible for the anticoagulant action of heparin in vivo due to conversion of AA to PGI2 in the endothelial cell. AA may be liberated by PLA2 from serum lipoproteins or by direct interaction between PLA2 and cell membranes.

The source of the increased plasma PLA2 activity is not established by our study. The PMN likely contributes, but our studies do not rule out other cells as potential sources of PLA2. The post-heparin plasma PLA2 is unlikely to originate from the pancreas. Our characterization of PLA2 as group II distinguishes it from pancreatic group I PLA2. Our data indicate enhanced soluble PLA2 activity in PMNs and enhanced release of PLA2 from PMNs after exposure to heparin. The gel filtration elution pattern of PMN-derived PLA2 activity was identical to that of post-heparin plasma. Another group has also demonstrated enhanced PLA2 activity in neutrophils exposed to heparin (42).
PLA2 may be released from PMNs under other conditions. Plasma PLA2 activity is enhanced in experimental endotoxemia (43). Patients with sepsis have elevated plasma 14-kD PLA2 activity (36). Our experiments demonstrate no release of PLA2 activity from endothelial cells in response to heparin. It is possible, however, that a plasma factor, not present in these experiments in vitro, might potentiate the effect of heparin to release PLA2 from endothelial cells in vivo. Murakami et al. (44) have recently demonstrated that heparin addition after preexposure of cells to tumor necrosis factor for 6 h resulted in release of group II PLA2 from human umbilical vein endothelial cells. Platelets are another potential source of group II PLA2 (26).

While our studies do not prove a direct cause and effect relationship between increases in plasma PLA2 activity and prostacyclin synthesis, the two are highly correlated, and we propose that the elevated plasma concentrations of group II PLA2 act directly on the endothelial cells to induce prostacyclin synthesis. When group II PLA2 is added to human umbilical vein endothelial cells there is a stimulation of prostacyclin release into the medium (44).

Prostamine sulfate administration to patients can result in severe pulmonary vasoconstriction (45). Eicosanoids, in particular TXA2, have been implicated in this pathophysiological response to prostamine (7–9, 11, 46–48), and hemodynamic side effects of prostamine have been prevented by pretreatment with a cyclooxygenase inhibitor (47). In other studies, however, no significant changes were observed in eicosanoid levels after prostamine administration (19, 49, 50). In our study, prostamine administration reverses heparin-enhanced plasma PLA2 activity and reduces plasma 6-keto-PGF1α levels. Prostamine also prevented the release of PLA2 from PMNs. Because TXB2 did not change after prostamine, the ratio of TXB2/6-keto-PGF1α increased markedly. Thus, prostamine-induced changes in the balance between the two prostanooids with opposing vasoactivity may account for some of the adverse effects of prostamine.

In conclusion, we have demonstrated that plasma group II PLA2 activity is enhanced markedly during cardiac surgery and that this is due to heparin administration. This enhanced PLA2 activity in post-heparin plasma correlates highly with plasma concentrations of 6-keto-PGF1α but not TXB2. Post-heparin PLA2 activity may derive in part from PMNs, but our data do not exclude other cells such as platelets and/or endothelial cells as potential sources for the plasma PLA2 activity. The anticoagulant, and possibly vasodilatory, effects of heparin might be due in part to enhanced plasma PLA2 activity with subsequent increases in plasma levels of PGI2. After prostamine administration, plasma PLA2 activity and PGI2 concentrations are reduced. An increased ratio of TXB2/6-keto-PGF1α may explain, at least in part, the pathophysiological consequences sometimes observed with prostamine administration to patients.

Acknowledgments

We want to thank Dr. M. Laposata and Stephen Johnson for performing the heparin assays.

This work was supported by National Institutes of Health grants DK-39773, DK-38452, and NS-10828. Dae Kyong Kim was the Paul Dudley White Fellow of the Massachusetts Chapter of the American Heart Association. J. V. Bonventre was an Established Investigator of the American Heart Association during the course of part of these studies.

References

