We have characterized the mechanism whereby a G protein-coupled receptor, the alpha 1-adrenergic receptor, promotes cellular AA release via the activation of phospholipase A2 (PLA2) in Madin-Darby canine kidney (MDCK-D1) cells. Stimulation of cells with the receptor agonist epinephrine or with the protein kinase C (PKC) activator PMA increased AA release in intact cells and the activity of PLA2 in subsequently prepared cell lysates. The effects of epinephrine were mediated by alpha 1-adrenergic receptors since they were blocked by the alpha 1-adrenergic antagonist prazosin. Epinephrine- and PMA-promoted AA release and activation of the PLA2 were inhibited by AACOCF3, an inhibitor of the 85-kD cPLA2. The 85-kD cPLA2 could be immunoprecipitated from the cell lysate using a specific anti-cPLA2 serum. Enhanced cPLA2 activity in cells treated with epinephrine or PMA could be recovered in such immunoprecipitates, thus directly demonstrating that alpha 1-adrenergic receptors activate the 85-kD cPLA2. Activation of cPLA2 in cell lysates by PMA or epinephrine could be reversed by treatment of lysates with exogenous phosphatase. In addition, both PMA and epinephrine induced a molecular weight shift, consistent with phosphorylation, as well as an increase in activity of mitogen-activated protein (MAP) kinase. The time course of epinephrine-promoted activation of MAP kinase preceded that of the accumulation of released AA and correlated with the time course of cPLA2 activation. Down-regulation of […]
Protein Kinase C–dependent Activation of Cytosolic Phospholipase A₂ and Mitogen-activated Protein Kinase by Alpha₁-Adrenergic Receptors in Madin-Darby Canine Kidney Cells

Mingzhao Xing and Paul A. Insel

Abstract

We have characterized the mechanism whereby a G protein–coupled receptor, the α₁-adrenergic receptor, promotes cellular AA release via the activation of phospholipase A₂ (PLA₂) in Madin-Darby canine kidney (MDCK-D1) cells. Stimulation of cells with the receptor agonist epinephrine or with the protein kinase C (PKC) activator PMA increased AA release in intact cells and the activity of PLA₂ in subsequently prepared cell lysates. The effects of epinephrine were mediated by α₁-adrenergic receptors since they were blocked by the α₁-adrenergic antagonist prazosin. Epinephrine- and PMA-promoted AA release and activation of the PLA₂ were inhibited by AACOCF₃, an inhibitor of the 85-kD cPLA₂. The 85-kD cPLA₂ could be immunoprecipitated from the cell lysate using a specific anti-cPLA₂ serum. Enhanced cPLA₂ activity in cells treated with epinephrine or PMA could be recovered in such immunoprecipitates, thus directly demonstrating that α₁-adrenergic receptors activate the 85-kD cPLA₂. Activation of cPLA₂ in cell lysates by PMA or epinephrine could be reversed by treatment of lysates with exogenous phosphatase. In addition, both PMA and epinephrine induced a molecular weight shift, consistent with phosphorylation, as well as an increase in activity of mitogen-activated protein (MAP) kinase. The time course of epinephrine-promoted activation of MAP kinase preceded that of the accumulation of released AA and correlated with the time course of cPLA₂ activation. Down-regulation of PKC by overnight incubation of cells with PMA or inhibition of PKC with the PKC inhibitor sphingosine blocked the stimulation of MAP kinase by epinephrine and, correspondingly, epinephrine-promoted AA release was inhibited under these conditions. Similarly, blockade of MAP kinase stimulation by the MAP kinase cascade inhibitor PD98059 inhibited epinephrine-promoted AA release. The sensitivity to Ca²⁺ was similar, although the maximal activity of cPLA₂ was enhanced by treatment of cells with epinephrine or PMA. The data thus demonstrate that in MDCK-D1 cells α₁-adrenergic receptors regulate AA release through phosphorylation-dependent activation of the 85-kD cPLA₂ by MAP kinase subsequent to activation of PKC. This may represent a general mechanism by which G protein–coupled receptors stimulate AA release and formation of products of AA metabolism. (J. Clin. Invest. 1996. 97:1302–1310.)

Key words: arachidonic acid • G protein–coupled receptor • phosphorylation • renal epithelium • calcium

Introduction

AA and its eicosanoid metabolites (e.g., prostaglandins and leukotrienes) play critical roles in the initiation or modulation of a broad spectrum of physiological responses and certain abnormal (e.g., inflammatory) processes in mammalian cells (1, 2). This fatty acid is not freely stored in cells but is esterified to cellular phospholipids, mainly at the sn-2 position. Its release can be catalyzed by phospholipase A₁ (PLA₁) and is believed to be the limiting step in the biosynthesis of eicosanoids in response to stimulation by receptors such as G protein–coupled receptors. Three groups of mammalian PLAs have been characterized, namely, the 14-kD Ca²⁺-dependent secreted PLA₂, the 85-kD Ca²⁺-dependent and sn-2 arachidonyl-specific cytosolic PLA₂ (cPLA₂), and the Ca²⁺-independent PLA₂ (3, 4). Overexpression of Chinese hamster ovary cells with recombinant cPLA₂ enhanced AA release stimulated by ATP or thrombin receptors (5). However, little definitive evidence is available for the coupling of the native cPLA₂ to receptors, particularly G protein–coupled receptors, although it has been proposed, largely based on indirect evidence, that the cPLA₂ is responsible for G protein–coupled receptor-mediated AA release (3, 6). Furthermore, more recent studies have suggested that the 14-kD secreted group II PLA₂ (7, 8), the calcium-independent PLA₂ (9), and a 29-kD cytosolic PLA₂ (10) could each be responsible for AA release mediated by receptors.

Numerous studies have implicated the involvement of protein kinase C (PKC) in the regulation of receptor-mediated AA release in a variety of cells (3, 6, 11). Nevertheless, in vitro studies have failed to consistently show direct phosphorylation-dependent activation of cPLA₂ by PKC (12–14). Because mitogen-activated protein (MAP) kinase, which has been shown in vitro to phosphorylate and activate the recombinant cPLA₂ (12, 13), can be stimulated in cells through both PKC-dependent and independent pathways, it has been proposed that the PKC-dependent activation of cPLA₂ is via the activation of MAP kinase (12). However, incomplete information is available regarding the relationship of the activation of PKC and MAP kinase with that of the endogenous cPLA₂ by G protein–coupled receptors in native cells, although activation of...
each of these enzymes has been separately studied in many reports. In fact, MAP kinase stimulation and Ca\(^{2+}\) mobilization promoted by G protein–coupled P\(_2\) receptors fail to stimulate cPLA\(_2\)-mediated AA release in undifferentiated HL60 cells (15). Furthermore, in Chinese hamster ovary cells a \(\text{G}_{\alpha_2}\) mutant inhibits G protein–coupled P\(_2\)-purinergic receptor- or thrombin receptor–promoted AA release by cPLA\(_2\) while not altering Ca\(^{2+}\) mobilization, MAP kinase activation, and phosphorylation of cPLA\(_2\) (16). Thus, the role of MAP kinase, and its relationship with PKC, in the regulation of the endogenous cPLA\(_2\) by G protein–coupled receptors need to be further defined in native cells.

\(\alpha_2\)-adrenergic receptors are an important class of the G protein–coupled receptors. They play fundamental roles in the regulation of a wide variety of cardiovascular, renal, and metabolic functions (17). These receptors are also coupled to release of AA and eicosanoids in many cells. Although some evidence, such as assessment of lysophospholipid formation, has suggested that PL\(_A\)2 is involved (18), no data has directly defined which type of PL\(_A\)2, if any, mediates \(\alpha_2\)-adrenergic receptor-promoted AA release in cells. Moreover, the specific mechanism(s) regulating this receptor-promoted activation of PL\(_A\)2, especially in terms of involvement of protein kinases, has not been defined. In the present study with Madin-Darby canine kidney (MDCK)-D1 cells, we investigated the molecular mechanism for the regulation of AA release by \(\alpha_2\)-adrenergic receptors. We demonstrate that \(\alpha_2\)-adrenergic receptors stimulate AA release in MDCK-D1 cells by phosphorylation-dependent activation of the 85-kD cPLA\(_2\), which involves activation of PKC and MAP kinase.

Methods

Materials. Leupeptin, pepstatin A, A23187, PMA, A20587, and PMSF were purchased from Calbiochem Corp. (La Jolla, CA). DTT was obtained from Boehringer Mannheim Biochemicals (Indianapolis, IN). [5,6,8,9,11,12,14,15-\(^3\)H(N)]-arachidonic acid ([\(^3\)H]AA) (sp, 100 Ci/mmol) and [\(^3\)H]1,2-ATP (sp, 3000 Ci/mmol) were obtained from DuPont NEN (Boston, MA). I-actioryl-2-[\(^3\)H]arachidonyl-1,3-phosphatidylethanolamine ([\(^3\)H]PE) (sp, 55 mCi/mmol), horseradish peroxidase–linked donkey anti-rabbit Ig and ECL Western blotting detection reagents were bought from Amersham Corp. (Arlington Heights, IL). Potato acid phosphatase, Na\(_2\)VO\(_4\), sodium pyrophosphate, levanosone, protein A-Sepharose, benzamidine, myelin basic protein (MBP), disopropyl fluorophosphate, PBS, arachidonic acid, and (-) epinephrine were purchased from Sigma Chemical Co. (St. Louis, MO). Okadaic acid was obtained from Gemini Bio-Products, Inc. PKI (6-22 amide), a protein kinase A inhibitor, was bought from Gibco-BRL (Gaithersburg, MD). Prazosin hydrochloride was bought from Pfizer. P-81 phosphocellulose paper was from Whatman Inc. (Clifton, NJ). Immobilon-P PVDF transfer membrane (0.45 \(\mu\)m) was purchased from Millipore Corp. (Bedford, MA). TLC silica gel plates were bought from Analtech. Rabbit anti-p42/p44 MAP kinase serum was originally generated and obtained from the laboratory of Dr. Michael J. Dunn (19). Standard 85-kD cPLA\(_2\) protein and its specific antiseraum were from Dr. Lib-ling Lin (Genetics Institute, Cambridge, MA) (5). PD098059 was from Dr. Alan R. Saltiel (Parke-Davis, Ann Arbor, MI) (20).

Cell culture. MDCK-D1 cells were cultured as previously described (21). Subconfluent cells were subcultured every 3–4 d by trypsinization using trypsin/EDTA. Cells at 60–80% confluence usually achieved 3 d after the subculture were normally used for experiments. After labeling with 0.5 \(\mu\)Ci [\(^3\)H]AA/ml per well for 20 h in a 24-well plate, cells were washed four times with serum- and NaHCO\(_3\)-free DME supplemented with 5 mg/ml BSA and 20 mM Hepes, pH 7.4, and incubated in the same medium at 37°C for 15 min to equilibrate the temperature. Stimulation of cells was then started by replacing the medium with 1 ml of 37°C medium containing the specified agonists. After a 10-min incubation in a 37°C water bath with constant agitation, the stimulation was stopped by aspirating the incubation medium and transferring it to ice-cold tubes containing 100 \(\mu\)l of 55 mM EGTA and EDTA (final concentration, 5 mM each). The medium was then subjected to centrifugation to eliminate cell debris, and the radioactivity in the supernatant was determined by scintillation spectrophotometry. Cells left attached to the plate were scraped with 0.2% Triton-X100 and also counted for radioactivity. The release of [\(^3\)H]AA was normalized as percentage of the total prestimulation incorporated radioactivity (the total released radioactivity plus the total cell-associated radioactivity at the end of stimulation) for the comparison of different treatment conditions.

In vitro cPLA\(_2\) activity assay using cell lysates. Cells cultured in 75-cm\(^2\) flasks were washed four times with serum- and NaHCO\(_3\)-free DME supplemented with 2 mg/ml BSA and 20 mM Hepes, pH 7.4, followed by incubation with the same medium for 2 h at 37°C. Stimulation was started by adding the specified agonists to the cells and, after 5–10 min, stopped by rapidly aspirating away the incubating medium and replacing it with an ice-cold washing buffer containing 250 mM sucrose, 50 mM Hepes, pH 7.4, 1 mM EGTA, 1 mM EDTA, phosphatase inhibitors (200 \(\mu\)M Na\(_2\)VO\(_4\), 1 mM levanosone), and protease inhibitors (500 \(\mu\)M PMSF, 8 \(\mu\)M pepstatin A, 16 \(\mu\)M leupeptin, and 1 mM diisopropyl fluorophosphate). Cells were washed four times with ice-cold washing buffer and then were scraped into an ice-cold assay buffer that was the same as the washing buffer except that sucrose was omitted, but the buffer was supplemented with 100 mM okadec acid. The scraped cells were then homogenized by sonication, followed by centrifugation at 4°C for 10 min at 500 \(g\) to eliminate the unbroken cells. The supernatants, defined as cell lysates, were used for cPLA\(_2\) activity assay, using a previously described protocol with some modifications (5). Briefly, the substrate [\(^3\)C]PC was dried under nitrogen, resuspended in DMSO, vigorously shaken (vortex) for 2 min, and resuspended in the assay buffer containing 10 mM CaCl\(_2\). The reaction was started by adding 100 \(\mu\)l cell lysate to an equal volume of 37°C substrate in an agitating water bath. The final concentrations of the components in the assay were 10 \(\mu\)M [\(^3\)C]PC, 5 mM CaCl\(_2\), 1 mM EGTA, 1 mM EDTA, 50 mM Hepes, pH 7.4, and 10–30 \(\mu\)g protein (measured with the Bradford assay kit; Bio-Rad Laboratories, Richmond, CA). Unless otherwise specified, 5 mg/ml BSA and 1 mM DTT were included in the final assay. After incubation for 30–60 min, the reaction was stopped by adding 750 \(\mu\)l of 1:2 (v/v) chloroform/methanol. The total lipids were then extracted following the method of Bligh and Dyer (22) and subjected to TLC, as previously described (15), using as running solvent the upper phase of the mixture of ethyl acetate/sisooctane/water/acetic acid (33:45:60:6, vol/vol). The TLC plates were stained with iodine and the bands containing [\(^3\)C]AA that comigrated with AA standards were scraped and counted. The activity of PL\(_A\)2 was normalized as picomoles of hydrolyzed substrate/min per milligram cell lysate protein. Under these conditions, less than 3-5% of the substrates were normally hydrolyzed.

Immunoprecipitation of the 85-kD cPLA\(_2\). Cell lysates were prepared as described for the in vitro cPLA\(_2\) activity assay. After the protein concentrations were matched for different samples, 400–700 \(\mu\)g cell lysate in 0.5 ml assay buffer (the same buffer as described above for cPLA\(_2\) activity assay) was supplemented with 1–2 \(\mu\)l of normal rabbit serum or anti–85-kD cPLA\(_2\) rabbit serum and 1% NP-40, followed by incubation at 4°C with agitation for 1 h. The mixtures were then transferred to a microcentrifuge tube containing 24 mg protein A-Sepharose, which was precoated with 3% BSA for 2–3 h at 4°C. After a 1-h incubation at 4°C with agitation, the antigen-antibody-protein A complex was precipitated by centrifugation in an Epplen-dorf microcentrifuge. The resultant pellets were washed three times by repeated centrifugation and resuspending in new assay buffer con-
containing 1% N-P40, followed by two more washings in NP-40-free buffer. The pellets were finally resuspended either in SDS-loading buffer for SDS-PAGE and Western blotting or in the assay buffer supplemented with 5 mM DTT for the cPLA2 activity assay.

Phosphorylation-induced mobility shift, SDS-PAGE, and Western blotting of MAP kinase. Cells cultured in a 6-well plate were washed four times with serum- and NaHCO3-free DME supplemented with 2 mg/ml BSA and 20 mM Hepes, pH 7.4, and incubated for 2 h at 37°C in the same medium, followed by stimulation with specified agonists for indicated times. The stimulation was stopped by quickly aspirating the medium and washing the cells four times with an ice-cold solution consisting of 10% glycerol, 62.5 mM Tris-HCl, pH 6.8, and protease and phosphatase inhibitors as described above. Cells were then scraped and lysed into SDS-PAGE loading buffer, followed by heating by incubation for 5 min at 100°C. Samples were then subjected to SDS-PAGE using either 7.5% or 10% acrylamide, with the former concentration of acrylamide requiring shorter time to run the gel and the latter requiring longer time, followed by transfer to Immobilon-P PVDF membrane. After being blocked for 1 h with 5% nonfat dry milk dissolved in PBS, the membrane carrying the proteins was sequentially incubated with 1:2,000 diluted anti-p42 MAP kinase rabbit serum for 1.5 h and with 1:2,000 diluted horseradish peroxidase–linked donkey anti-rabbit Ig for 1 h, both in 5% nonfat dry milk dissolved in PBS. Each antibody incubation was followed by washing three to four times with PBS for 5–10 min. The bands of MAP kinase in the membrane, including the mobility-shifted species due to phosphorylation, were visualized using the ECL Western blotting detection reagents following the manufacturer’s instructions.

Immunoprecipitation and activity assay of MAP kinase. Immunoprecipitation and activity assay of MAP kinase were performed using a modified version of several previously published protocols (16, 23, 24). Cells cultured in 75-cm2 flasks were washed four times with serum- and NaHCO3-free DME supplemented with 2 mg/ml BSA and 20 mM Hepes, pH 7.4, followed by a 2-h incubation at 37°C in the same medium. Cells were then stimulated for 3 min with indicated agonists. The stimulation was stopped by quickly aspirating away the medium and washing the cells four times with ice-cold PBS supplemented with 2 mM EGTA, 1 mM EDTA, 1 mM benzamidine, 5 mM sodium pyrophosphate, and other protease and phosphatase inhibitors as specified above for cPLA2 assay. Cells were then scraped into MAP kinase buffer consisting of 30 mM β-glycerophosphate, 20 mM Hepes, pH 7.4, 2 mM EGTA, 1 mM EDTA, and the protease and phosphatase inhibitors as described above for the washing solution. The scraped cells were disrupted by sonication and adjusted to the same protein concentrations for different samples before immunoprecipitation. 400 µg cell lysate protein in 500 µl MAP kinase buffer was supplemented with 5 µl NP-40 (1% final) and 1 µl anti-p42 MAP kinase serum and incubated at 4°C with constant agitation for 1 h. The antigen-antibody mixture thus formed was then transferred to tubes containing 24 mg protein A–Sepharose (precoated at 4°C with 3% BSA for 2–3 h before use) and incubated at 4°C with agitation for 1 h, followed by centrifugation in a microcentrifuge to precipitate the antigen-antibody-protein A complex. The pellet was sequentially washed three times with MAP kinase buffer supplemented with 1% NP-40, and three times with the same buffer without detergent. The immunoprecipitates were resuspended in 40 µl MAP kinase buffer supplemented with 2 mM DTT and 4 µM PKI (6–22 amide). To start the assay for MAP kinase activity, 10 µl of the resuspended immunoprecipitate was added to an equal volume of substrates and MgCl2 in MAP kinase buffer prewarmed at 30°C, generating (final concentrations) 10 mM MgCl2, 2 µM PKI (6–22 amide), 40 mM ATP, 2 µCi [γ-32P]ATP and 10 µg MBP. After a 20-min incubation at 30°C with constant agitation, the reaction was stopped by spotting 10 µl of the reaction mixture to P81 phosphocellulose membrane (2 × 1.5 cm), followed by washing six times for 10 min each in 125 mM phosphoric acid. The radioactivity associated with the membrane, which represented the phosphorylation of MBP by MAP kinase, was determined by scintillation spectrophotometry. Alternatively, the MAP kinase reaction was terminated by adding equal volume of twofold concentrated Laemmli’s buffer and heating the mixture for 5 min, followed by SDS-PAGE and autoradiography. The major band corresponding to MBP on the exposed film was recognized, and its intensity represented MAP kinase activity.

Preparation of calcium-EGTA buffer. Desired concentration of free calcium ions in the PLAX assay buffer was obtained by adding appropriate amount of CaCl2 to the buffer containing 1 mM EGTA and 1 mM EDTA, based on the calculation using the FREECA computer program (25).

Data presentation. Unless otherwise specified, the data shown in the figures are mean ± SD of triplicate or duplicate measurements and are representative of results obtained in two to five experiments.

Results

α2-adrenergic receptors mediate AA release through the 85-kD cPLAX. MDCK-D1 cells are a subclone derived from parental MDCK cells, an epithelial cell line derived from distal tubule/collecting duct of the canine kidney (26). These cells possess a single population of α2-adrenergic receptors, namely the α1b type, and these receptors are coupled to AA release (Fig. 1A and references. 21, 27, 28). To determine whether this AA release is secondary to activation of cPLAX, we initially established conditions to assay the activation of this enzyme in cell lysates prepared from agonist-stimulated cells. Treatment of the cells with epinephrine increased the PLAX activity in the subsequently prepared cell lysates (Fig. 1B). The α2-adrenergic antagonist prazosin not only inhibited epinephrine-triggered AA release in intact cells (Fig. 1A) but also inhibited epinephrine-induced activation of PLAX activity in the cell lysates (Fig. 1B). Stimulation of AA release in intact cells or activation of PLAX in cell lysates by the PKC activator PMA, which is cell membrane receptor independent, was not affected by prazosin. These results indicate that agonist occu-
panied by the stabilization of PLA2 activity in cell lysates, which was inhibited by AACOCF3, a trifluoromethyl ketone analogue of arachidonyl acid that can inhibit the 85-kD cPLA2 (its apparent molecular weight on SDS-PAGE gel is ~ 100 kD) (Fig. 3 B). The immunoprecipitates obtained with the anti–85-kD cPLA2 serum, but not with the nonimmune serum, especially when assays were conducted in the presence of DTT (data not shown). DTT presumably helps to release bound cPLA2 from the antibody by impairing the binding affinity of the antibody for its antigen as a result of the reduction of the disulfide bonds in the antibody molecule. With this experimental strategy, we found increased cPLA2 activity in the immunoprecipitates obtained with anti–85-kD cPLA2 serum and cell lysates derived from cells pretreated with epinephrine or PMA (Fig. 3 B).

Activation of the cPLA2 by a1-adrenergic receptors is mediated through protein phosphorylation. The stable increase in PLA2 activity produced by incubation of cells with epinephrine or PMA (Figs. 1 A, 2 A, and 3 B) suggested that covalent modification of the lipase was the mechanism for the change in its enzyme activity. To test whether such modification of cPLA2 was not the 14-kD low molecular weight form of PLA2 (29). As shown in Fig. 2, epinephrine- and PMA-promoted AA release were inhibited by AACOCF3, both in intact cells (Fig. 2 A) and when assessed as PLA2 activity in cell lysates (Fig. 2 B). These data suggest that, in MDCK-D1 cells, a1-adrenergic receptors, as well as PMA, induce AA release through the activation of the 85-kD cPLA2.

To more definitively demonstrate the coupling of a1-adrenergic receptors to the 85-kD cPLA2, we examined cPLA2 activity in immunoprecipitates obtained using anti-cPLA2 antibody. As shown in Fig. 3 A, an 85-kD cPLA2 (its apparent molecular weight on SDS-PAGE gel is ~ 100 kD) could be immunoprecipitated from MDCK-D1 cell lysate with a rabbit antiserum directed against the 85-kD cPLA2 protein, but not with the nonimmune serum, indicating the specificity of the anti-cPLA2 antibody. We found substantial PLA2 activity in the immunoprecipitates obtained with the anti–85-kD cPLA2 serum, but not with the nonimmune serum, especially when assays were conducted in the presence of DTT (data not shown). DTT presumably helps to release bound cPLA2 from the antibody by impairing the binding affinity of the antibody for its antigen as a result of the reduction of the disulfide bonds in the antibody molecule. With this experimental strategy, we found increased cPLA2 activity in the immunoprecipitates obtained with anti–85-kD cPLA2 serum and cell lysates derived from cells pretreated with epinephrine or PMA (Fig. 3 B).

Activation of the cPLA2 by a1-adrenergic receptors is mediated through protein phosphorylation. The stable increase in the activity of the cPLA2 detected in cell-free systems derived from MDCK-D1 cells pretreated with agonists (Figs. 1 B, 2 B, and 3 B) suggested that covalent modification of the lipase was the mechanism for the change in its enzyme activity. To test whether such modification of cPLA2 by agonists in MDCK-D1 cells was the result of phosphorylation, cell lysates were treated with potato acid phosphatase before the assay for cPLA2 activity. This treatment abolished the increase of the cPLA2 activity produced by incubation of cells with epinephrine or with PMA (Fig. 4 A). Treatment with potato acid phosphatase did not lead to proteolysis of cPLA2 under our experimental conditions, as judged by Western blotting studies (data not shown). Thus, both a1-adrenergic receptors and PMA ap-
To further investigate the relationship between the activation of cPLA₂ and that of MAP kinase by α₁-adrenergic receptors, we compared the time courses of the two α₁-adrenergic receptor-mediated events. As shown in Fig. 6A, stimulation of MAP kinase by epinephrine in MDCK-D1 cells occurred somewhat more slowly but was prominent at 3 min after treatment of cells with epinephrine, and gradually declined thereafter. Accumulation of released AA in the medium occurred somewhat more slowly but was prominent by 3 min of cell stimulation with epinephrine (Fig. 6B). The stimulation of cPLA₂ activity closely followed the stimulation of MAP kinase and was faster than AA accumulation (Fig. 6C). This type of temporal relationship suggests a cause-and-effect relationship between the activation of MAP kinase and that of cPLA₂. Further support for this conclusion was obtained by the inhibition of epinephrine-promoted AA release by PD098059 (Fig. 7), which prevents MAP kinase activation by inhibiting MAP kinase kinase (20).

α₁-adrenergic receptor-induced activation of MAP kinase and cPLA₂ is mediated by PKC. The similar effects of epinephrine with those of PMA on the activation of cPLA₂ and MAP kinase (Figs. 1–5) suggested the possible involvement of PKC in the regulation of cPLA₂ and MAP kinase by α₁-adrenergic receptors. Previous studies from this laboratory have suggested that PKC is involved in α₁-adrenergic receptor-mediated AA release in intact MDCK-D1 cells (18, 32). To further investigate the mechanism for this PKC involvement, we examined the effect of down-regulation of PKC on α₁-adrenergic receptor-mediated stimulation of MAP kinase and cPLA₂. Down-regulation of PKC was achieved by incubation of cells overnight (20 h) with 200 nM PMA. Stimulation of MAP kinase by PMA and by epinephrine was completely blocked by such down-regulation of PKC (Fig. 8A). Correspondingly, down-regulation of PKC completely blocked the stimulation of AA release by epinephrine and the potentiating effect of PMA on the Ca²⁺ ionophore A23187-stimulated AA release (Fig. 8B). Down-regulation of PKC did not affect AA release by A23187, which has been shown to stimulate AA release in a PKC-independent manner (24). Interpretation of the results obtained with PKC down-regulation by overnight treatment of cells with PMA, as shown in Fig. 8, could be complicated by...
the fact that PKC is also involved in the desensitization of α₁β receptors (33). To circumvent this potential problem, we also tested the effect of the PKC inhibitor sphingosine on agonist stimulation of MAP kinase and AA release. As shown in Fig. 9 A, stimulation of the molecular weight shift of MAP kinase by epinephrine or PMA was blocked by sphingosine. Sphingosine treatment also blocked epinephrine-stimulated AA release (Fig. 9 B). In addition, sphingosine treatment or PKC downregulation blocked epinephrine-promoted activation of MAP kinase activity (Fig. 10). Taken together, these data demonstrate the mandatory involvement of PKC in the activation of both MAP kinase and cPLA₂ by α₁-adrenergic receptors in MDCK-D1 cells.

Alpha₁-adrenergic receptor and protein kinase C activation increase the maximal activity of cPLA₂. Since calcium plays a critical role in the regulation of cPLA₂, we were interested to determine whether the ability of Ca²⁺ to activate cPLA₂ was altered by α₁-adrenergic receptor or phorbol ester stimulation. Compared with control cells, treatment of cells with either epinephrine or PMA increased the maximal activity of cPLA₂, as assayed in subsequently prepared cell lysates (Fig. 11). However, we observed a similar sensitivity of the cPLA₂ to Ca²⁺ in cells treated with or without epinephrine or PMA. Fig. 11 also illustrates that the agonist-stimulated PL₂ activity is sensitive to Ca²⁺ in the micromolar range, characteristic of the involvement of cPLA₂. Taken together with the evidence presented above, these data suggest that a mechanism whereby α₁-adrenergic receptor and PMA stimulate cPLA₂ activity is to increase the maximal activity of the enzyme through phosphorylation by protein kinases in MDCK cells.

Discussion

Stimulation of AA release by α₁-adrenergic receptors has been demonstrated in a variety of cells, including FRTL5 cells (34), spinal cord neurons (35), MDCK cells (11), vascular smooth muscle cells (36), transfected COS-1 cells (37), and striatal astrocytes (38). Although some efforts have been made in these studies to define the molecular mechanism(s) for α₁-adrenergic regulation of AA release, no clear-cut information regarding this issue has been provided. It has been hypothesized that a PL₂ is involved in this receptor-mediated release of AA, but definitive evidence for this hypothesis has been lacking.

The results shown here provide substantial evidence in support of the conclusion that in MDCK-D1 cells the 85-kD cPLA₂ is coupled to α₁-adrenergic receptors and is responsible for this receptor-mediated AA release. The evidence for this conclusion is several-fold: (a) The only PL₂ that is known to be activated by membrane receptors through phosphorylation is the 85-kD form, and α₁-adrenergic receptor-stimulated activation of the PL₂ in MDCK-D1 cells was mediated through phosphorylation (Fig. 4); (b) To date, the only PL₂ whose activation has been suggested to involve PKC is the 85-kD form, and PKC mediates the activation of the PL₂ by α₁-adrenergic receptors in MDCK-D1 cells (Figs. 8 and 9); (c) Activation of the 85-kD cPLA₂ requires micromolar Ca²⁺. PL₂ activities in MDCK-D1 cell lysates are Ca²⁺-dependent and micromolar Ca²⁺ provides substantial activation of the enzyme (Fig. 11), consistent with the previous observation that omission of extracellular Ca²⁺ blocks epinephrine-stimulated AA release in MDCK-D1 cells (21); (d) Unlike the 14-kD PL₂, the α₁-adrenergic receptor-coupled PL₂ activity is insensitive to the reducing agent DTT, which was included in the assays of PL₂ activity in the present study (except for the experiment shown...
Figure 8. Effect of PKC down-regulation on agonist stimulation of MAP kinase and AA release in MDCK-D1 cells. (A) After incubation overnight (20 h) with or without 200 nM PMA, cells were incubated with 100 μM epinephrine or 100 nM PMA for 3 min. Protein samples derived from the cells were then detected for p42 MAP kinase by Western blotting as described in Methods. (B) After incubation of cells with 200 nM PMA overnight (20 h), [3H]AA release in intact cells in response to the stimulation by 100 μM epinephrine or 5 μM A23187 or 5 μM A23187 plus 100 nM PMA was assessed as described in Methods.

in Fig. 2 B); (e) The α₁-adrenergic receptor-coupled cPLA₂ is sensitive to the recently characterized cPLA₂ inhibitor AACOCF₃ (Fig. 2); and (f) α₁-adrenergic activation of cPLA₂ was recovered in the immunoprecipitates obtained with anti-85-kD cPLA₂ serum (Fig. 3). AACOCF₃ has recently also been shown to inhibit a calcium-independent PLA₂ purified from P388D1 cells (39). However, calcium-independent PLA₂ is apparently not the type activated by α₁-adrenergic receptors in MDCK-D1 because receptor-promoted AA release in intact cells (21) and activation of PLA₂ activity measured in cell lysates (Fig. 11) are both Ca²⁺ dependent.

Another major effort of the present study was to define the regulatory mechanism(s) by which the 85-kD cPLA₂ is activated by α₁-adrenergic receptors in MDCK-D1 cells. In particular, we sought to define the role of PKC and MAP kinase. Based on in vitro studies of phosphorylation and activation of the recombinant 85-kD cPLA₂ by MAP kinase, it has been proposed that phosphorylation of the 85-kD cPLA₂ by MAP kinase, in coordination with an increase in the concentration of intracellular Ca²⁺, is the mechanism whereby membrane receptors fully activate the enzyme (12, 13). Other evidence in favor of this mechanism is the correlation of activation of MAP kinase with that of PLA₂ activity in macrophages stimulated with zymosan particles (24) or colony-stimulating factor 1 (40) and in endothelial cells stimulated with basic fibroblast growth factor (41). In contrast, data have not previously been provided for parallel activation of endogenous MAP kinase and cPLA₂ in native cells by G protein–coupled receptors, although separate reports showing G protein receptor-coupled phosphorylation of cPLA₂ or activation of MAP kinase in different cells are available. In fact, a more complex situation regarding the role of MAP kinase in the regulation of the endogenous cPLA₂ by G protein–coupled receptors has been suggested by the findings that in Chinese hamster ovary cells or undifferentiated HL60 cells certain G protein–coupled receptors promote normal Ca²⁺ mobilization and MAP kinase activation without inducing cPLA₂-mediated AA release (15, 16). These results could suggest either that a factor separate from Ca²⁺ and MAP kinase is also required to modify the cPLA₂ molecule for its activation or that MAP kinase is not involved in the activation of the endogenous cPLA₂ by these G protein–coupled receptors. Data reported in the present study that activation of cPLA₂ temporaly follows the activation of MAP kinase by α₁-adrenergic receptors (Fig. 6) and that PD098059, a MAP kinase cascade inhibitor (20), blocked α₁-adrenergic release of AA (Fig. 7) strongly support the idea that MAP kinase is required for the regulation of cPLA₂ by α₁-adrenergic receptors in MDCK-D1 cells. This conclusion is further supported by the fact that blockade of MAP kinase stimulation by PKC down-regulation or by PKC inhibitor also blocks AA release (Figs. 8–10).

Although MAP kinase alone (12) or both MAP kinase and PKC (13) have been reported to phosphorylate and activate recombinant cPLA₂, most in vitro studies have shown no direct activation of cPLA₂ by PKC (12, 14). Since MAP kinase can be activated by PKC (present study and reference 30), our data support the idea that sequential activation of PKC and MAP kinase is an important mechanism in α₁-adrenergic receptor-mediated activation of the endogenous cPLA₂ in MDCK-D1 cells. Agonist-promoted phosphorylation of cPLA₂ that involved PKC has been observed in macrophages and smooth muscle cells (42–44) although the involvement of MAP kinase in this cellular event was not addressed in these studies. The PKC-dependent activation of MAP kinase and cPLA₂ by α₁-adrenergic receptors is consistent with the kinetics of production of the native PKC activator diacylglycerol and the activation of PKC by α₁-adrenergic receptors in MDCK-D1 cells (18, 45). Our results indicate that the effect of phosphorylation on cPLA₂ is to increase its maximal activity rather than its sensitivity to Ca²⁺ (Fig. 11), as also found for the activation of PL_A₂ by thrombin in human platelets (46).

In summary, we have used MDCK-D1 cells to demonstrate that the 85-kD cPLA₂ is activated by α₁-adrenergic receptors and is responsible for this receptor-promoted AA release. In
Figure 10. Effects of sphingosine and PKC down-regulation on epinephrine stimulation of MAP kinase activity. MDCK-D1 cells were treated with vehicle (Control), 15 μM sphingosine (20 min), or 200 nM PMA (20 h, to down-regulate PKC) (PKC Down-regulation), followed by incubation with or without 100 μM epinephrine for 3 min. Cell lysates were then prepared and immunoprecipitated for MAP kinase as described in Methods. The immunoprecipitated MAP kinase was assayed for kinase activity using MBP and [γ-32P]ATP as substrates. The kinase assay reaction was terminated by adding equal volume of twofold concentrated Laemmli’s buffer and heating for 5 min, followed by SDS-PAGE. After drying, the gel was exposed to film, and the major band corresponding to MBP was recognized as shown in the figure.

addition, results in the present study strongly suggest the involvement of MAP kinase activation, secondary to the activation of PKC, in the stimulation of cPLA2 activity by α1-adrenergic receptors in these cells. Our present data, together with the previous work from this laboratory, lead us to propose a model whereby α1-adrenergic receptors in MDCK-D1 cells activate the 85-kD cPLA2 by the sequential activation of one or more forms of phospholipase C, PKC, and MAP kinase and thereby the phosphorylation of cPLA2. Such phosphorylation appears to increase the maximal activity of cPLA2 rather than to change the sensitivity to intracellular Ca2+

Figure 11. Calcium concentration-response of cPLA2 activity from MDCK-D1 cells treated with epinephrine or PMA. Cells were incubated with vehicle (Control) or 100 μM epinephrine or 100 nM PMA, followed by preparation of cell lysates. PLA2 activity in the cell lysates was assessed in the presence of increasing concentrations of free Ca2+ prepared as described in Methods. Each point in the figure represents the mean±SEM of data obtained from four independent experiments except for the point of 10^-4 M which is the average of three experiments.

References
thelin rapidly stimulates mitogen-activated protein kinase activity in rat mesan-
dated phosphoinositide hydrolysis and prosta glandin E2 formation in Madin-
Darby canine kidney cells. Possible parallel activation of phospholipase C and
22. Bligh, E.G., and W.J. Dyer. 1959. A rapid method of total lipid extrac-
23. de Vriss-smits, A.M.M., B.M.T. Burgering, S.J. Leevers, C.J. Marshall,
and J.L. Bos. 1992. Involvement of p21ras in activation of extracellular signal-
24. Qiu, Z.-H., and C.C. Leslie. 1994. Protein kinase C-dependent and inde-
dependent pathways of mitogen-activated protein kinase activation in macro-
phages by stimuli that activate phospholipase A2. J. Biol. Chem. 269:19480–
19487.
Physiol. Biochem. 11:1–42.
ergic receptor subtypes: MDCK-D1 cells, but not rat cortical membranes pos-
28. Blue, D.R., Jr., D.A. Craig, J.T. Ransom, J.A. Camacho, P.A. Insel, and
D.E. Clarke. 1994. Characterization of the alpha-1 adrenoceptor subtype medi-
ating [H]-arachidonic acid release and calcium mobilization in Madin-Darby
canine kidney cells. J. Pharmacol. Exp. Ther. 268:1588–1596.
29. Street, I.P., H.-K. Lin, F. Laiherte, F. Ghomashchi, Z. Wang, H. Per-
rier, N.M. Tremblay, Z. Huang, P.K. Weech, and M.H. Gelb. 1993. Slow-
and tight-binding inhibitors of the 85-kDa human phospholipase A2. Biochem-
istry. 32:5935–5940.
J. 9:726–735.
Moolenaar. 1993. Gi-mediated activation of the p21ras-mitogen-activated pro-
tein kinase pathway by alpha 2-adrenergic receptors expressed in fibroblasts.
tein kinase C in epinephrine- and bradykinin-stimulated arachidonic acid me-
33. Lattion, A.L., D. Diviani, and S. Cotechia. 1994. Truncation of the re-
ceptor carboxyl terminus impairs agonist-dependent phosphorylation and de-
Kohn, and J. Axelrod. 1986. Alpha 1-adrenergic stimulation of arachidonic acid
release and metabolism in a rat thyroid cell line. Mediation of cell replication
35. Kanterman, R.Y., C.C. Felder, D.E. Brenneman, A.L. Ma, S. Fitzgerald,
and J. Axelrod. 1990. Alpha 1-adrenergic receptor mediates arachidonic acid
release in spinal cord neurons independent of inositol phospholipid turnover. J.
Neurochem. 54:1225–1232.
adrenergic stimuli is mediated via alpha-2C and alpha-1A adrenergic receptors
in cultured smooth muscle cells of rabbit aorta. J. Pharmacol. Exp. Ther. 260:
849–858.
excessed alpha 1B- and alpha 1D-adrenergic receptor to multiple signaling
pathways is both G protein and cell type specific. Mol. Pharmacol. 44:784–795.
of arachidonic acid and glutamate in the formation of inositol phosphates in-
of macrophage Ca2+-independent phospholipase A2 by bromoeneol lactone and
Regulation of cytosolic phospholipase A2 phosphorylation and eicosanoid pro-
Activation of cytosolic phospholipase A2 by basic fibroblast growth factor via a
p42 mitogen-activated protein kinase-dependent phosphorylation pathway in
42. Wijkander, J., and R. Sundler. 1992. Regulation of arachidonate-mobi-
lizing phospholipase A2 by phosphorylation via protein kinase C in macro-
43. Qiu, Z.-H., M.S. de Carvalho, and C.C. Leslie. 1993. Regulation of phos-
pholipase A2 activation by phosphorylation in mouse peritoneal macrophages.
Angiotensin II stimulates phosphorylation of high-molecular-mass cytosolic
45. Sliwka, S.R., K.E. Meier, and P.A. Insel. 1988. Alpha 1-adrenergic re-
ceptors promote phosphatidylcholine hydrolysis in MDCK-D1 cells. A mecha-
nism for rapid activation of protein kinase C. J. Biol. Chem. 263:12243–12246.
Jakubowski. 1993. Thrombin-induced phosphorylation and activation of Ca2+-
sensitive cytosolic phospholipase A2 in human platelets. J. Biol. Chem. 268:
26796–26804.