Heparin-enhanced plasma phospholipase A2 activity and prostacyclin synthesis in patients undergoing cardiac surgery.

H Nakamura, … , G Koski, J V Bonventre


Although eicosanoid production contributes to physiological and pathophysiological consequences of cardiopulmonary bypass (CPB), the mechanisms accounting for the enhanced eicosanoid production have not been defined. Plasma phospholipase A2 (PLA2) activity, 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha), and thromboxane B2 (TXB2) levels were measured at various times during cardiac surgery. Plasma PLA2 activity increased after systemic heparinization, before CPB. This was highly correlated with concurrent increases in plasma 6-keto-PGF1 alpha. TXB2 concentrations did not increase with heparin administration but did increase significantly after initiation of CPB. High plasma PLA2 activity, 6-keto-PGF1 alpha, and TXB2 concentrations were measured throughout the CPB period. Protamine, administered to neutralize the heparin, caused an acute reduction of both plasma PLA2 activity and plasma 6-keto-PGF1 alpha, but no change in plasma TXB2 concentrations. Thus the ratio of TXB2 to 6-keto-PGF1 alpha increased significantly after protamine administration. Enhanced plasma PLA2 activity was also measured in patients with lower doses of heparin used clinically for nonsurgical applications. Human plasma PLA2 was identified as group II PLA2 by its sensitivity to deoxycholate and dithiothreitol, its substrate specificity, and its elution characteristics on heparin affinity chromatography. Heparin addition to PMNs in vitro resulted in dose-dependent increases in cellular PLA2 activity and release of PLA2. The PLA2 released from the PMN had characteristics similar to those of post-heparin plasma PLA2. In conclusion, plasma […]

Find the latest version:

https://jci.me/117752/pdf
Heparin-enhanced Plasma Phospholipase A2 Activity and Prostacyclin Synthesis in Patients Undergoing Cardiac Surgery

Harumasa Nakamura, Dae Kyong Kim, Daniel M. Philbin, Myron B. Peterson, Fred DeBros, Greg Koski, and Joseph V. Bonventre

Medical Services and Henry K. Beecher Memorial Research Laboratories and Cardiac Anesthesia Group, Massachusetts General Hospital, Boston, Massachusetts; and Departments of Medicine and Anesthesia, Harvard Medical School and the Pediatric Intensive Care Unit, New England Medical Center, Tufts University School of Medicine, Boston, Massachusetts

Abstract

Although eicosanoid production contributes to physiological and pathophysiological consequences of cardiopulmonary bypass (CPB), the mechanisms accounting for the enhanced eicosanoid production have not been defined. Plasma phospholipase A2 (PLA2) activity, 6-keto-prostaglandin F1α (6-keto-PGF1α), and thromboxane B2 (TXB2) levels were measured at various times during cardiac surgery. Plasma PLA2 activity increased after systemic heparinization, before CPB. This was highly correlated with concurrent increases in plasma 6-keto-PGF1α, TXB2 concentrations did not increase with heparin administration but did increase significantly after initiation of CPB. High plasma PLA2 activity, 6-keto-PGF1α, and TXB2 concentrations were measured throughout the CPB period. Protamine, administered to neutralize the heparin, caused an acute reduction of both plasma PLA2 activity and plasma 6-keto-PGF1α, but no change in plasma TXB2 concentrations. Thus the ratio of TXB2 to 6-keto-PGF1α increased significantly after protamine administration. Enhanced plasma PLA2 activity was also measured in patients with lower doses of heparin used clinically for nonsurgical applications. Human plasma PLA2 was identified as group II PLA2 by its sensitivity to deoxycholate and dithiothreitol, its substrate specificity, and its elution characteristics on heparin affinity chromatography. Heparin addition to PMNs in vitro resulted in dose-dependent decreases in cellular PLA2 activity and release of PLA2. The PLA2 released from the PMN had characteristics similar to those of post-heparin plasma PLA2.

In conclusion, plasma PLA2 activity and 6-keto-PGF1α concentrations are markedly enhanced with systemic heparinization. Part of the anticoagulant and vasodilating effects of heparin may be due to increased plasma prostacyclin (PGI2) levels. In addition the pulmonary vasoconstriction sometimes associated with protamine infusion during cardiac surgery might be due to decreased plasma PLA2 activity, with an associated increased TXB2/6-keto-PGF1α ratio (J. Clin. Invest. 1995. 95:1062–1070.) Key words: phospholipids • polymorphonuclear leukocytes, signal transduction • cardiopulmonary bypass • thromboxane • protamine

Introduction

Cardiopulmonary bypass (CPB)1 has been associated with increased plasma concentrations of prostacyclin (PGI2) and thromboxane A2 (TXA2), measured as the stable metabolites, 6-keto-prostaglandin F1α (6-keto-PGF1α) and thromboxane B2 (TXB2) (1–5). Another eicosanoid, leukotriene B4, also has been found in pulmonary edema fluid after CPB (6). PGI2, the major arachidonate metabolite of endothelial cells, is a potent vasodilator and inhibits platelet aggregation. TXA2, the predominant cyclooxygenase product of arachidonic acid in platelets, induces vasoconstriction and platelet aggregation and has been implicated in the etiology of pulmonary hypertension sometimes seen with cardiac surgery after protamine infusion for neutralization of heparin (7–11). It has been suggested that increased synthesis or imbalance in the relative synthesis of these potent vasoactive eicosanoids may contribute to organ dysfunction in various pathological states (12) and result in depressed renal, pulmonary, and cardiac function as well as thrombocytopenia, significant problems after cardiac surgery. It is not known, however, why eicosanoid production is enhanced with CPB.

Phospholipases A2 (PLA2) comprise a family of enzymes that hydrolyze membrane phospholipids at the sn-2 position to release fatty acids and lysophospholipids (13). Different forms of PLA2 are involved in digestion, inflammation, and intracellular and intercellular signaling. Some forms are secreted, while others act intracellularly. When PLA2 acts upon lipids containing arachidonic acid in the sn-2 position the resulting free arachidonic acid can serve as a substrate for cyclooxygenases and lipoxygenases. Platelet damage or excess secretion of humoral factors such as catecholamines or angiotensin II during cardiac surgery (14–16) has been implicated in the elevation of cellular PLA2 activity. Complement activation during CPB (17) causeschemotaxis and leukosequestration, together with the production of oxygen free-radicals by neutrophils, which is thought to affect PLA2 activity (18).

We report that high-dose heparin administration during surgery, before CPB, increases plasma PLA2 activity. Furthermore, this increase in plasma PLA2 activity is directly correlated with

Address correspondence to Joseph V. Bonventre M.D., Ph.D., Massachusetts General Hospital East, 149 13th Street, Charlestown, MA 02129. Phone: 617–726–3770; FAX: 617–726–4356. H. Nakamura’s current address is Nakamura Clinic, 2-9-5 Momoyamadai, Tarumi-ku, Kobe City 655, Japan. D. K. Kim’s current address is Dept. of Environmental Health Chemistry, College of Pharmacy, Chung-Ang University, 221 Huksuk-Dong, Dongjak-Ku, Seoul 156–756, South Korea.

Received for publication 26 April 1994 and in revised form 14 November 1994.

1. Abbreviations used in this paper: 2-[1-14C]AA-GPC, 1-stearyl-2-[1-14C]arachidonoyl-sn-glycerol-3-phosphocholine; 2-[1-14C]AA-GPE; 1-acyl-2-[1-14C]arachidonoyl-sn-glycerol-3-phosphoethanolamine; BBP, B-bromophenacyl bromide; CPB, cardiopulmonary bypass; cPLA2, cytosolic phospholipase A2; PLA2, phospholipase A2.
plasma concentrations of 6-keto-PGF\(_{1\alpha}\). The PLA\(_2\) activity is identified as a group II form of the enzyme and may derive, at least in part, from polymorphonuclear leukocytes (PMNs) since the administration in vitro of heparin to these cells results in enhancement of cellular and released PLA\(_2\) activities, which have identical characteristics to those of post-heparin plasma PLA\(_2\). Our study suggests that heparin-stimulated PLA\(_2\) activity may be partially responsible for the anticoagulant action of heparin in vivo due to conversion of arachidonic acid, liberated by PLA\(_2\), to PGI\(_2\) in the endothelial cell.

**Methods**

**Materials**

Radioactively labeled phospholipid substrates, 1-acyl-2-[\(1^4\)C]arachidonoyl-sn-glycerol-3-phosphoethanolamine (2-[\(1^4\)C]AA-GPE) and 1-stearyl-2-[\(1^4\)C]arachidonoyl-sn-glycerol-3-phosphocholine (2-[\(1^4\)C]AA-GPC) were obtained from Amersham Corp. (Arlington Heights, IL). Arachidonic acid (AA), porcine pancreatic PLA\(_2\) and molecular weight standards for gel filtration (vitamin B\(_2\), cytochrome c, blue dextran, ovalbumin, and human serum albumin) were obtained from Sigma Chemical Co. (St. Louis, MO), and Silica gel LKSD plates were from Whatman Inc. (Clifton, NJ). Scintillation fluid (Ecoscint\(\text{\textregistered}\)) was purchased from National Diagnostics, Inc. (Atlanta, GA) and lymphocyte separation medium\(\text{\textregistered}\) from Organon Teknika (Rockville, MD). The heparin-5PW HPLC column was purchased from TosoHAAS (Montgomeryville, PA). Heparin sodium, derived from porcine intestines, was obtained from Elkins-Sinn, Inc. (Cherryville, NJ). Protamine sulfate was obtained from Eli Lilly & Co. (Indianapolis, IN).

**Patients**

12 patients scheduled for elective aorto-coronary artery bypass grafting were selected for study with institutional approval and informed consent. Each patient was anesthetized with fentanyl (100 \(\mu\)g/kg) and muscle relaxants. All received identical preoperative and perioperative medications, except one patient who received low dose (500 U/\(\text{\text{U}}\)) heparin infusion preoperatively for anticoagulation therapy. For CPB, a bubble oxygenator and nonpulsatile flow pump were used and systemic hypothermia (24°C) was maintained. 10 serial measurements were performed as follows: period 1, Control: after placement of monitoring catheters before induction of anesthesia; period 2, Anesthesia: 10 min after induction of anesthesia before incision; period 3, Before heparin: after incision, before heparin administration; period 4: 5 min after heparin administration (300 U/kg intravenously); periods 5–7: at 15, 30, and 60 min on CPB, respectively; period 8: Before protamine administration; period 9: 5 min after protamine administration (3 mg/kg); and period 10: at the end of the operation. At each point, hemodynamic determinations and arterial blood gas measurements were performed. Arterial blood samples were transferred immediately into glass tubes containing EDTA for measurement of PLA\(_2\) activity. Indomethacin was added to samples to be analyzed for plasma 6-keto-PGF\(_{1\alpha}\) and TXB\(_2\). Samples were centrifuged at 1,700 \(\text{g}\) for 20 min at 4°C, and plasma was stored at \(-70^\circ\)C until assayed. Plasma heparin levels were determined by the heparin anti-10A functional assay (chromoassay assay; Organon Teknika).

Experiments were performed to determine if lower doses of heparin also resulted in elevation in plasma PLA\(_2\) activity. In three patients blood was taken before and 5 min after a bolus of 5,000–6,000 \(\text{U}\) of heparin and in two patients blood was taken while they were receiving 1,400–1,500 \(\text{U}\)/\(\text{h}\) of heparin by continuous infusion.

**Plasma prostaglandin assays**

Plasma stable metabolites of TXA\(_2\) and PGI\(_2\), TXB\(_2\) and 6-keto-PGF\(_{1\alpha}\), respectively, were measured by double antibody radioimmunoassay (19).

**Isolation of polymorphonuclear leukocytes**

Polymorphonuclear leukocytes (PMNs) were prepared from fresh human blood using a method described previously (20) with minor modifications. After sedimentation of erythrocytes in 3% (wt/vol) dextran at room temperature for 45 min, lymphocyte separation medium was added to the leukocyte-rich supernatant which was then centrifuged at 500 \(\text{g}\) for 35 min. The supernatant was discarded and residual erythrocytes were destroyed by hypotonic (0.2% NaCl) lysis. Hypertonic NaCl (1.6%) was then added to return the solution to isotonicity. Lysis was repeated, and PMNs were suspended in buffer (2.5 \(\times\) 10\(^6\) cells/ml) consisting of 250 mM sucrose and 50 mM Hepes, pH 7.5, that contained the protease inhibitors pepstatin 20 \(\mu\)M, leupeptin 20 \(\mu\)M, Trasylol 1,000 kallikrein inactivating unit/ml, and phenylmethyl sulfon fluoride 0.1 mM. Cell preparations were examined after Wright staining and found to contain > 95% PMNs.

**Plasma PLA\(_2\) assay**

Plasma PLA\(_2\) activity was measured using methods described previously (21) with some modifications. 2-[\(1^4\)C]AA-GPE was the most commonly used substrate. Preliminary experiments, using 2-[\(1^4\)C]AA-GPC and 2-[\(1^4\)C]AA-GPE as substrates, indicated that plasma PLA\(_2\) activity was greatest when 2-[\(1^4\)C]AA-GPE was used. Sample protein concentrations were matched using a Bio-Rad Labs (Hercules, CA) protein kit with bovine serum albumin as a standard. 2-[\(1^4\)C]AA-GPE was dried under a stream of \(N\)\(_2\) gas and resuspended in dimethylsulfoxide. 2-[\(1^4\)C]AA-GPE (final concentration, 15 nM) was added to microcentrifuge tubes. Reactions were initiated by the addition of plasma, diluted 100-fold in 250 mM Tris-HCl, pH 8.5, buffer containing 3 mM Ca\(^2+\). The mixture was incubated for 60 min at 37°C, and the reaction was terminated by the addition of ethanol containing 2% (vol/vol) acetic acid and 10% (vol/vol) AA. Aliquots of the reaction mixture were spotted onto a silica gel LK50DF thin-layer chromatography plate, and the plates were developed in the organic phase of ethyl acetate/isooctane/H\(_2\)O/ acetic acid (55:75:100:8). The lipids were visualized by \(\text{I}_2\) staining. The phospholipid and arachidonate bands were scraped, and radioactivity was counted with a liquid scintillation counter (Hewlett-Packard Co., Palo Alto, CA) in 3 ml of Ecoscint\(\text{\textregistered}\). PLA\(_2\) activity was defined as picomoles of radio labeled AA released from 2-[\(1^4\)C]AA-GPE per minute per milligram of protein at 37°C. In some experiments, PLA\(_2\) activity was determined using a different method (22). Substrate 2-[\(1^4\)C]AA- GPE was dried down with an \(N\)\(_2\) gas stream and resuspended in ethanol by vigorous vortexing. The PLA\(_2\) assay buffer (100 \(\mu\)l) contained 75 mM Tris-HCl, 5 mM CaCl\(_2\), and 0.5 mmol of the phospholipid (\(-65,000\) cpm) at pH 8.5. The reaction was carried out at 37°C for 30 min and was stopped by adding 0.56 ml of Dole's reagent: 48.75% isopropanol alcohol, 50% n-heptane, 1.25% \(\text{N}_2\text{H}_4\text{SO}_4\) in water (23). Free fatty acid was extracted in the following manner: 0.11 ml of water was added and the sample was vortexed and centrifuged for 3 min. 0.15 ml of the upper phase was transferred to a new tube to which 25 mg silica gel and 0.8 ml of n-heptane were added. The samples were vortexed and centrifuged again for 3 min each. 0.8 ml of supernatant was then counted in a liquid scintillation counter.

**PLA\(_2\) activity intrinsic to PMNs and released from PMNs and endothelial cells**

After incubation of PMNs for 20 min with various doses of heparin (0, 1, 10, and 100 U/ml) at 37°C, samples were centrifuged at 3,000 \(\text{g}\) for 30 min, and PLA\(_2\) activity was measured in the supernatant to determine the release of enzymatic activity by PMNs into the medium. PMNs were washed twice with the same buffer not containing heparin, homogenized with 25 strokes of a tight Dounce homogenizer, and then centrifuged at 100,000 \(\text{g}\) at 4°C for 60 min. PLA\(_2\) activity in the 100,000 \(\text{g}\) supernatant was measured as described above and taken to be the intrinsic soluble PMN PLA\(_2\) activity. Human umbilical endothelial cells were grown in M199 medium with 20% fetal bovine serum. Endothelial cell medium PMN PLA\(_2\) activity was measured under control conditions and after exposure of the cells to heparin (15 U/ml) for periods up to 24 h.

**Chromatographic characterization of PLA\(_2\) activity**

Sephadex G12 gel filtration FPLC column chromatography. Samples of plasma, PMN cellular extracts, or supernatants (400 \(\mu\)l) of intact PMNs
were loaded onto a Superose 12 (Pharmacia LKB Biotechnology Inc., Piscataway, NJ) 24-ml gel filtration column, previously equilibrated with buffer consisting of 250 mM Tris-HCl, pH 8.5, 0.15 M NaCl, 1 mM EDTA, and 1 mM EGTA buffer at 4°C. Proteins were eluted with this buffer at a flow rate of 0.5 ml/min. The column was calibrated using blue dextran (2,000 M	ext{r}.), bovine serum albumin (66 kD), ovalbumin (45 kD), porcine pancreatic PLA\textsubscript{2} (13.5 kD), cytochrome c oxidase (12.8 kD), and vitamin B\textsubscript{12} (1.35 kD). 1-ml fractions were collected and assayed for PLA\textsubscript{2} activity. The protein concentration of each fraction was monitored by its absorbance at 280 nm.

Heparin-SFW HPLC column chromatography. Human plasma samples were diluted 1:1 with buffer A (50 mM Tris-HCl, 1 mM EDTA, pH 7.4) and loaded onto a heparin-SFW HPLC column (7.5 × 7.5 cm) pre-equilibrated with buffer A. Activity was eluted with buffer A (non-binding fraction) at 1 ml/min for 20 min. Additional activity was then eluted with a linearly increasing gradient from 0 to 2 M of NaCl concentration in buffer A.

**Ca\textsuperscript{2+} dependency of plasma PLA\textsubscript{2} activity**

Aliquots of plasma samples were diluted 1:8 with buffers containing 140 mM NaCl, 25 mM Hepes, and varying amounts of CaCl\textsubscript{2} with or without 1 mM EGTA, at pH 8.5. Enzymatic activity was determined after an aliquot of the mixture was taken to measure the free Ca\textsuperscript{2+} concentration. Enzymatic activity and free Ca\textsuperscript{2+} concentration were measured at 37°C. Ca\textsuperscript{2+} concentrations below 1 μM were determined using the dual wavelength fluorescence characteristics of Pura-2 free acid with a dual wavelength spectrofluorometer (DeltaT excitation; Photon Technology Inc., Princeton, NJ). For concentrations > 1 μM, the free Ca\textsuperscript{2+} concentration of the assay buffer was determined with a Ca\textsuperscript{2+} selective electrode, which we constructed and calibrated as described previously (24).

**pH dependency of plasma PLA\textsubscript{2} activity**

Plasma samples were diluted with buffers of different pH (pH 5.0–11.0). Tris-HCl buffers were made to use solution plates at pH = 7.5, and glycine-NaOH buffers were used for pH 8.0 and above. Actual pH and PLA\textsubscript{2} activity of each sample were determined in the presence of 3 mM Ca\textsuperscript{2+} (1 mM greater than the sum of the EGTA and EDTA concentrations in the assay buffer).

**Effect of patients’ plasma on porcine pancreatic PLA\textsubscript{2} activity**

Porcine pancreatic PLA\textsubscript{2} (50 ng) was incubated in 250 mM Tris-HCl, pH 8.5, at 37°C, for 15 min with or without plasma (25 μg protein) obtained intraoperatively. PLA\textsubscript{2} activity was then measured as described above.

**Statistics**

All values are presented as the mean ± 1 standard error of the mean. Statistical significance was evaluated using one-way analysis of variance and the Student’s *t* test for paired comparisons. *P* < 0.05 was regarded as significant.

**Results**

**Plasma PLA\textsubscript{2} activity during CPB surgery.** As shown in Fig. 1, plasma PLA\textsubscript{2} activity before anesthesia was 7.5±1.1 pmol/h/mg protein and did not change significantly either after induction of anesthesia or after skin incision before heparin. A marked increase in plasma PLA\textsubscript{2} activity was seen before CPB after administration of heparin, from 7.4±1.0 to 25.5±3.5 pmol/h/mg, *P* < 0.001. PLA\textsubscript{2} activity remained elevated throughout the CPB period. Protamine, administered to neutralize the heparin, resulted in a marked decrease of PLA\textsubscript{2} activity (to 13.8±2.1 pmol/h/mg, *P* < 0.01 compared with values before protamine infusion), although PLA\textsubscript{2} activity remained significantly higher than values before heparin administration. Neither heparin nor protamine affected enzyme activity when added to plasma in vitro (data not shown). Plasma heparin concentrations measured 5 min after the administration of heparin were 6.0, 6.7, and 7.6 U/ml in three patients. The heparin concentration was slightly higher (8.5 U/ml) in one patient in which it was measured 25 min after heparin administration and lower (3.4 and 3.1 U/ml) in two patients in which it was measured 5 min before protamine administration.

**Plasma 6-keto-PGF\textsubscript{1α} and TXB\textsubscript{2} concentration.** No significant changes in plasma 6-keto-PGF\textsubscript{1α} and TXB\textsubscript{2} concentrations were observed after induction of anesthesia or after the initial surgical incision before heparin administration (Fig. 2). Marked increases of plasma 6-keto-PGF\textsubscript{1α} concentrations were measured after heparin administration (from 96±28 to 454±92 pg/ml, *P* < 0.001), but heparin did not alter plasma TXB\textsubscript{2}. TXB\textsubscript{2} concentrations increased significantly after initiation of CPB (from 124±20 to 197±36 pg/ml at 15 min on CPB, *P* < 0.05).
Protamine infusion acutely reduced plasma 6-keto-PGF_{ia}, from 370±100 to 200±47 pg/ml (Fig. 2 A, P < 0.001). Protamine did not change plasma TXB_{2} concentrations. Thus, the ratio of TXB_{2} to 6-keto-PGF_{ia} decreased after heparin from 2.22±0.64 to 0.49±0.21 and increased significantly after protamine infusion (to 1.85±0.57, Fig. 2 B, P < 0.05).

Correlation of plasma PLA_{2} activity and plasma 6-keto-PGF_{ia} and TXB_{2} levels during CPB surgery. To determine interrelationships between plasma PLA_{2} activity and plasma 6-keto-PGF_{ia} mean 6-keto-PGF_{ia} concentration at each operative period was plotted as a function of plasma PLA_{2} activity. As demonstrated in Fig. 2 C, there was a close correlation between plasma 6-keto-PGF_{ia} levels and PLA_{2} activity during surgery (y = 9.772x - 63.34, r² = 0.879). No correlation was found between plasma TXB_{2} levels and PLA_{2} activity (Fig. 2 D).

Effects of lower clinical doses of heparin on plasma PLA_{2} activity. PLA_{2} activity was measured in another group of patients who received a bolus of only 5,000 or 6,000 U of heparin. This dose of heparin had a significant effect on plasma PLA_{2} activity (12.3±1.1 pmol/h/mg in post-heparin plasma vs 1.2±0.2 pmol/h/mg in pre-heparin plasma, P < 0.005, n = 3). Thus, plasma PLA_{2} activity is increased in patients receiving amounts of heparin that are routinely used for therapy in the nonsurgical setting.

Characterization of plasma PLA_{2} activity. To further characterize post-heparin plasma PLA_{2} activity, samples were fractionated by Superoxel 12 gel filtration chromatography (Fig. 3). Recovery of activity from the column was between 90 and 110%. Plasma PLA_{2} activity, measured using 2-[1-{^14}C]AA-GPE as substrate, both before and after heparin, migrated as a single peak of activity eluting in the same fraction as porcine pancreatic PLA_{2} with mobility characteristics corresponding to an approximate molecular mass of 14 kD. Greater peak and integrated activities were observed consistently in post-heparin plasma than in pre-heparin plasma.

There were additional features of the post-heparin plasma PLA_{2} which clearly distinguished it as group II PLA_{2}. No increase in plasma PLA_{2} activity was measured during surgery when 2-[1-{^14}C]AA-GPC were used for substrate in the assay, indicating that post-heparin PLA_{2} preferentially hydrolyzed 2-[1-{^14}C]AA-GPE when compared with 2-[1-{^14}C]AA-GPC. The phospholipid subclass substrate preference for 2-[1-{^14}C]AA-
GPE over 2-[1-14C]AA-GPC of plasma PLA2 activity is characteristic of group II PLA2, as compared with group I PLA2, which is also ~ 14 kD in molecular mass but has greater hydrolytic activity against 2-[1-14C]AA-GPC than do group II forms of PLA2 in our assay (Fig. 4A).

The identity of the post-heparin plasma PLA2 as a group I or II enzyme was further confirmed by its inhibition by p-bromophenacyl bromide (BPB) and dithiothreitol (DTT). BPB inactivates group I and group II PLA2s by reacting specifically with 4-His at the catalytic site (25) which is conserved among group I and group II forms (26). BPB has no activity against cytosolic PLA2 (cPLA2) (22). BPB inhibited plasma PLA2 activity by ~ 80% (data not shown). DTT markedly inhibits human plasma PLA2 in a manner similar to its inhibition of group I and group II PLA2s (Fig. 4B). DTT has no effect on the large molecular mass cPLA2.

The calcium and pH dependencies of post-heparin PLA2 activities were also determined. The enzyme was Ca2+ dependent, was maximally active at Ca2+ concentrations ~ 50 μM, and had a pH optimum of ~ 8.5. Approximately one-half maximal activity was present at physiological pH of 7.4–7.5. These are properties typical for a group II PLA2 (data not shown).

We further characterized the PLA2 activity by heparin-5PW HPLC chromatography (Fig. 5). On this column, group I is clearly distinguished from group II PLA2 by elution at different NaCl concentrations. As shown in Fig. 5, the elution pattern of plasma enzymatic activity is clearly that of group II.

The concentration dependency of inhibition with sodium deoxycholate is typical for group II PLA2 (Fig. 6) and is distinct from the pattern seen with group I or cPLA2. No PLC activity was identified since no radioactivity was found in the mono- and diglyceride regions when PLA2 assay samples were separated by TLC.

Effects of patients' plasma on porcine PLA2 activity. When plasma (containing 25 μg protein), taken at various times during surgery, was added to 50 ng of purified porcine pancreatic PLA2, there was no modulation of PLA2 activity regardless of when, during the course of the operation, the plasma was collected. In addition, actual and predicted activity of PLA2 was the same when plasma samples, collected before and after heparin administration, were mixed at various ratios. Thus, the patients' plasma did not contain any PLA2 activating or inhibiting factor detectable by this assay with pancreatic PLA2 even in the presence of heparin.

PLA2 activity in PMNs and release of PLA2 activity from PMNs into the medium by heparin. As demonstrated in Fig. 7A, there was a dose-dependent increase in soluble PLA2 activity in PMNs when cells were treated with heparin. There was also a dose-dependent increase in PLA2 activity released into the medium when PMNs were incubated with heparin (Fig. 7B). In additional experiments (not shown) we found that PMNs isolated from patients on CPB receiving high dose heparin also
had higher levels of cellular PLA$_2$ activity when compared with PMNs isolated before heparin therapy. PLA$_2$ activity was not increased in the culture medium of human umbilical endothelial cells after exposure to heparin for periods up to 24 h (data not shown). Exposure of PMNs to protamine had no effect on cellular (Fig. 8A) or secreted (Fig. 8B) PLA$_2$ activity, but pretreatment with protamine completely prevented the increases in cellular and medium activities observed after heparin treatment.

Gel filtration chromatography of PMN soluble extracts and medium after heparin exposure. To partially characterize the heparin-induced PLA$_2$ activity of PMNs, soluble cellular extracts and supernatants of intact PMNs exposed to heparin were fractionated by Superose 12 gel filtration chromatography. The

\[ \text{Figure 5. Heparin-5PW HPLC profile of post-heparin human plasma PLA$_2$ activity. Plasma PLA$_2$ was loaded onto a heparin affinity column. For comparison, rat platelet 100,000 g supernatant was used as a standard for group II PLA$_2$ and purified porcine pancreatic PLA$_2$ diluted with buffer A (see Methods) containing 1 mg/ml bovine serum albumin as a group I standard. Each sample was applied to the same column under the same conditions.} \]

\[ \text{Figure 6. Effect of sodium deoxycholate on human plasma PLA$_2$ activity. The indicated concentrations of sodium deoxycholate were added to buffer containing 75 mM Tris-HCl (pH 9.0), 5 mM CaCl$_2$, and 20% glycerol. The mixture was vigorously vortexed for 15 s. Human post-heparin plasma or PLA$_2$ enzymes were then added and incubated at 37°C for 30 min. Released free fatty acid was extracted using Dole's extraction method as described in Methods. 100-kD cytosolic PLA$_2$ was partially purified from bovine platelets with sequential uses of DEAE-Sepharose, Butyl-Toyopearl, Sephacryl S-300, and DEAE-5PW HPLC as described previously (51). In sodium deoxycholate-free assay, porcine pancreatic, rat platelet, bovine platelets, and human plasma PLA$_2$ released 3,623, 2,810, 3,250, and 2,200 cpm, respectively. Data are presented as means of three experiments.} \]

\[ \text{Figure 7. PLA$_2$ activity in soluble extracts of PMNs (A) and in media from heparin-activated PMNs (B). In PMNs exposed to heparin there was a dose-dependent enhancement of soluble PLA$_2$ activity (A) as well as a dose-dependent release of PLA$_2$ activity from cells (B). n = 7, *P < 0.05 compared with control values.} \]
major peak of PLA2 activity in both soluble cellular fractions and medium migrated at the same position as the peak of activity which was seen in post-heparin plasma (Fig. 3) (data not shown). The specificity for 2-[1-14C]AA-GPE over 2-[1-14C]AA-GPC was also observed in these fractions.

Discussion

Enhanced eicosanoid production during cardiac surgery has been shown to contribute to pathophysiological responses associated with extracorporeal circulation. Platelets have been proposed to be the source of enhanced thromboxane generation (2). It has been suggested that PGI2 production is increased secondary to elevated levels of thromboxane or activation of the endothelial cell by CPB (4). Our data demonstrate that these explanations are inadequate since we have observed elevated plasma concentrations of 6-keto-PGF1α before increases in plasma thromboxane concentrations and before initiation of CPB (4, 5, 27). It has also been suggested previously that increases in PGI2 were due to manipulation of vascular endothelial cells during surgery rather than to the direct effects of CPB (19). In our study, although plasma levels of TXB2 were not increased until 15 min after initiation of CPB, increases in plasma 6-keto-PGF1α levels were seen before CPB, before cannulation of large vessels. Therefore, another explanation must be invoked to explain increased plasma PGI2 concentrations during CPB surgery.

Heparin is known to increase plasma lipolytic activities, including lipoprotein lipase (28, 29) and PLA2 (30) activities. Although release of lipolytic enzyme activity after heparin and CPB has been reported (31, 32), the enzymatic activity identified in these reports did not have PLA2 specificity. Previous studies have not identified heparin-stimulated PLA2 activity distinct from other lipase activity, nor have they characterized a possible cell source of the elevated plasma PLA2 activity. Furthermore, a relationship between changes in plasma PLA2 activity and changes in prostaglandin levels has not been previously delineated.

Our study demonstrates directly that heparin administration to humans results in a marked enhancement of plasma PLA2 activity. Activation of plasma PLA2 by heparin is not dependent upon an interaction between heparin and anesthetic agents, since plasma PLA2 activity was elevated in heparin-treated patients who received relatively low doses of heparin used for anticoagulation in the nonsurgical setting (5,000 U). PLA2 enzymatic activity was distinguished from sequential action of PLA1 and lysophospholipase by: Ca2+ dependency (33), inhibition by BFP, the alkaline pH optimum (34, 35), and migration as a single enzymatic activity on gel filtration chromatography, with an apparent M, similar to that of previously defined plasma or serum PLA2s (36, 37). Although AA could be released from phospholipids by the sequential hydrolysis of substrate via PLC and diacylglycerol lipase (13), this pathway is unlikely to be important because no radioactivity was found in mono- or di-glyceride regions on TLC separations. The phospholipase activity we measured is not due to lipoprotein lipase or hepatic triglyceride lipase, which have considerably larger molecular masses (67 and 65.5 kD, respectively [38]) than the PLA2 activity we have characterized (14 kD).

The increase of plasma PLA2 activity associated with heparin administration was highly correlated with concurrent increases in plasma 6-keto-PGF1α levels during surgery. In patients with coronary disease, heparin increases the PGI2 concentration in coronary sinus blood (39). Itoh and colleagues (40) demonstrated that heparin enhances thrombin and Ca2+ ionophore-stimulated PGI2 production by cultured endothelial cells, perhaps related to enhanced intracellular PLA2 activity associated with heparin-induced physical changes in cell membranes. Our study suggests that heparin-stimulated PLA2 activity may be partially responsible for the anticoagulant action of heparin in vivo due to conversion of AA to PGI2 in the endothelial cell. AA may be liberated by PLA2 from serum lipoproteins or by direct interaction between PLA2 and cell membranes.

The source of the increased plasma PLA2 activity is not established by our study. The PMN likely contributes, but our studies do not rule out other cells as potential sources of PLA2. The post-heparin plasma PLA2 is unlikely to originate from the pancreas. Our characterization of PLA2 as group II distinguishes it from pancreatic group I PLA2. Our data indicate enhanced soluble PLA2 activity in PMNs and enhanced release of PLA2 from PMNs after exposure to heparin. The gel filtration elution pattern of PMN-derived PLA2 activity was identical to that of post-heparin plasma. Another group has also demonstrated enhanced PLA2 activity in neutrophils exposed to heparin (42).
PLA₂ may be released from PMNs under other conditions. Plasma PLA₂ activity is enhanced in experimental endotoxemia (43). Patients with sepsis have elevated plasma 14-kD PLA₂ activity (36). Our experiments demonstrate no release of PLA₂ activity from endothelial cells in response to heparin. It is possible, however, that a plasma factor, not present in these experiments in vitro, might potentiate the effect of heparin to release PLA₂ from endothelial cells in vivo. Murakami et al. (44) have recently demonstrated that heparin addition after preexposure of cells to tumor necrosis factor for 6 h resulted in release of group II PLA₂ from human umbilical venous endothelial cells. Platelets are another potential source of group II PLA₂ (26).

While our studies do not prove a direct cause and effect relationship between increases in plasma PLA₂ activity and prostacyclin synthesis, the two are highly correlated, and we propose that the elevated plasma concentrations of group II PLA₂ act directly on the endothelial cells to induce prostacyclin synthesis. When group II PLA₂ is added to human umbilical vein endothelial cells there is a stimulation of prostacyclin release into the medium (44).

Prostamine sulfate administration to patients can result in severe pulmonary vasoconstriction (45). Eicosanoids, in particular TX₂, have been implicated in this pathophysiological response to protamine (7–9, 11, 46–48), and hemodynamic side effects of protamine have been prevented by pretreatment with a cyclooxygenase inhibitor (47). In other studies, however, no significant changes were observed in eicosanoid levels after protamine administration (19, 49, 50). In our study, protamine administration reverses heparin-enhanced plasma PLA₂ activity and reduces plasma 6-keto-PGF₁α levels. Protamine also prevented the release of PLA₂ from PMNs. Because TXB₂ did not change after protamine, the ratio of TXB₂/6-keto-PGF₁α increased markedly. Thus, protamine-induced changes in the balance between the two prostanooids with opposing vasoactivity effects may account for some of the adverse effects of protamine.

In conclusion, we have demonstrated that plasma group II PLA₂ activity is enhanced markedly during cardiac surgery and that this is due to heparin administration. This enhanced PLA₂ activity in post-heparin plasma correlates highly with plasma concentrations of 6-keto-PGF₁α but not TXB₂. Post-heparin PLA₂ activity may derive in part from PMNs, but our data do not exclude other cells such as platelets and/or endothelial cells as potential sources for the plasma PLA₂ activity. The anticoagulant, and possibly vasodilatory, effects of heparin might be due in part to enhanced plasma PLA₂ activity with subsequent increases in plasma levels of PGI₂. After protamine administration, plasma PLA₂ activity and PGI₂ concentrations are reduced. An increased ratio of TXB₂/6-keto-PGF₁α may explain, at least in part, the pathophysiological consequences sometimes observed with protamine administration to patients.

Acknowledgments

We want to thank Dr. M. Laposata and Stephen Johnson for performing the heparin assays.

This work was supported by National Institutes of Health grants DK-39773, DK-38452, and NS-10828. Dae Kyong Kim was the Paul Dudley White Fellow of the Massachusetts Chapter of the American Heart Association. J. V. Bonventre was an Established Investigator of the American Heart Association during the course of part of these studies.

References


Post-Heparin Plasma Phospholipase A₂ Activity 1069


