Oncogenic TRK fusions are amenable to inhibition in hematologic malignancies

Justin Taylor, …, Jae H. Park, Omar Abdel-Wahab

J Clin Invest. 2018. https://doi.org/10.1172/JCI120787.

Graphical abstract

Find the latest version:

http://jci.me/120787/pdf
Oncogenic TRK fusions are amenable to inhibition in hematologic malignancies

Justin Taylor1,2, Dean Pavlick3, Akihide Yoshimi1, Christina Marcelus1, Stephen S. Chung2, Jaclyn F Hechtman4, Ryma Benayed4, Emiliano Cocco1, Benjamin H. Durham1, Lillian Bitner1, Daichi Inoue1, Young Rock Chung1, Kerry Mullaney4, Justin M. Watts5, Eli L. Diamond6, Lee A. Albacker3, Tariq I. Mughal3,7, Kevin Ebata8, Brian B. Tuch8, Nora Ku8, Maurizio Scaltriti1, Mikhail Roshal4, Maria Arcila4, Siraj Ali3, David M. Hyman9, Jae H. Park2*, Omar Abdel-Wahab1,2*

1Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
2Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY
3Foundation Medicine, Inc., Cambridge, MA, USA
4Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
5Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
6Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY
7Tufts University Medical Center, Boston, MA, USA
8Loxo Oncology, South San Francisco, CA, USA
9Developmental Therapeutics, Memorial Sloan Kettering Cancer Center, New York, NY, USA

*These authors contributed equally.

Corresponding Authors:
Omar Abdel-Wahab
Memorial Sloan Kettering Cancer Center
1275 York Ave., New York, NY 10065 USA
Phone: +1-646-888-3487
abdelwao@mskcc.org

Jae H. Park
Memorial Sloan Kettering Cancer Center
1275 York Ave., New York, NY 10065 USA
Phone: +1-212-639-4048
parkj6@mskcc.org
ABSTRACT

Rearrangements involving the neurotrophic receptor kinase genes (*NTRK1*, *NTRK2*, and *NTRK3*; hereafter referred to as TRK) produce oncogenic fusions in a wide variety of cancers in adults and children. Although TRK fusions occur in <1% of all solid tumors, inhibition of TRK results in profound therapeutic responses resulting in breakthrough FDA-approval of the TRK inhibitor larotrectinib for adult and pediatric solid tumor patients regardless of histology. In contrast to solid tumors, the frequency of TRK fusions and clinical effects of targeting TRK in hematologic malignancies is unknown. Here, through an evaluation for TRK fusions across >7,000 patients with hematologic malignancies, we identified TRK fusions in acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), histiocytosis, multiple myeloma and dendritic cell neoplasms. Although TRK fusions occurred in only 0.1% of patients (8 out of 7,311 patients), they conferred responsiveness to TRK inhibition *in vitro* and *in vivo* in a patient-derived xenograft and a corresponding AML patient with *ETV6-NTRK2* fusion. These data identify that despite their individual rarity, collectively TRK fusions are present in a wide variety of hematologic malignancies and predict clinically significant therapeutic responses to TRK inhibition.
INTRODUCTION

Fusions involving neurotrophic receptor tyrosine kinases (NTRK) were among the first gene translocations described in cancer.(1, 2) NTRK1, NTRK2, and NTRK3 (encoding TrkA, TrkB, and TrkC, respectively; hereafter collectively referred to as TRK) are primarily expressed in neuronal tissue. Rearrangements resulting in fusion of the carboxy-terminal kinase domain of TRK and various upstream amino-terminal partners create chimeric proteins with ectopic expression and constitutive kinase activation. TRK fusions are pathognomonic for several rare solid tumor malignancies (3-6) but are present in <1% of all solid tumors.(7-10) Although TRK fusions are uncommon, efficacy of TRK inhibition in solid tumor patients harboring these fusions is striking with an 80% overall response rate for the highly selective pan-TRK inhibitor larotrectinib in a cohort of 17 tumor types.(11) Based on these data larotrectinib received the first tissue-agnostic Breakthrough Therapy Designation from the FDA for adult and pediatric patients with advanced solid tumors bearing TRK fusions.

Despite the promise of TRK inhibition in solid tumors, the frequency and characteristics of TRK fusions in hematologic malignancies has not been systematically evaluated nor is there knowledge of the clinical efficacy of TRK inhibition in any hematologic malignancy. Given that individual patients with TRK fusions have been described in acute myeloid leukemia (AML),(12-14) Philadelphia chromosome-like B-cell acute lymphoblastic leukemia (Ph-like B-ALL),(15) and histiocytosis,(16) TRK fusions may have clinical importance in hematologic malignancies. Here we describe the frequency and characteristics of NTRK1-3 fusions across >7,000 pediatric and adult patients with hematologic malignancies and report the efficacy of TRK inhibition in a refractory AML patient with a novel ETV6-NTRK2 fusion.
RESULTS AND DISCUSSION

We performed next-generation targeted DNA and RNA sequencing across 7,311 patients with a variety of hematologic malignancies and discovered 8 patients (0.1%) harboring in-frame NTRK1, -2, or -3 fusions that included the full tyrosine kinase domain (Figure 1A and Table 1). TRK fusions occurred equally in males and females and across an age range of <1 to 77 years (Table 1); the denominator (7,311 patients) and demographics for each disease subtype sequenced are listed in Supplemental Table 1. Fusions occurred in patients with histiocytic (LMNA-NTRK1, TFG-NTRK1) and dendritic cell (TPR-NTRK1) neoplasms (n=3/78; 3.8%) as well as ALL (ETV6-NTRK3; n=1/659; 0.15%) and AML (ETV6-NTRK2, ETV6-NTRK3; n=2/1201; 0.17%). In addition, we detected two multiple myeloma patients with NTRK3 fusions (UBE2R2-NTRK3 and HNRNPA2B1-NTRK3; n=2/1859; 0.11%).

Four of the eight TRK fusions identified here were either previously unreported in the literature or had been reported but not functionally evaluated. To investigate the functional relevance of these alterations, these four fusions were cloned and expressed in c-Kit+ mouse bone marrow (BM) cells where they resulted in a 1.7 to 2.2-fold expansion in colony formation (Figure 1B) and increased activation of AKT and PLCγ1 (Figure 1C). Despite uniform growth promoting properties in primary murine BM cells and equivalent levels of TRK protein expression, each TRK fusion displayed distinct transforming and transphosphorylation properties in murine 32D and Ba/F3 hematopoietic cell lines. For example, LMNA-NTRK1, ETV6-NTRK2, and UBE2R2-NTRK3 fusions caused robust cytokine-independent growth of both Ba/F3 and 32D cells while the HNRNPA2/B1-NTRK3 fusion did not transform Ba/F3 cells (Figure 1D and Supplemental Figure 1A). Consistent with these different growth properties, each fusion activated or did not activate PI3K-AKT, MAPK, and PLCγ1 signaling to differing degrees (Supplemental Figure 1B). Regardless of potential differences in lineage-dependent transforming capacities, expression of TRK fusions in primary mouse BM or cell lines conferred sensitivity to TRK inhibition (Figure 2A-B and Supplemental Figure 1C).
The above studies identified a 77-year old man with a history of chronic lymphocytic leukemia (CLL) who had developed refractory secondary AML with \textit{ETV6-NTRK2} as well as \textit{ETV6-MECOM} fusions plus seven additional mutations (Table 1). qRT-PCR analysis of FACS-purified CLL and AML populations identified that the \textit{ETV6-NTRK2} fusion was restricted to the AML and not expressed in the residual CLL (Supplemental Figure 2A-B). A patient-derived xenograft (PDX) was generated and tested for potential sensitivity to larotrectinib. The schema for creating the PDX is diagrammed in Figure 2C. Once engraftment of human myeloid cells was >10% of total, live BM mononuclear cells (MNCs), engrafted mice were randomized to receive oral larotrectinib (150 mg/kg/day) or vehicle for 14 days (note, there was no evidence of CLL cell engraftment \textit{in vivo}). Larotrectinib treatment reduced human chimerism as measured by FACS and histologic analysis (Figure 2D and Supplemental Figure 2C), discrepancy in human CD45 percentages between FACS and histology are due to sample in entire skeleton versus one bone, respectively). Consistent with this response, \textit{ETV6-NTRK2} expression was dramatically reduced in larotrectinib-treated mice (Supplemental Figure 2D) with the residual remaining cells positive only for the co-occurring \textit{ETV6-MECOM} fusion.

Given the response in the PDX and lack of treatment options, the above-mentioned patient received larotrectinib 100 mg twice daily provided under FDA expanded access and attained a partial response (17) as assessed by BM biopsy at day 60 (BM blasts decreased from 54\% to 20\% with absolute neutrophil count >1,000/μL and platelet count >100,000/μL). A >50\% reduction in peripheral blood blasts occurred over 10 weeks coincident with a reduction in the abundance of \textit{ETV6-NTRK2} fusion transcripts (Figure 3A) and the patient achieved a partial remission (full clinical parameters shown in Supplementary Table 2). A 10-day treatment interruption due to respiratory distress and temporary intubation (unrelated to larotrectinib) resulted in an increase in circulating blast percentage, which was once again reduced when larotrectinib was reinitiated. Overall, the clinical response to larotrectinib was mirrored by changes in the abundance of the \textit{ETV6-NTRK2} fusion (Figure 3A-B).
After 10-12 weeks of treatment, the patient eventually showed signs of clinical relapse and opted for supportive care. To evaluate the cause of relapse after larotrectinib therapy, we characterized ETV6-NTRK2 expression across the immunophenotypically distinct AML subpopulations. This analysis revealed that the ETV6-NTRK2 fusion was present in only one AML subpopulation of leukemic blasts at baseline (Supplemental Figure 2A-B). Flow cytometric analysis of serial BMs obtained during larotrectinib treatment revealed elimination of the population bearing the ETV6-NTRK2 fusion (CD33⁺ CD34⁺ CD117⁻ CD11B⁺ CD13⁻ CD64⁺ cells) with continued presence of the population expressing the ETV6-MECOM fusion (CD33⁺ CD34⁺ CD117⁻ CD11b⁻ CD123⁺ CD13⁺ CD64⁻ cells) (Figure 3C and Supplemental Figure 2E). Serial targeted RNA-seq identified reduced ETV6-NTRK2 expression throughout larotrectinib treatment with concomitant increased ETV6-MECOM expression (Figure 3A). No mutations in NTRK2, including mutations associated with resistance to TRK inhibition,(18) were detected at any time point, suggesting that clinical progression on larotrectinib was due to an expansion of the TRK fusion-negative AML clone, noted to be present at baseline.

We herein describe that TRK fusions occur across patients with a wide variety of hematologic malignancies and are amenable to TRK inhibition. In addition to prior data identifying TRK fusions in patients with AML,(12-14) Ph-like B-ALL,(15) and histiocytosis,(16) we also document TRK fusions in multiple myeloma and dendritic cell neoplasms. Although the frequency of TRK fusions appears to be rare across a very wide spectrum of leukemias and lymphoid malignancies studied here, the antitumor activity of larotrectinib seen here calls for systematic identification of TRK fusions in the clinical evaluation of hematologic malignancy patients with refractory disease. In the solid tumor setting, immunohistochemistry (IHC) with a pan-TRK antibody has shown potential for TRK fusion detection in certain settings.(19) However, TRK IHC has not been studied in hematologic malignancies, where expression of TRK kinases in the absence of gene rearrangements has been described.(20, 21) As noted earlier, the efficacy of larotrectinib in TRK fusion expressing cancer types was very recently
demonstrated in a histology- and age-agnostic study of children and adults with solid tumors. In this study, 55 patients with 17 TRK fusion-positive tumor types received larotrectinib with an objective response rate of 80%.\(^{(11)}\) In the solid tumor experience, occasional on-target mechanisms of acquired drug resistance were observed to occur due to drug-resistant mutations in the kinase domain of TRK proteins. By contrast, in this case of the \textit{ETV6-NTRK2} expressing AML patient, the TRK fusion clone was suppressed by TRK inhibition but ultimately the efficacy of TRK inhibition was limited by the subclonal nature of the fusion. Further efforts to correlate the response to TRK inhibition with the clonal nature of TRK fusion expression will thus be important to determining how durable responses will be in hematologic malignancies. In the setting of subclonal TRK fusions, combination strategies employing highly selective inhibitors with other anti-cancer agents, with limited overlapping toxicities, will likely be required to achieve complete responses.
METHODS

Patient samples
Targeted DNA (>50ng) and RNA (>300ng) sequencing was interrogated using the FoundationOne Heme Panel (Foundation Medicine, Inc., Cambridge, MA).(22) The panel analyzes the complete coding DNA sequence of 405 genes, as well as selected introns of 31 genes involved in chromosomal rearrangements. It also interrogates the RNA sequence of 265 genes commonly rearranged into fusions. Although raw sequencing data from FoundationOne Heme Assay is not available for public accessibility, researchers may contact Foundation Medicine Inc. to discuss request of access (client.services@foundationmedicine.com).

Anchored multiplex PCR for targeted next-generation sequencing of fusions
Detailed methods for multiplex fusion PCR are provided in the Supplemental Materials.

Xenotransplantation
Six-week-old NSGS (stock #013062) mice were sublethally irradiated (200 cGy) 24 hours before transplantation followed by direct intrafemoral injection.(23) Viably frozen BM MNCs were used for xenografts and engrafted into the maximal number of recipient animals (which was six recipient mice total).

Flow cytometry
Detailed methods for flow cytometry and all antibodies utilized are provided in the Supplemental Materials.
Histology
Detailed methods for histological analyses and antibodies used for immunohistochemistry are provided in the Supplemental Materials.

Western Blotting
Detailed methods for western blotting and all antibodies utilized are provided in the Supplemental Materials.

Colony forming assays and in vitro and in vivo drug studies
Detailed methods for colony forming assays and in vitro and in vivo drug studies are provided in the Supplemental Materials.

Statistics
Prism Version 6 software (GraphPad) was used for statistical analysis. Data are presented as the mean ± standard deviation. Statistical analysis was performed using the two-tailed Student’s t-test for comparison of two groups to determine the level of significance. Correction for multiple testing was performed using the Bonferroni method.

Study approval
The human subject studies were approved by the Memorial Sloan Kettering Cancer Center’s institutional review board (New York) and diagnostic bone marrow (BM) aspirates or peripheral blood (PB) samples were obtained from patients at Memorial Sloan Kettering Cancer Center (MSKCC) after obtaining written informed consent. Animal experiments were approved by the Institutional Animal Care and Use Committee of MSKCC (New York).
Authorship Contributions

JT, AY, SSC, CM, LB, DI, and YRC performed the experiments. DP, RB, EC, LAA, TIM, MA, and SA performed sequencing and sequencing analyses. EC, KM, KE, BBT, NK, and MS helped with drug experiments. BHD, MR and JFH performed histology analysis. JMW, ELD, DMH, and JHP treated the patient. JT, JHP, and OAW wrote the manuscript. All authors approved the manuscript.

Acknowledgements

JT is supported by grants from The Conquer Cancer Foundation of the American Society of Clinical Oncology, The American Association for Cancer Research, the American Society of Hematology and the Robert Wood Johnson Foundation. JHP is supported by grants from the Conquer Cancer Foundation of the American Society of Clinical Oncology, the Leukemia and Lymphoma Society, the National Comprehensive Cancer Network, and the American Society of Hematology. OAW is supported by grants from the Edward P. Evans Foundation, the Dept. of Defense Bone Marrow Failure Research Program (BM150092 and W81XWH-12-1-0041), NIH/NHLBI (R01 HL128239), NIH/NCI (R01 CA201247-01A1), the Leukemia and Lymphoma Society, the Pershing Square Sohn Cancer Research Alliance, and the MSKCC core grant (P30 CA008748).

Disclosure of Conflicts of Interest

DP, LAA, TM and SA are employees of Foundation Medicine Inc. KE, BBT and NK are employees of LOXO Oncology Inc.
REFERENCES

Table 1. *NTRK1-3* fusions identified across 7,311 patients with hematologic malignancies.

<table>
<thead>
<tr>
<th>Disease</th>
<th>Age</th>
<th>Sex</th>
<th>Fusion</th>
<th>Breakpoint location</th>
<th>Previously identified (H/S)</th>
<th>Previously functionally evaluated?</th>
<th>Other Genetic alterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECD</td>
<td>27</td>
<td>M</td>
<td>LMNA-NTRK1</td>
<td>LMNA: intron 5, NTRK1: exon 11</td>
<td>Y (H/S)</td>
<td>N</td>
<td>None</td>
</tr>
<tr>
<td>ECD</td>
<td>2 mo</td>
<td>M</td>
<td>TFG-NTRK1</td>
<td>TFG: intron 7, NTRK1: intron 11</td>
<td>Y (S)</td>
<td>Y</td>
<td>None</td>
</tr>
<tr>
<td>IDCS</td>
<td>20</td>
<td>M</td>
<td>TPR-NTRK1</td>
<td>TPR: intron 21, NTRK1: intron 11</td>
<td>Y (H/S)</td>
<td>Y</td>
<td>CDKN2A and CDKN2B loss</td>
</tr>
<tr>
<td>MM</td>
<td>53</td>
<td>F</td>
<td>UBE2R2-NTRK3</td>
<td>UBE2R2: intron 3, NTRK3: intron 3</td>
<td>N</td>
<td>N</td>
<td>KRASQ61H, CXCR4S323fs, MTORD2512Y, TRAF3S84*; IGH-WWOX fusion</td>
</tr>
<tr>
<td>MM</td>
<td>76</td>
<td>F</td>
<td>HNRNPA2B1-NTRK3</td>
<td>HNRNPA2B1: intron7, NTRK3: intron 13</td>
<td>N</td>
<td>N</td>
<td>None</td>
</tr>
<tr>
<td>B-ALL</td>
<td>11</td>
<td>F</td>
<td>ETV6-NTRK3</td>
<td>ETV6: intron 5, NTRK3: intron 14</td>
<td>Y(H/S)</td>
<td>Y</td>
<td>JAK2T875N, PTPN11G503A, WT1C350R, CRLF2-P2RY8 fusion, CDKN2A and CDKN2B loss</td>
</tr>
<tr>
<td>AML</td>
<td>54</td>
<td>F</td>
<td>ETV6-NTRK3</td>
<td>ETV6: intron 4, NTRK3: intron 14</td>
<td>Y(H/S)</td>
<td>Y</td>
<td>IDH1R132H, CBLQ367R, DNMT3AR882H, NPM1W288fs, FLT3E596_Y597ins59, CUX1 loss</td>
</tr>
<tr>
<td>AML</td>
<td>77</td>
<td>M</td>
<td>ETV6-NTRK2</td>
<td>ETV6: intron 5, NTRK2: intron 15</td>
<td>N</td>
<td>N</td>
<td>CHEK2E457fs, CHEK2R217fs, NF1Q2721*, DNMT3AW698*, ASXL1G646fs, KRASQ61P, CDKN1B deletion, ETV6-MECOM fusion</td>
</tr>
</tbody>
</table>

*AML: Acute myeloid leukemia; B-ALL: B-cell acute lymphoblastic leukemia; ECD: Erdheim-Chester Disease; IDCS: Interdigitating dendritic cell sarcoma; MM: multiple myeloma.

*B: Age in years unless otherwise specified for one patient who was 2 months old ("mo").

*N: NGS: next-generation sequencing.

S: Previously reported in a case of either H = hematologic or S = solid tumor malignancy. Y: yes, N: no.
Figure 1. Transforming TRK fusions are present across hematologic malignancies and cause transformation in a cell-type specific manner. (A) Diagram of the TRK fusions identified across 7,311 hematologic malignancy patients with domain of each protein included in the fusion and the nucleotide sequence at the breakpoints shown. The carboxy-terminal kinase domains of TRK proteins are fused in-frame to the amino-terminal fusion partners. (B) Methylcellulose colony numbers formed by murine c-Kit+ bone marrow transduced with the
indicated fusion proteins (CFU-GM: colony forming unit granulocyte-macrophage; CFU-GEMM: colony forming unit granulocyte, erythrocyte, monocyte, megakaryocyte; and BFU-E: burst forming unit erythroid). (C) Western blot performed on lysates from cells in (B). Blots were stripped and re-probed for total proteins after respective phospho-proteins. (D) Growth of 32D cells in media lacking IL-3 either expressing the indicated fusion protein or transduced with the empty vector (EV) as negative control. Error bars represent mean and standard deviation from triplicate samples. Differences were calculated using a two-sided Student’s t-test and corrected for multiple testing using the Bonferroni method (*represents $p<0.0125$).
Figure 2. TRK fusions confer responsiveness to TRK inhibition in hematopoietic malignancies in vitro and in vivo. (A) Colony numbers derived from c-Kit+ murine bone marrow cells stably expressing the indicated constructs grown in increasing concentrations (0, 25, and 50nM) of larotrectinib in methylcellulose. (B) Cell viability of IL-3 independent 32D cells expressing TRK fusions following 72 hours of larotrectinib or vehicle treatment. The IC50 is calculated from the slope of the log inhibitor vs. response curve. (C) Schematic of creation and testing of larotrectinib in a patient-derived xenograft (PDX) from an acute myeloid leukemia (AML) patient with an ETV6-NTRK2 fusion. (D) Flow cytometric analysis of mouse versus human cell subsets (mCD45 versus hCD45) in BM of a PDX after larotrectinib or vehicle.
treatment (each row represents a distinct individual mouse xenografted with the same patient sample; all percentages represent percentage of live, mouse Ter119 (mTer119)-negative cells). (E) Anti-hCD45 immunohistochemical analysis in BM from PDX mice treated with vehicle or larotrectinib for 14 days (top row scalebar: 200 microns; bottom row scalebar: 50 microns; each column represents a distinct individual mouse xenografted with the same patient sample). Error bars represent mean and standard deviation from triplicate samples. Differences were calculated using a two-sided Student’s t-test and corrected for multiple testing using the Bonferroni method (* represents p<0.0125; NS= non-significant).
Figure 3. Response of ETV6-NTRK2 fusion acute myeloid leukemia (AML) to larotrectinib and clinical relapse due to outgrowth of TRK-fusion negative clone. (A) Targeted RNA-seq of peripheral blood mononuclear cells (PB MNCs) during larotrectinib treatment of the patient showing sequencing reads supporting ETV6-NTRK2 (red line) or ETV6-MECOM (blue line). Gray areas denote time when larotrectinib was being administered to the patient. (B) ETV6-NTRK2 expression in PB MNCs measured by qRT-PCR (red line) during treatment of the patient as well as absolute number of PB blasts (black line). Error bars represent mean and standard deviation from triplicate samples (error bars for blast % in (B) represent average of 3 consecutive days of blast % surrounding this timepoint). Relative fold expression of ETV6-NTRK2 was defined relative to the last timepoint. (C) Serial FACS analysis of bone marrow samples pretreatment (top two rows) and post-treatment (bottom two rows) with larotrectinib. All cells were gated on live cells and gates with red labels were gated on blasts as well. Changes in the frequency of TRK fusion positive (turquoise; CD34+ CD117- cells in the blast gate) and negative (red; CD34+ CD117+ cells in the blast gate) blasts pre- and post-treatment are shown. Normal monocytes (CD45+ HLA-DR+ CD11b+ CD14+) are shown in purple.