Angelman syndrome (AS) is a neurodevelopmental disorder in which epilepsy is common (~90%) and often refractory to antiepileptics. AS is caused by mutation of the maternal allele encoding the ubiquitin protein ligase E3A (UBE3A), but it is unclear how this genetic insult confers vulnerability to seizure development and progression (i.e., epileptogenesis). Here, we implemented the flurothyl kindling and retest paradigm in AS model mice to assess epileptogenesis and to gain mechanistic insights owed to loss of maternal Ube3a. AS model mice kindled similarly to wild-type mice, but they displayed a markedly increased sensitivity to flurothyl-, kainic acid–, and hyperthermia-induced seizures measured a month later during retest. Pathological characterization revealed enhanced deposition of perineuronal nets in the dentate gyrus of the hippocampus of AS mice in the absence of overt neuronal loss or mossy fiber sprouting. This pro-epileptogenic phenotype resulted from Ube3a deletion in GABAergic but not glutamatergic neurons, and it was rescued by pancellular reinstatement of Ube3a at postnatal day 21 (P21), but not during adulthood. Our results suggest that epileptogenic susceptibility in AS patients is a consequence of the dysfunctional development of GABAergic circuits, which may be amenable to therapies leveraging juvenile reinstatement of UBE3A.
Ube3a reinstatement mitigates epileptogenesis in Angelman syndrome model mice

Bin Gu,1 Kelly E. Carstens,1,2 Matthew C. Judson,1,3 Katherine A. Dalton,4 Marie Rougié,1 Ellen P. Clark,1 Serena M. Dudek,2 and Benjamin D. Philpot1,3,5

1Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA. 2Neurobiology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA. 3Carolina Institute for Developmental Disabilities, 4Psychology and Neuroscience Program, and 5UNC Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina, USA.

Angelman syndrome (AS) is a neurodevelopmental disorder in which epilepsy is common (~90%) and often refractory to antiepileptics. AS is caused by mutation of the maternal allele encoding the ubiquitin protein ligase E3A (UBE3A), but it is unclear how this genetic insult confers vulnerability to seizure development and progression (i.e., epileptogenesis). Here, we implemented the flurothyl kindling and retest paradigm in AS model mice to assess epileptogenesis and to gain mechanistic insights owed to loss of maternal Ube3a. AS model mice kindled similarly to wild-type mice, but they displayed a markedly increased sensitivity to flurothyl-, kainic acid-, and hyperthermia-induced seizures measured a month later during retest. Pathological characterization revealed enhanced deposition of perineuronal nets in the dentate gyrus of the hippocampus of AS mice in the absence of overt neuronal loss or mossy fiber sprouting. This pro-epileptogenic phenotype resulted from Ube3a deletion in GABAergic but not glutamatergic neurons, and it was rescued by pancellular reinstatement of Ube3a at postnatal day 21 (P21), but not during adulthood. Our results suggest that epileptogenic susceptibility in AS patients is a consequence of the dysfunctional development of GABAergic circuits, which may be amenable to therapies leveraging juvenile reinstatement of UBE3A.

Introduction

Deletions or mutations of the maternally inherited copy of the UBE3A gene cause Angelman syndrome (AS). Individuals with AS exhibit developmental delay, motor dysfunction, lack of speech, and highly penetrant EEG abnormalities and seizures (1, 2). Epilepsy in AS is common (80%-95% penetrance), polymorphic, and often resistant to available antiepileptic drugs. The frequency, severity, and pharmacological intractability of the seizures exact a heavy toll on the quality of life of individuals with AS and their caregivers (1–6). AS model mice lacking a functional maternal copy of the orthologous Ube3a gene (Ube3a^{m−/−}) exhibit many clinical aspects of AS, including EEG abnormalities and circuit hyperexcitability, and offer a preclinical model for developing new therapeutics (7–13). To date, studies of epilepsy in AS model mice have utilized acute seizure induction paradigms, which illuminate mechanisms of ictogenesis but fail to provide insight into how seizures develop and progress over time (7–12). This paucity of knowledge regarding epileptogenic mechanisms in AS is a barrier to the development of effective therapies.

Although there is currently no cure for AS, UBE3A gene replacement or reactivation of the inactive, epigenetically silenced paternal UBE3A allele in neurons holds great therapeutic promise, including for the treatment of epilepsy (14–17). However, many AS phenotypes in mouse models are impervious to rescue by reinstatement of Ube3a beyond the early stages of postnatal development (11), suggesting that there is a critical period for therapeutic recovery. Determining whether epileptogenesis is similarly refractory to later postnatal and adult UBE3A reinstatement, and identifying the neural circuits through which UBE3A reexpression mediates its antiepileptogenic effects, will be necessary to guide the optimal implementation of emerging UBE3A-reinstatement therapies. These efforts also promise to help refine existing strategies to treat intractable epilepsy in AS and perhaps other neurodevelopmental disorders.

Results and Discussion

Flurothyl kindling (flurothyl exposure once daily for 8 days, and retest at day 36) allows for the assessment of both ictogenic and epileptogenic properties in mice (Figure 1A and refs. 18, 19). We tested adult AS model mice (Ube3a^{m−/−}) in this paradigm, finding that they exhibited similar seizure susceptibility in response to an initial flurothyl exposure (day 1), but kindled somewhat more slowly than wild-type (WT) controls during the induction phase (Figure 1, B and C, and Supplemental Table 1; supplemental material available online with this article; https://doi.org/10.1172/JCI120816DS1). This indicated that adult naïve AS mice (on C57BL/6J background) have a relatively normal response to flurothyl, consistent with previous studies utilizing other convulsive stimuli (7–10). However, upon being retested with flurothyl following a month-long incubation period without exposure to
Does the pro-epileptogenic phenotype precipitated by flurothyl kindling generalize across circuits and to other models of seizure induction? We first addressed this question by measuring the response of flurothyl-kindled AS and WT mice to repeated systemic administration of kainic acid (21), which predominantly triggers limbic seizures (22). Kainic acid evoked more severe electrographic and behavioral seizure responses in flurothyl-kindled AS mice compared with WT (Figure 1G). Because AS individuals tend to have seizures during febrile episodes or even following moderate increases in body temperature (4, 5), we also challenged kindled WT and AS with hyperthermia, by slowly raising body temperature in a carefully controlled fashion to 42.5°C. No WT mice seized in this paradigm, whereas all AS model mice exhibited generalized seizures at a modestly elevated (average = 40.1°C) body temperature (Figure 1H).

We previously found that GABAergic, but not glutamatergic, neuron-specific loss of Ube3a causes hyperexcitability within the drug (day 36), AS mice showed a striking reduction in seizure threshold, not only in comparison with WT, but also in comparison with their own day 8 responses at the completion of flurothyl kindling (Figure 1, B and C).

Given that spontaneous recurrent seizures (SRSs) manifest and rapidly evolve in C57BL/6J mice following 8-day kindling with flurothyl (18), we hypothesized that SRSs in AS mice might occur more frequently or with altered temporal dynamics during the month-long incubation period, possibly explaining the exaggerated seizure phenotype that we observed upon retest (20). We therefore monitored SRSs during the incubation period by chronic video-EEG recording in a separate cohort of flurothyl-kindled WT and AS model mice. We found both the frequency and temporal evolution of SRSs to be similar between groups (Figure 1, D and E), indicating that exaggerated epileptogenesis in flurothyl-kindled AS mice is not due to the differential expression of SRSs (Figure 1F).

Does the pro-epileptogenic phenotype precipitated by flurothyl kindling generalize across circuits and to other models of seizure induction? We first addressed this question by measuring the response of flurothyl-kindled AS and WT mice to repeated systemic administration of kainic acid (21), which predominantly triggers limbic seizures (22). Kainic acid evoked more severe electrographic and behavioral seizure responses in flurothyl-kindled AS mice compared with WT (Figure 1G). Because AS individuals tend to have seizures during febrile episodes or even following moderate increases in body temperature (4, 5), we also challenged kindled WT and AS with hyperthermia, by slowly raising body temperature in a carefully controlled fashion to 42.5°C. No WT mice seized in this paradigm, whereas all AS model mice exhibited generalized seizures at a modestly elevated (average = 40.1°C) body temperature (Figure 1H).

We previously found that GABAergic, but not glutamatergic, neuron-specific loss of Ube3a causes hyperexcitability within
the neocortex and in broader behavioral contexts in mice (12). Accordingly, we explored the neuron type–specific consequenc-
es of Ube3a loss toward the manifestation of pro-epileptogenic outcomes in AS, using mice in which maternal Ube3a was deleted selectively in either glutamatergic (Ube3a^{fl/p+} NEX-Cre) or GABA-
ergic (Ube3a^{fl/p+} Gad2-Cre) neurons. Control and Ube3a^{fl/p+} NEX-
Cre mice exhibited similar flurothyl seizure susceptibility during the induction phase and at retest (Figure 2, A and B, and Sup-
plemental Table 1). In contrast to what we observed in Ube3a^{fl/p+} NEX-Cre mice, but consistent with our previous studies (12), we found that naive Ube3a^{fl/p+} Gad2-Cre mice were highly susceptible to initial flurothyl exposure, exhibiting greatly reduced latency to seizure on the first trial of the kindling process and often suc-
cumbing to severe generalized seizures (Figure 2, C and D, trial 1). Given the high mortality of Ube3a^{fl/p+} Gad2-Cre mice during 8-day flurothyl kindling (12), we opted to challenge Ube3a^{fl/p+} Gad2-Cre mice with an abbreviated, 4-day flurothyl kindling paradigm. Control mice had significantly reduced seizure thresh-
olds upon flurothyl retest (day 32) compared with day 1 in these experiments, demonstrating that the abbreviated kindling proto-
col was sufficient to promote epileptogenesis (Figure 2D; but see ref. 19). This effect was greatly exaggerated in Ube3a^{fl/p+} Gad2-
Cre mice, despite a flat kindling curve, possibly due to extremely low seizure threshold responses on day 1 (Figure 2, C and D, and Sup-
plemental Table 1). Collectively, these findings reveal that loss of Ube3a selectively from GABAergic, but not glutamater-
ergic, neurons enhances epileptogenic potential in a manner that is dissociable from reductions in acute (day 1) seizure threshold. These results also support excitation/inhibition (E/I) imbalance as a potential mechanism of epileptogenesis, as it is in icotogenesis (23), as presumably the positive E/I shift is much more robust in mice with GABAergic neuron–specific deletion than in mice with germline Ube3a deletion.

Though currently limited in the areas of safety and deliver-
ability, the most promising AS treatment strategies to date are based on the replacement of neuronal UBE3A (14–17). AS mice with the capacity for conditional reinstatement of maternal Ube3a (^{Ube3a^{STOP}/}Cre^{ERT2}) provide a valuable preclinical model in which to evaluate the efficacy of this emerging therapeutic approach. These Ube3a-reinstatement mice have already been used to show that many AS phenotypes are impervious to rescue by reinstate-
ment of Ube3a during adulthood (11). Similarly, we observed that enhanced epileptogenesis could not be rescued in adult Ube3a^{STOP/C}re^{ERT2} mice through tamoxifen-induced (TAM-induced) rein-
statement of Ube3a — either immediately after the completion (Figure 3A), or 2 weeks prior to the initiation (Figure 3B), of fluroth-
yl kindling (Supplemental Figure 1, A and B). This suggested that the critical period for prevention of this pro-epileptogenic pheno-
type closes prior to adulthood. Accordingly, in subsequent exper-
iments we initiated TAM injections in juvenile mice (at P21), well in advance of flurothyl kindling in adulthood. Juvenile restoration of Ube3a mitigated epileptogenesis in adult Ube3a^{STOP/C}re^{ERT2} mice (Figure 3C), normalizing flurothyl retest responses to control levels without affecting the induction of kindling (Supplemental Figure 1C). Importantly, TAM treatment reinstated UBE3A to a similar level in both juvenile and adult mice (Supplemental Figure 2), suggesting that the selective antiepileptogenic effect of Ube3a reinstatement in juveniles is a function of early develop-
mental intervention, and not an artifact of inefficient Ube3a rein-
statement during adulthood. However, in our study, juvenile AS mice experienced a longer postintervention interval than adult AS mice, leaving open the possibility that a longer duration of Ube3a reinstatement could also be required for antiepileptogenic bene-
fit. Thus, future studies are needed to determine whether some antiepileptogenic benefit can be realized in adult mice following a prolonged period of Ube3a reinstatement.

We found that flurothyl-kindled AS mice were highly sus-
ceptible to kainic acid (Figure 1G), which predominately triggers limbic seizures (22). Therefore, even though flurothyl kindling typically results in minor hippocampal pathology compared with models of temporal lobe epilepsy (24, 25), we suspected that hall-
marks of hippocampal damage might be penetrant in flurothyl-
kindled AS mice. We assayed 2 classic hippocampal pathologi-
iscal features: mossy fiber sprouting via zinc transporter 3 (ZnT3)
The Journal of Clinical Investigation

CONCISE COMMUNICATION

gyrus is a reliable anatomical correlate of enhanced epileptogenesis in flurothyl-kindled AS mice. Converging lines of evidence show that seizures can alter components of PNNs, but the specific proteins involved, and the direction and duration of changes may vary depending on a number of factors — the age of the animal, the seizure induction method, the brain region studied, and the time elapsed following seizure (27–30). Each of these factors, and hence the nature of the relationship between abnormal PNN deposition and epileptogenesis in AS model mice, remains to be rigorously investigated.

Seizures in AS patients usually begin in early childhood (4–6), but knowledge of the evolution of epilepsy in AS is scarce due to lack of rigorous retrospective or longitudinal studies. In this study, we used the flurothyl kindling and retest paradigm to demonstrate that AS model mice have a greatly enhanced capacity for epileptogenesis, which is rooted in the loss of \(Ube3a \) expression from GABAergic neurons. While additional studies will be required to resolve the developmental emergence of heightened epileptogenic susceptibility in AS mice — perhaps shedding light on the evolution of epilepsy in AS patients in the process — our results reveal that juvenile reinstatement of \(Ube3a \) normalizes epileptogenic potential later in adulthood. This suggests that \(Ube3a \) plays a

staining, and neuronal loss via NeuN staining. Neither was apparent in flurothyl-kindled mice, regardless of genotype (Figure 4A). We next questioned whether gross changes in the hippocampal extracellular matrix, perineuronal nets (PNNs) in particular, might associate with the exaggerated epileptogenesis phenotype in flurothyl-kindled AS model mice. PNNs are uniquely localized around specific neurons to regulate synapse stability and plasticity in the adult CNS (26), and have been associated with epileptic activity during early and late development (27–30). To examine a possible link between changes in PNNs and enhanced epileptogenesis in AS model mice, we labeled PNNs with biotinylated *Wisteria floribunda* agglutinin (WFA) in flurothyl-kindled mice before (Supplemental Figure 3), or 1 hour after (Figure 4, A and B), retest. We observed dramatically increased WFA staining selectively in the dentate gyrus granule cell layer and stratum moleculare of AS mice, regardless of sampling relative to retest (Figure 4, A and B, and Supplemental Figures 3 and 4). Vehicle-treated, flurothyl-kindled \(Ube3a^{STOP/p+} Cre^{ERT+} \) mice, which similarly lack maternal \(Ube3a \), expressed this same PNN-related abnormality (Figure 4C). Importantly, juvenile reinstatement of \(Ube3a \) (\(Ube3a^{STOP/p+} Cre^{ERT+} \)) normalized the PNN phenotype (Figure 4C), establishing that enhanced WFA staining in the dentate gyrus is a reliable anatomical correlate of enhanced epileptogenesis in flurothyl-kindled AS mice. Converging lines of evidence show that seizures can alter components of PNNs, but the specific proteins involved, and the direction and duration of changes may vary depending on a number of factors — the age of the animal, the seizure induction method, the brain region studied, and the time elapsed following seizure (27–30). Each of these factors, and hence the nature of the relationship between abnormal PNN deposition and epileptogenesis in AS model mice, remains to be rigorously investigated.

Seizures in AS patients usually begin in early childhood (4–6), but knowledge of the evolution of epilepsy in AS is scarce due to lack of rigorous retrospective or longitudinal studies. In this study, we used the flurothyl kindling and retest paradigm to demonstrate that AS model mice have a greatly enhanced capacity for epileptogenesis, which is rooted in the loss of \(Ube3a \) expression from GABAergic neurons. While additional studies will be required to resolve the developmental emergence of heightened epileptogenic susceptibility in AS mice — perhaps shedding light on the evolution of epilepsy in AS patients in the process — our results reveal that juvenile reinstatement of \(Ube3a \) normalizes epileptogenic potential later in adulthood. This suggests that \(Ube3a \) plays a
loss-of-function point mutations of maternal UBE3A cause AS (32–34). Notably, in cases of AS caused by 15q11-q13 deletion, other genes, including a cluster of 3 GABA AR subunits, are also deleted (35, 36). This compound genetic insult presumably underlies increased penetrance and severity of seizure phenotypes (37), and may portend a commensurately limited efficacy of juvenile UBE3A reinstatement for treating epilepsy in 15q11-q13 deletion cases of AS relative to UBE3A-specific cases.

Collectively, our findings highlight the importance of carefully defining when UBE3A reinstatement will be efficacious in treating a range of AS phenotypes, which can differ significantly in terms of their onset and developmental trajectory. This knowledge will be invaluable in informing the design of upcoming clinical trials leveraging UBE3A-reinstatement therapies.

Methods
Detailed experimental methods are included with the supplemental materials. Male and female mice were used for experiments in equal genotypic ratios. Data are presented as mean ± SEM. Unpaired t tests (2-tailed) were used for single comparisons, and 2-way ANOVAs were used for multiple comparisons. P < 0.05 was considered significant.

Study approval. All animal procedures followed NIH guidelines and were approved by the IACUC at the University of North Carolina.

Author contributions
BG and KEC performed experiments. BG, KEC, and KAD analyzed the data. MCJ gave critical advice. MR and EPC managed the mouse colony and genotyping. BG, KEC, SMD, and BDP designed and coordinated the investigations. BG, KEC, MCJ, SMD, and BDP wrote the manuscript.

Acknowledgments
This work was supported by an American Epilepsy Society postdoctoral fellowship (to BG), the Intramural Research Program of the National Institute of Environmental Health Sciences and NIH grant ZIAES100221 (to SMD), National Institute of Neurological Disorders and Stroke grants R56NS097831 and R01NS085093, Eunice Kennedy Shriver National Institute of Child Health and Human Development grant R01HD093771, and the Angelman Syndrome Foundation (to BDP). We thank Klaus-Armin Nave and Ype Elgersma for providing NEX-Cre and Ube3am+/STOP mice, respectively.

Address correspondence to: Benjamin D. Philpot, University of North Carolina, 115 Mason Farm Rd., Chapel Hill, North Carolina 27599-7545, USA. Phone: 919.966.0025; Email: bphilpot@med.unc.edu.