Supplemental Figures and Legends

Supplemental Figure 1: Characterization of human BM-MSCs. (A) BM-MSCs were stained with antibodies against stem cell markers CD105, CD73, CD90, CD29, HLAI, HLAI II and CD34/45. The MSCs stained positive for CD105, CD73, CD90, CD29, HLAI, and HLAI II and negative for hematopoietic stem cell marker CD34/45. (B) (i) Colony Forming Unit-Fibroblast (CFU-F) assay for bone marrow derived MSCs. MSCs were subjected to trilineage differentiation, (ii) Alizarin Red S staining post osteogenic differentiation, (iii) Alcian Blue staining post chondrogenic differentiation, and (iv) Oil red O staining post adipogenic differentiation (20X magnification).
Supplemental Figure 2. Standardization of MOI in MSCs and macrophages. (A) Percentage infection in macrophages after 4 hours of infection by FACs using M.tb-GFP strain. (B) Percentage infection in MSCs after 6 hours of infection by FACs using M.tb-GFP strain. (C) Percentage infection in MSCs after 4 hours of infection by FACs using M.tb-GFP strain. (D) Percentage viability of macrophages at different time points after infection (up to 96 hours) at MOI 1:10 for 4 hours. After 96 hours the macrophages detached from the culture dish. (E) Percentage viability of MSCs at different time points after infection (up to 120 hours) at MOI 1:50 for 6 hours. These experiments are representative of three independent experiments.
Supplemental Figure 3: Agarose gel images of PCR products of dormancy-related genes. Agarose gel images showing specific amplification of *M. tb* dormancy genes. bp stands for base pairs (Supporting Figure 1C and D).

Supplemental Figure 4: FOXO3 and NOTCH 1 expression are associated with quiescence in MSCs. Relative intensity profile of proteins from forkhead signaling pathway generated using image J by normalizing the density of each protein to that of GAPDH. Statistical analyses were conducted using two-way ANOVA followed by Bonferroni post-test. Error bars represent S.E.M. *** represents P<0.001, ** P<0.01 and *P<0.05. P>0.05 is taken as non-significant (NS). This experiment was repeated three times.
Supplemental Figure 5: Co-localization of *M.tb* with Rab5 in MSCs and macrophages. (A) Confocal microscopy image (bar=25 μM) showing *M.tb* localization in early-endosomes in MSCs. Rab5 is an early-endosomal marker. (B) Confocal microscopy image (bar=25 μM) showing *M.tb* localization in early-endosomes in macrophages. Each image is a representation of at least 30 fields. These data are representative of three independent experiments.

Supplemental Figure 6: Co-localization of *M.tb* with phalloidin in MSCs and macrophages. (A) Confocal microscopy image (bar=25 μM) showing *M.tb* localization in the cytosol of MSCs. Phalloidin is a cytosolic marker which binds F-Actin. Each image is a representation of at least 30 fields. (B) Confocal microscopy image (bar=25 μM) showing *M.tb* localization in the cytosol of macrophages. These data are representative of three independent experiments.
Supplemental Figure 7: Intensity of lipid content in MSCs increases drastically over time. Time dependent intensity profile of lipid-bodies inside MSCs post-infection with *M. tb*. Each bar represents mean intensity of 3 independent experiments with 20 fields each. Image represents the average of 30 fields and was analyzed using Leica Application Suite Software. Statistical analyses were conducted using one-way ANOVA followed by Tukeys post-test. These data are representative of three independent experiments. Error bars represent S.E.M. *** represents *P*<0.001, ** *P*<0.01 and * *P*<0.05. *P*>0.05 is taken as non-significant (NS).
Supplemental Figure 8: Co-localization of *M. tb* with lipid bodies in MSCs and macrophages. (A&B) Confocal microscopy images (bar=25 µM) showing *M. tb* localization in lipid bodies in macrophages. (C&D) Confocal microscopy images (bar=25 µM) showing *M. tb* localization in lipid bodies in MSCs. Images were taken in Leica confocal SP5 microscope using 60X objective. These data are representative of three independent experiments.

Supplemental Figure 9. *M. tb* burden in bone marrow after isoniazid, rapamycin and isoniazid+rapamycin treatment and reactivation of the disease upon dexamethasone treatment. (A) *M. tb* burden in bone marrow (BM) isolated from mice treated with or without isoniazid, rapamycin or isoniazid+rapamycin (n=5). (B) *M. tb* reactivation in BM isolated from mice treated with isoniazid and isoniazid+rapamycin followed by dexamethasone treatment (n=5). This data is representative of two independent experiments (n=5).
Supplemental Figure 10: Unedited gel picture to support Western-blots (Supporting Figure 11).