(Acc), sensitivity, specificity, and p-value [Acc > No Information Rate (NIR)] of model are shown, calculated by caret package for R. (D) Random forest modeling of PD-L1 with 5 k-folds cross-validation of GIST specimens (training set created by partitioning 80% of all GIST samples from Supplemental Table 1, n=61). Confusion matrix (bottom right) indicates assessment of modeling fit to training set. (E) Distribution of top 6 features identified by random forest modeling. *adjusted q-value<0.1. (F) Predictive capacity of model on remaining 14 GISTs (testing set) and external CINSARC GIST cohort (n=12). Accuracy, sensitivity, specificity, and p-value [Acc > No Information Rate] of model are shown, as calculated by caret package for R. Bars, mean ± SEM.

Supplemental Figure 1.
(A) Principal component analysis (PCA) of all GIST specimens (top) and only KIT, PDGFRA, and SDH-deficient specimens (bottom) as calculated by DESeq2 for R (n=75, clinicopathologic characteristics are available in Supplemental Table 1).

Supplemental Figure 2.
(A) (top) ESTIMATE and (bottom) Cyt scores by mitotic rate (left) and tumor sizes (middle and right) in all KIT and PDGFRA-mutant GISTs (n=61). (B) (top) ESTIMATE and (bottom) Cyt scores by mitotic rate (left) and tumor sizes (middle and right) in UPG KIT and PDGFRA-mutant GISTs (n=22). (C) ESTIMATE scores by mitotic rate in (left) UPG KIT and (right) UPG PDGFRA-mutant GISTs. High mitotic rate = >5 mitoses/hpf. Low mitotic rate = <5 mitoses/hpf. UPG = untreated, primary, gastric. *p<0.05, t-test. Bars, median.

Supplemental Figure 3.
(A) Demonstration of overfitting. On the left, using all 117 immune features to develop the random forest model on the All KIT vs. All PDGFRA training set (n=50) results in a 72.7% accuracy (red font) on the testing set (n=11). Decreasing the number of features included to 10, 8, and 6 results in an improvement in model accuracy on the testing set to 72.7%, 81.8%, and 90.9% respectively. (B) Retrained All KIT vs. All PDGFRA model with the top 6 features identified in Figure 6A excluded. (Left) Random forest modeling with 5-fold cross-validation of KIT and PDGFRA-mutant GIST specimens was performed. Training set created by partitioning 80% (n=50) of KIT and PDGFRA samples from Supplemental Table 3. Confusion matrix (middle) indicates assessment of model fit to training set. (Left) Predictive capacity of model on remaining KIT and PDGFRA-mutant GIST testing set (n=11), showing decreased classifier performance to 72.7% (red). Accuracy, sensitivity, specificity, and p-value [Acc > No Information Rate] of models are shown, as calculated by caret package for R.

Supplemental Figure 4.
(A) ESTIMATE and Cyt scores in PDGFRA-mutant GIST samples that were correctly classified as PDGFRA-mutant (n=14) and incorrectly classified as KIT-mutant (n=6) by our All KIT vs. All PDGFRA-mutant random forest model (Figure 6A-C). (B) Distribution of top 6 features identified by random forest modeling in KIT-mutant tumors correctly classified as KIT and incorrectly classified as PDGFRA by our All KIT and All PDGFRA-mutant random forest model.
Supplemental Figure 5.
Western blot showing PD-L1 protein expression correlates with PD-L1 mRNA expression calculated by DESeq2. Human GIST numbers and mutation status are shown. KIT = KIT-mutant, SDHD = SDH-deficient.
Supplemental Figure 1

Mutation Group
- KIT Exon 11
- PDGFRA non-D842V
- SDH
- WT
- Resistant KIT Exon 11
- KIT Exon 13
- KIT Exon 9
- Resistant KIT Exon 9
- Multiple Drivers
- NF1
- PDGFRA D842V
- PDGFRA D842V + p16 deletion

Only KIT, PDGFRA, and SDH shown for clarity
Supplemental Figure 2

A ALL KIT and PDGFRA-Mutant GISTs (n=61)

- Mitotic Rate
 - ESTIMATE Score
 - Low mitotic rate
 - High mitotic rate
 - p = 0.09

- Tumor Size ≥ 5 cm
 - ESTIMATE Score
 - <5 cm
 - ≥5 cm
 - p = 0.10

- Tumor Size ≥ 10 cm
 - ESTIMATE Score
 - <10 cm
 - ≥10 cm
 - p = 0.98

- Cyt Score
 - Low mitotic rate
 - High mitotic rate
 - p = 0.31

B UPG KIT and PDGFRA-Mutant GISTs (n=22)

- Mitotic Rate
 - ESTIMATE Score
 - Low mitotic rate
 - High mitotic rate
 - p = 0.03*

- Tumor Size ≥ 5 cm
 - ESTIMATE Score
 - <5 cm
 - ≥5 cm
 - p = 0.08

- Tumor Size ≥ 10 cm
 - ESTIMATE Score
 - <10 cm
 - ≥10 cm
 - p = 0.55

- Cyt Score
 - Low mitotic rate
 - High mitotic rate
 - p = 0.21

C UPG KIT GISTs UPG PDGFRA GISTs

- ESTIMATE Score
 - Low mitotic rate
 - High mitotic rate
 - p = 0.40

 - p = 0.39
Supplemental Figure 3

A

Increasing Model Performance with Fewer Model Features (Prevention of Overfitting)

<table>
<thead>
<tr>
<th>117 Feature Model</th>
<th>10 Feature Model</th>
<th>8 Feature Model</th>
<th>6 Feature Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testing Set</td>
<td>Actual</td>
<td>Predicted</td>
<td>Actual</td>
</tr>
<tr>
<td>ALL KIT</td>
<td>7</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>ALL PDGFRA</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Predicted</td>
<td>ALL KIT</td>
<td>ALL PDGFRA</td>
<td>Actual</td>
</tr>
<tr>
<td>ALL KIT</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ALL PDGFRA</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Accuracy: 72.7%
95% CI: [39.7-94.0]
NIR = 63.6%
p-value [Acc > NIR] : 0.39
Sensitivity: 25%
Specificity: 100%

Accuracy: 72.7%
95% CI: [39.7-94.0]
NIR = 63.6%
p-value [Acc > NIR]: 0.39
Sensitivity: 75%
Specificity: 71.4%

Accuracy: 81.8%
95% CI: [48.2-97.7]
NIR = 63.6%
p-value [Acc > NIR]: 0.18
Sensitivity: 75%
Specificity: 85.7%

Accuracy: 90.9%
95% CI: [58.7-99.8]
NIR = 63.6%
p-value [Acc > NIR]: 0.05
Sensitivity: 100%
Specificity: 85.7%

B

Retrained All KIT vs. All PDGFRA Model with Top 6 Features Excluded

<table>
<thead>
<tr>
<th>Feature Importance</th>
<th>Predictive Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>HHLA2</td>
<td></td>
</tr>
<tr>
<td>IL6R</td>
<td></td>
</tr>
<tr>
<td>NT5E</td>
<td></td>
</tr>
<tr>
<td>TNFSF8</td>
<td></td>
</tr>
<tr>
<td>CXCL11</td>
<td></td>
</tr>
<tr>
<td>TMIGD2</td>
<td></td>
</tr>
</tbody>
</table>

Feature Importance

<table>
<thead>
<tr>
<th>Importance</th>
<th>HHLA2</th>
<th>IL6R</th>
<th>NT5E</th>
<th>TNFSF8</th>
<th>CXCL11</th>
<th>TMIGD2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td></td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>4.0</td>
<td></td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>4.5</td>
<td></td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>5.0</td>
<td></td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Predictive Capacity

<table>
<thead>
<tr>
<th>Testing Set</th>
<th>Actual</th>
<th>Predicted</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL KIT</td>
<td>26</td>
<td>7</td>
</tr>
<tr>
<td>ALL PDGFRA</td>
<td>4</td>
<td>13</td>
</tr>
</tbody>
</table>

OOB Estimate of Error: 22%

Accuracy: 72.7%
95% CI: [39.0-94.0]
NIR = 63.6%
p-value [Acc > NIR] : 0.39
Sensitivity: 50%
Specificity: 85.7%
Supplemental Figure 4

A

Distribution of Important Features Among KIT-mutant Tumors

CXCL14

TGFB1

TNFSF9

MICA

TNFRSF25

CD96

Normalized Counts + 1

Incorrectly Classified as PDGFRA-mutant tumors (n=3)
Correctly Classified as KIT-mutant tumors (n=27)

0.03 1 32 1024 32768

B

Distribution of Important Features Among KIT-mutant Tumors

PDGFRA Samples

Correctly Classified as PDGFRA (n=14)
Incorrectly Classified as KIT (n=6)

0
0.03 1 32 1024 32768

PDGFRA Samples

Correctly Classified as PDGFRA (n=14)
Incorrectly Classified as KIT (n=6)
Supplemental Figure 5

<table>
<thead>
<tr>
<th>Human GIST #</th>
<th>243 218 260 412 257 170 245 295</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutation</td>
<td>KIT KIT KIT SDHD KIT KIT KIT KIT</td>
</tr>
<tr>
<td>PD-L1</td>
<td>![Image of PD-L1]</td>
</tr>
<tr>
<td>GAPDH</td>
<td>![Image of GAPDH]</td>
</tr>
<tr>
<td>PD-L1 mRNA</td>
<td>34 75 137 267 676 820 839 2500</td>
</tr>
</tbody>
</table>