Survival motor neuron gene deletion in the arthrogryposis multiplex congenita-spinal muscular atrophy association.

L Bürglen, … , A Munnich, J Melki


The survival motor neuron (SMN) gene was lacking in 6/12 patients with arthrogryposis multiplex congenita (AMC) associated with spinal muscular atrophy (SMA). Neither point mutation in the SMN gene nor evidence for linkage to chromosome 5q13 were found in the other patients. Hitherto, arthrogryposis was regarded as an exclusion criterion in SMA. Our data strongly suggest that AMC of neurogenic origin is genetically heterogeneous, with a subgroup being allelic to SMA. Absence or interruption of the SMN gene in the AMC-SMA association will make the diagnosis easier and genetic counselling will now become feasible.
Survival Motor Neuron Gene Deletion in the Arthrogryposis Multiplex Congenita–Spinal Muscular Atrophy Association

Lydie Bürglen,* Jeanne Amiel†, Louis Violet*, Suzie Lefebvre,* Philippe Buret,* Olivier Clermont,* Valérie Raclin,* Pierre Landrieu,‡ Alain Verloes,§ Arnold Munnich,* and Judith Melki†

*Unité de Recherches sur les Handicaps Génétiques de l’Enfant, INSERM, Unité 393, I.F.R.E.M, Institut Necker. Hôpital des Enfants Malades, 75743. Paris Cedex 15, France; †Département de Pédiatrie, Hôpital du Kremlin-Bicêtre, France; and ‡Centre de Génétique, Université de Liège, Belgium

Abstract

The survival motor neuron (SMN) gene was lacking in 6/12 patients with arthrogryposis multiplex congenita (AMC) associated with spinal muscular atrophy (SMA). Neither point mutation in the SMN gene nor evidence for linkage to chromosome 5q13 were found in the other patients. Hitherto, arthrogryposis was regarded as an exclusion criterion in SMA. Our data strongly suggest that AMC of neurogenic origin is genetically heterogeneous, with a subgroup being allelic to SMA. Absence or interruption of the SMN gene in the AMC-SMA association will make the diagnosis easier and genetic counselling will now become feasible. (J. Clin. Invest. 1996. 98:1130–1132.) Key words: motor neurons • Werdnig-Hoffmann disease • inherited • congenital contrac-tures • gene

Introduction

Arthrogryposis multiplex congenita (AMC)† is a frequent sequence of congenital joint fixation (incidence: 1/3000 live births) secondary to decreased fetal movements in utero (1,2). AMC has been ascribed to either oligohydramnios or a variety of diseases involving the central nervous system, skeletal muscle, or spinal cord. Since neuronal degeneration and neu-ronophagia occur in the anterior horns, it has been hypothe-sized that the AMC of neurogenic origin could be related to acute spinal muscular atrophy (SMA type I, Werdnig-Hoffmann disease) (3). SMA type I is characterized by severe, gen-eralized muscle weakness and hypotonia in the first six months. Death, from respiratory failure, usually occurs within the first two years. This disease may be distinguished from the intermediate (type II) and juvenile forms (type III, Kugelberg-Welander disease) (4). The underlying biochemical defect(s) remain(s) unknown. Recently, we have identified the survival motor neuron (SMN) gene as the SMA-determining gene, since it is either absent or interrupted in 90–100% of typical SMA patients (5–7) and patients retaining the gene carried in-tragenic SMN mutations (5, 7). Yet, variants of infantile SMA with cerebellar hypoplasia, pontocerebellar degeneration, multiple long bone fractures at birth or congenital heart de-fects (CHD) with or without joint contractures have been de-scribed (9). Recently, we have shown deletions of the SMN gene associated with SMA and CHD (10). Here, we describe SMN gene deletion in 6/12 patients with the AMC-SMA association.

Methods

Families. A total of 12 unrelated patients including eight males and four females of various geographic origins was selected in this study. Inclusion criteria were (a) congenital joint contractures of at least two regions of the body (1); (b) generalized muscle weakness with muscular atrophy and areflexia, without extracranial involvement; (c) electromyo-graphic studies showing denervation and diminished motor action po-tential amplitude; and (d) muscle biopsy consistent with denervation with no evidence of storage material or other structural abnormalities (4).

DNA analyses. DNA was extracted from peripheral blood leuko-cyes, lymphoblastoid cell lines or muscle tissues.

Dinucleotide repeat polymorphism analysis. For genotyping using markers C272 (D5S1505/S1, S2) and C212 (D5S1491/S1, S2), amplification conditions were as follows: denaturation 94°C, annealing 55°C, extension 72°C, for 1 min each, for 30 cycles (11).

SMN gene analysis. Only two discrepancies in exons 7 and 8 have been described between SMN gene and the centromeric copy (5). Single strand conformation polymorphism (SSCP) analysis of exons 7 and 8 PCR amplified products allowed the SMN and the centromeric genes to be distinguished. SMN exons 7 and 8 were studied by SSCP analysis after PCR amplification of genomic DNA (200 ng) using unlabeled primers R111- 541C770 (exon 7) and 541C960-541C1120 (exon 8) (5). The other exons were studied by SSCP analysis after PCR amplification of genomic DNA (200ng) using unlabeled primers flanking each exon (12).

Results

The diagnosis of AMC-SMA association was made at birth with an uniform phenotype characterized by a severe hypotonia, absence of movements except extracranial mobility and congenital joint contractures of at least two regions of the body (Fig. 1 and Table I). The contractures involved either distal joints only (cases 9 and 10) or distal and proximal joints (cases 1–8, 11–
12). Joint involvement ranged from two affected joints (case 9) to severe generalized postural defects (cases 2 and 8, Table I). Decreased fetal movements were noted in 7/12 patients and neonatal respiratory distress was observed in 9/12 patients requiring artificial ventilation. Four infants are still alive but most of them (8/12) died within the first month of life due to respiratory failure. Facial involvement associated with micrognathia was noted in 4/12 patients. No family history was noted except in family 12 in which both the child and her father were affected suggesting an autosomal dominant form of AMC.

Table I shows that SMN exons 7 and 8 were lacking on both mutant chromosomes in 6/12 patients (cases 1–6, Fig. 2). Analysis of loci detected by markers C212 and C272 mapping upstream from the SMN gene showed that 3/6 patients had a large inherited deletion involving both loci on one parental allele, the other parental allele carrying only one locus instead of the expected two (Fig. 2). Analysis of the other SMN exons and exon-intron boundaries did not reveal intragenic mutations in the patients retaining the SMN exons 7 and 8 (cases 7–12, not shown, available on request). In addition, genetic analysis of family 9 showed that both the affected and the healthy sibs carried the same 5q13 haplotype using markers flanking the SMN gene suggesting that the disease gene was not linked to chromosome 5q13 (not shown). Exclusion of chromosome 5q has also been shown in one family with two AMC-SMA patients (13).

Discussion

The International SMA Consortium has established a number of inclusion and exclusion criteria for classical SMA (4).
Thus, the SMN gene should be carefully investigated in AMC patients with evidence for spinal cord involvement. Yet, AMC of neurogenic origin remains a genetically heterogeneous condition as the SMN gene was not mutated in 6/12 patients. SMN gene analysis will make the diagnosis easier in the AMC-SMA association, thus contributing to clarify the nosology of AMC. SMN gene deletion should be of help in the genetic counselling of this association, and prenatal diagnosis will now become possible.

Acknowledgments

We thank Professor N. Philip, J.P. Harpey, R. Gilly, L. Vallee, Ch. Puissan, J. Costil, Dr. M. Mathieu, and P. Masson for their contributions to this study.

This work was supported by the Association Francaise contre les Myopathies (AFM), the Ministère de la Recherche et de la Technologie, and the Assistance Publique, Hôpitaux de Paris.

References