Glibenclamide reverses cardiovascular abnormalities of Cantu Syndrome driven by \(\text{K}_{\text{ATP}} \) channel overactivity

Conor McClenaghan, … , Maria S. Remedi, Colin G. Nichols

J Clin Invest. 2019. https://doi.org/10.1172/JCI130571.

Concise Communication **In-Press Preview** **Cardiology** **Vascular biology**

Graphical abstract

Find the latest version:

https://jci.me/130571/pdf
Glibenclamide reverses cardiovascular abnormalities of Cantu Syndrome driven by K_{ATP} channel overactivity

Conor McClanaghan1,2, Yan Huang1,2,3, Zihan Yan1,4, Theresa Harter1,2, Carmen M. Halabi1,5, Rod Chalk6, Attila Kovacs7, Gijs van Haaften8, Maria S. Remedi1,4, and Colin G. Nichols$^{1,2#}$

1Center for the Investigation of Membrane Excitability Diseases, and Departments of 2Cell Biology and Physiology, Washington University School of Medicine, St. Louis, USA; 3Current address: Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; 4Department of Medicine, Division of Endocrinology, 5Department of Pediatrics, Division of Nephrology, Washington University School of Medicine, St. Louis, USA; 6Structural Genomics Consortium, University of Oxford, Oxford, UK; 7Department of Medicine, Washington University School of Medicine, St. Louis, USA; 8Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands.

$^#$Corresponding author: Colin G Nichols, Box 8228, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, E-mail: cnichols@wustl.edu

Running title: Reversal of Cantu Syndrome pathology

Keywords: K_{ATP}, KCNJ8, Kir6.1, ABCC9, SUR2, Cantu Syndrome, Glibenclamide, Cardiac Hypertrophy, Drug repurposing

Word count: 3,842. Disclosures: None
Cantu Syndrome (CS) is a complex disorder caused by gain-of-function (GoF) mutations in \(ABCC9\) and \(KCNJ8\), which encode the SUR2 and Kir6.1 subunits, respectively, of vascular smooth muscle (VSM) \(KATP\) channels. CS includes dilated vasculature, marked cardiac hypertrophy, and other cardiovascular abnormalities. There is currently no targeted therapy, and it is unknown whether cardiovascular features can be reversed once manifest. Using combined transgenic and pharmacological approaches in a knock-in mouse model of CS, we have shown that reversal of vascular and cardiac phenotypes can be achieved (1) by genetic downregulation of \(KATP\) channel activity specifically in VSM, and (2) by chronic administration of the clinically-used \(KATP\) channel inhibitor, glibenclamide. These findings demonstrate (i) that VSM \(KATP\) channel GoF underlies CS cardiac enlargement, (ii) reversibility of CS-associated abnormalities and (iii) evidence of \textit{in vivo} efficacy of glibenclamide as a therapeutic agent in CS.
Introduction

Cantu Syndrome (CS) is a complex disorder with multiple cardiovascular abnormalities, including edema, dilated and tortuous blood vessels with decreased systemic vascular resistance, patent ductus arteriosus (PDA) and marked cardiac hypertrophy (1). CS is caused by gain-of-function (GoF) mutations in KCNJ8 and ABCC9, which encode pore-forming Kir6.1 and regulatory SUR2 subunits, respectively, of ATP-sensitive potassium (K_{ATP}) channels (2-12).

These subunits are prominently expressed in smooth muscle (SM) cells, and vascular SM (VSM) K_{ATP} channel activation underlies the chronically dilated vasculature observed in CS patients (13-17). Notably, Kir6.1 is not a major component of cardiomyocyte K_{ATP} channels (wherein the related Kir6.2 [KCNJ11] is the predominant pore-forming isoform (3, 18)) and how CS-associated mutations in both KCNJ8 and ABCC9 result in cardiac hypertrophy is therefore unclear. We recently developed murine CS models in which disease-causing ABCC9 or KCNJ8 mutations were knocked-in to the equivalent mouse loci using CRISPR/Cas9. These animals exhibit increased VSM K_{ATP} channel activity and consequent chronic vasodilation, which we propose triggers systemic feedback mechanisms aimed at maintaining perfusion - including increased cardiac output and cardiomyocyte hypertrophy - in CS (19).

There are currently no targeted therapies for CS and it is not known if, or to what extent, cardiovascular abnormalities can be reversed once manifest. K_{ATP} channel inhibitors, including the sulfonylurea glibenclamide (glyburide), are used clinically to treat diabetes due to their inhibitory action on pancreatic K_{ATP} channels (formed of Kir6.2/SUR1). These drugs also inhibit cardiovascular K_{ATP} channels and thus may potentially be re-purposed for the treatment of CS (20). In this study we thus sought (1) to directly test the hypothesis that cardiac hypertrophy occurs secondary to K_{ATP} GoF in VSM, (2) to investigate whether cardiac remodeling in CS is reversible, and (3) to test the potential for glibenclamide treatment of cardiovascular abnormalities in Cantu mice.
Results and Discussion

Cardiovascular abnormalities in CS result from K_{ATP} channel GoF in VSMC.

To directly test whether cardiac remodeling occurs as a secondary response to VSM K_{ATP} channel GoF, we crossed CS (SUR2^{wt/AV}) mice with animals expressing smooth muscle myosin heavy chain promoter-driven Cre-recombinase (SM-Cre) and dominant-negative $KCNJ8$ (Kir6.1-AAA) transgenes, allowing inducible suppression of K_{ATP} in smooth muscle of wild type and CS mice (Figure 1A). Induction of expression at 8 weeks resulted in complete loss of K_{ATP} function, determined by whole-cell patch clamp recordings from isolated aortic myocytes (Figure 1B,C). As previously reported (19), SUR2^{wt/AV} mice exhibit lower mean arterial pressure (MAP) than WT, and dominant-negative suppression of smooth muscle K_{ATP} on this CS background (in SM-DN^{wt/AV} mice) resulted in significant MAP elevation (Figure 1D,E). Most strikingly, cardiac hypertrophy was essentially completely reversed in SM-DN^{wt/AV} mice four weeks after transgene induction (Figure 1F). These findings confirm a principal role for VSM K_{ATP} over-activity in the generation of cardiac hypertrophy. Importantly, they also show that cardiac hypertrophy can be reversed once manifest, and hence establish VSM K_{ATP} channels as appropriate molecular targets for pharmacological treatment of CS cardiovascular abnormalities.

Pharmacological reversal of CS-associated cardiovascular abnormalities in Cantu mice

We next hypothesized that reversal might be achieved by pharmacological inhibition of over-active VSM K_{ATP} channels. Mice were implanted with subcutaneous, slow-release pellets formulated to release moderate or high dose (~1 or ~19 mg/kg/day) of glibenclamide for 4 weeks, which resulted in measured plasma concentrations of 30 ± 8 ng/ml (~ 60 nM) and 147 ± 51 ng/ml (~ 300 nM), respectively. Cardiac hypertrophy was reversed in a dose-dependent manner (Figure 2A), almost completely at the highest dose, comparable to the effect of genetically-induced VSM K_{ATP} downregulation in SM-DN^{wt/AV} mice (Figure 1). Consistent with an action on VSM K_{ATP} channels, high dose glibenclamide elevated arterial pressure (MAP) and
fully restored vascular resistance (SVR) in SUR2^{wt/AV} mice (Figure 2B, 2C). Glibenclamide also
induced a partial reversal of the elevated cardiac index observed in SUR2^{wt/AV} mice (Figure 2D).
Hypertrophy in SUR2^{wt/AV} mice is not associated with significant fibrosis, and fibrosis was not
induced by glibenclamide (Figure 2E). Glibenclamide induced no impairment of cardiac function
as determined by echocardiographic measurements of ejection fraction (Figure 2F).

However, high-dose glibenclamide did not reverse the marked carotid diameter enlargement
observed in SUR2^{wt/AV} mice (Figure 2G) (19), and a similar resistance to reversal was observed
in SMDN^{wt/AV} mice (Figure 2H). This suggests that vascular structural abnormalities may be
relatively refractory to K_{ATP} inhibition, and that reversal of conduit vessel structural remodeling
is not required to reverse cardiac remodeling.

High-dose glibenclamide induces only transient hypoglycemia in mice
Glibenclamide is used clinically to treat diabetes, due to its inhibitory action on pancreatic
Kir6.2/SUR1-dependent K_{ATP} channels (which exhibit markedly higher sensitivity than
cardiovascular Kir6.1/SUR2 channels) (20). High doses, as required to reverse CS
remodeling will therefore also unavoidably inhibit pancreatic K_{ATP} channels and
are thus predicted to increase insulin secretion and lower blood glucose (BG), a potentially
important side-effect that could limit clinical utility. As expected, fed BG was not different
between WT and SUR2^{wt/AV} mice prior to pellet implantation (Figure 3A) and both low and high-
dose glibenclamide indeed significantly lowered BG on Day 1 post-implantation. However, BG
returned to normal by ~Day 2 (Figure 3B-D). Moreover, fasted BG was normal in mice that had
received high-dose glibenclamide for >30 days; evidence of long-term glycemic stability (Figure
3F). Transient, spontaneously resolving, hypoglycemic effects of chronic glibenclamide have
been demonstrated before, and are explained by chronic down-regulation of insulin secretion
with continued K_{ATP}-inhibition (21). Consistent with this, a mild glucose intolerance phenotype was observed in high-dose treated WT and SUR2$^{wt/AV}$ mice (Figure 3G,H). Notably, in a single human CS case thus-far treated with glibenclamide, transient hypoglycemia only was also observed at initiation of glibenclamide treatment or dose escalation (22), and thus chronic hypoglycemia may not prove to be a significant complication for glibenclamide therapy in CS patients.

Glibenclamide-induced correction of low blood pressure in Kir6.1$^{wt/VM}$ mutant mice

Although the vast majority of CS patients carry mutations in ABCC9 (SUR2), there are patients with mutations in the pore-forming Kir6.1 (KCNJ8) subunit. To examine the potential for glibenclamide therapy in such patients, we also implanted CS model Kir6.1[V65M] knock-in mice (Kir6.1$^{wt/VM}$) (19) with high-dose glibenclamide pellets. This resulted in a significant yet incomplete (~13 mmHg) improvement of the otherwise severe hypotensive phenotype and an incomplete effect on heart size (Figure 4A,B). The Kir6.1[V65M] mutation results in a drastic GoF of K_{ATP} channels and causes severe CS features in humans (7, 8, 19). Unlike the SUR2[A478V] mutation, which does not significantly affect glibenclamide sensitivity (23), the Kir6.1[V65M] mutation markedly decreases glibenclamide inhibition in recombinant channels (8), potentially explaining incomplete reversal of CV abnormalities. Alternatively, incomplete reversal might reflect the more severe phenotype requiring longer administration times for reversal. In either case, the reduced efficacy of glibenclamide in Kir6.1$^{wt/VM}$, compared to SUR2$^{wt/AV}$, suggests that sulfonylurea treatment efficacy may depend on the severity of the underlying mutation, and underlines the importance of thorough understanding of the molecular consequences for personalized therapy.
Inhibition of VSM K_{ATP} channels as a strategy to treat CS

The above results (1) establish that cardiac remodeling in CS arises secondary to K_{ATP} channel GoF in VSM, and (2) provide key pre-clinical evidence for in vivo efficacy of glibenclamide in treatment of CS. The link between VSM K_{ATP} channel GoF and cardiac hypertrophy is not yet established but is likely to involve systemic feedback mechanisms that seek to normalize systemic perfusion, in response to vasodilation. Directly inhibiting VSM K_{ATP} over-activity with K_{ATP} inhibitors may thus reverse both the primary vascular defect and these secondary features.

Excessive hair growth (hypertrichosis) is a defining CS feature (1), and is also mimicked by the K_{ATP} channel opener, minoxidil, used as a topical treatment for alopecia (24, 25). It is possible that K_{ATP} inhibition might alleviate hypertrichosis in CS patients, and that topical administration of K_{ATP} inhibitors may be of cosmetic use for hair removal in the future (26). PDA is observed in most CS patients and likely arises from the vasodilatory effect of excessive K_{ATP} activity in the DA after birth. PDA, which can be lethal without correction, is also present in ~1:2000 full-term births but in 20-60% of premature births (27). K_{ATP} inhibitors may thus prove useful for correction of PDA of various etiologies, an application that should be the subject of future study. Increased VSM K_{ATP} channel expression has been reported in septic shock, and previous animal studies suggested that K_{ATP} inhibition may also prove beneficial in treating endotoxic hypotension (28, 29), although acute glibenclamide treatment failed to reverse hypotensive shock in humans, despite inducing hypoglycemia (30, 31). Such studies illustrate the different sensitivity of pancreatic and cardiovascular K_{ATP} channels, and raise the question whether longer-term and higher dose treatment might be necessary and appropriate for cardiovascular applications.

Potential adverse effects of high-dose glibenclamide, including actions in skeletal and cardiac muscle, as well as the drug sensitivity of specific CS mutations, require further study, and ideal therapy for CS may ultimately require an agent with much improved selectivity or
potency for VSM Kir6.1/SUR2B channels. However, there is immediate need for a targeted therapy for CS, and the present findings clearly demonstrate the \textit{in vivo} potential of glibenclamide for correcting CS cardiovascular abnormalities. Moreover, they suggest that the undesired glucose-lowering effects in non-diabetic animals are temporary, and may not therefore be prohibitive for the use of glibenclamide as a therapy in CS.
Methods

Study approval
Mouse studies were performed in compliance with the standards for the care and use of animal subjects defined in the NIH Guide for the Care and Use of Laboratory Animals and were reviewed and approved by the Washington University Institutional Animal Care and Use Committee.

Mouse models
CRISPR/Cas9 genome edited SUR2wt/AV and Kir6.1wt/VM mice were generated as previously reported (19), see also Supplemental Material. Dominant-negative mice were crossed with Cantu mice as illustrated in Figure 1A and described in detail in Supplemental Material.

Electrophysiological recordings of acutely isolated aortic smooth muscle cells, blood pressure measurements in anesthetized mice, echocardiographic analysis and heart weight measurements, Gomori stain, vascular compliance, and blood glucose measurements, were made as described in Supplemental Materials. Plasma glibenclamide concentrations were measured by LC-MS/MS analysis using an ion trap mass spectrometer following the method described in detail in Supplementary Material.

Statistics
Statistical analysis was carried out with Microsoft Excel (Real Statistics Resource Pack software, www.real-statistics.com). Significance values were calculated using one-way ANOVA and subsequent post-hoc Tukey’s test for pairwise comparison. For carotid compliance measurements, where groups with 2 variables were compared, two-way ANOVA with post-hoc Tukey’s test was performed using GraphPad Prism 8 for OS X. $P < 0.05$ was considered significant. All values are expressed as mean ± SEM.
Author Contributions

CMc and CGN designed research studies; CMc, YH, ZY, CMH, RC, TM, AK conducted experiments and acquired and analyzed data, CMc and CGN wrote the manuscript. GvH and MSR provided advice. All authors critically reviewed the manuscript.

Acknowledgements

This work was supported by NIH R35 HL140024 (to CGN). CM was supported by American Heart Association Postdoctoral Fellowship 19POST34380407. CMH was supported by NIH K08 HL135400. The Kir6.1-AAA mice were kindly provided to us by William A. Coetzee (New York University).
Figure 1: Downregulation of VSM K_{ATP} over-activity abolishes cardiac hypertrophy (A)

Transgenic approach to generate inducible, tissue-specific, dominant-negative Cantu mice (see text). (B) Representative whole-cell recordings of K_{ATP} channel activity in aortic SM cells from WT (left) and SM-DN$^{\text{wt/wt}}$ mouse following tamoxifen induction (right). Cells were voltage-clamped at -70mV and currents recorded in high- Na$^+$ or K$^+$ as indicated. Pinacidil (Pin) and glibenclamide (Glib) were administrated as indicated. (C) K_{ATP} channel current density from experiments as in c. Data for VSM cells isolated from WT (black bar), SM-DN$^{\text{wt/wt}}$ without tamoxifen induction (white bar), and SM-DN$^{\text{wt/wt}}$ with tamoxifen administration (grey bar). (D) BP recordings from anesthetized WT (black), SUR2$^{\text{wt/AV}}$ (orange), and SM-DN$^{\text{wt/AV}}$ (puce) mice. (E) Mean arterial pressure (MAP) in non-transgenic (Non TG), single-transgenic (STG), and double-transgenic (SM-DN), WT and SUR2$^{\text{wt/AV}}$ mice. (F) Left – Representative images of excised hearts from WT (top), SUR2$^{\text{wt/AV}}$ (middle), and SM-DN$^{\text{wt/AV}}$ (bottom) mice. Right - Heart size (heart weight normalized to tibia length; HW/TL) from non-transgenic (No TG), single-transgenic (STG), and double-transgenic (SM-DN), WT and SUR2$^{\text{wt/AV}}$ mice. For all figures, individual data points are represented as open circles, bars show mean ± SEM. Statistical significance was determined by one-way ANOVA and post-hoc Tukey’s test for pairwise comparison: * denotes p < 0.05 and ** denotes p < 0.01 from pairwise post-hoc Tukey test.
Figure 2: Glibenclamide reverses cardiac hypertrophy in SUR2^wt/AV^ mice (A) Left - Representative hearts from placebo-implanted WT (black), placebo-implanted SUR2^wt/AV^ (orange), and ~19 mg/kg/day glibenclamide pellet implanted SUR2^wt/AV^ (puce) mice. Right - Summary of heart size (weight normalized to tibia length; HW/TL) for WT and SUR2^wt/AV^ mice implanted with either placebo pellets (Glib = 0), or pellets releasing ~ 1 and ~19 mg/kg/day. (B) Summary of MAP in anesthetized placebo-pellet (Glib = 0) and ~19 mg/kg/day glibenclamide-pellet implanted WT and SUR2^wt/AV^ mice. In all experiments, pellets were implanted at 8 weeks of age, and phenotypes were assessed 4 weeks later. (C) Systemic vascular resistance (SVR) and (D) Cardiac index in placebo-implanted WT mice and placebo- or glibenclamide pellet-implanted SUR2^wt/AV^ mice. (E) Gomori stained left ventricular free wall sections, scale bar represents 500 μm. (F) Ejection fraction of placebo-implanted WT mice and placebo- or glibenclamide pellet-implanted SUR2^wt/AV^ mice. (G, H) Carotid artery compliance measurements from (G) placebo- or ~19 mg/kg/day glibenclamide pellet-implanted WT and SUR2^wt/AV^ mice, or (H) WT, SUR2^wt/AV^ and SMDN^wt/AV^ mice. Individual data points are represented as open circles, bars show mean ± SEM. Statistical significance was determined by one-way ANOVA (A-F) and two-way ANOVA (G-H) with subsequent post-hoc Tukey’s test for pairwise comparison: * denotes p < 0.05 and ** denotes p < 0.01 from pairwise post-hoc Tukey
test. For G and H color-coded statistical significance indicators are shown for comparison with placebo implanted WT mice (black).

Figure 3: Chronic high-dose glibenclamide induces only transient hypoglycemia (A) Summary of blood glucose levels in fed WT and SUR2^{wt/AV} mice on Day 0 prior to pellet implantation. (B) Mean blood glucose measurements from WT mice implanted with placebo pellets (black diamonds, solid line; n = 6), ~ 1 mg/kg/day glibenclamide pellets (light grey circles, dotted line; n = 4), and ~ 19 mg/kg/day glibenclamide pellets (dark grey triangles, dashed line; n = 4). (C) Summary of blood glucose measurements for WT mice implanted with placebo pellets (black bars) or ~19 mg/kg/day glibenclamide pellets (grey bars) on day 0, 1, and 18. (D) Mean blood glucose measurements from SUR2^{wt/AV} mice implanted with placebo pellets (orange circles, solid line; n = 4), ~ 1 mg/kg/day glibenclamide pellets (peach diamonds, dotted line; n = 7), and ~ 19 mg/kg/day glibenclamide pellets (puce squares, dashed line; n = 8). (E) Summary of blood glucose measurements for SUR2^{wt/AV} mice implanted with placebo pellets (orange bars) or ~19 mg/kg/day glibenclamide pellets (puce bars) on day 0, 1, and 18. (F) Fasted BG in mice which had been implanted with either placebo or high-dose glibenclamide > 30 days prior. Glucose tolerance test data for WT (G) and SUR2^{wt/AV} (H) mice implanted with placebo or ~ 19 mg/kg/day glibenclamide pellets. For summary figures, individual data points are represented as open circles, bars show mean ± SEM. Statistical significance was determined by one-way ANOVA and subsequent post-hoc Tukey’s test for pairwise comparison: * denotes p < 0.05 from pairwise post-hoc Tukey test.
Figure 4: Partial reversal of cardiovascular features by glibenclamide in Kir6.1wt/VM mice

(A) Summary of mean arterial pressure (MAP) in anesthetized placebo- (Glib = 0) and ~19 mg/kg/day glibenclamide pellet-implanted WT and Kir6.1wt/VM mice. (B) Summary of heart size (weight normalized to tibia length; HW/TL) for WT and Kir6.1wt/VM mice implanted with either placebo pellets (Glib = 0), or pellets releasing ~19 mg/kg/day. For all figures, individual data points are represented as open circles, bars show mean ± SEM. Statistical significance was determined by one-way ANOVA and post-hoc Tukey’s test for pairwise comparison: ** denotes p < 0.01 from pairwise post-hoc Tukey test.

