Lysine acetyltransferase 8 is involved in cerebral development and syndromic intellectual disability

Lin Li, … , Philippe M. Campeau, Xiang-Jiao Yang

J Clin Invest. 2019. https://doi.org/10.1172/JCI131145.

Graphical abstract

Find the latest version:

https://jci.me/131145/pdf
Lysine acetyltransferase 8 is involved in cerebral development and syndromic intellectual disability

Lin Li1,#, Mohammad Ghorbani1,#, Monika Weisz-Hubshman2,3,4,#, Justine Rousseau5, Isabelle Thiffault6,7, Rhonda E. Schnur8,9, Catherine Breen10, Renske Oegema11, Marjan M.M. Weiss12, Quinten Waisfisz12, Sara Welner13, Helen Kingston10, Jordan A. Hills14, Elles M.J. Boon12, Lina Basel-Salmon2,4,15, Osnat Konen4,16, Hadassa Goldberg-Stern4,17, Lily Bazak3,4, Shay Tzur18,19, Jianliang Jin1,20, Xiuli Bi1, Michael Bruccoleri1, Kirsty McWalter9, Megan T. Cho9, Maria Scarano8, G. Bradley Schaefer14, Susan S. Brooks13, Susan Starling Hughes6,7, K.L.I. van Gassen11, Johanna M. van Hagen12, Tej K. Pandita21, Pankaj B. Agrawal22, Philippe M. Campeau5,* and Xiang-Jiao Yang1,23,24,*

1Rosalind & Morris Goodman Cancer Research Center and Department of Medicine, McGill University, Montreal, Quebec H3A 1A3, Canada
2Pediatric Genetics Unit, Schneider Children's Medical Center of Israel, PO Box 559, Petach Tikva 4920235, Israel
3Raphael Recanati Genetic Institute, Rabin Medical Center, Petach Tikva 4941492, Israel
4Sackler Faculty of Medicine, Tel Aviv University, PO Box 39040, Tel Aviv 6997801, Israel
5Department of Pediatrics, Sainte-Justine Hospital, University of Montreal, Quebec, Canada
6Center for Pediatric Genomic Medicine & Department of Clinical Genetics, Children's Mercy Hospital, Kansas City, Missouri 64108, USA
7Faculty of Medicine, University of Missouri Kansas City, Kansas City, Missouri 64110, USA
8Division of Genetics, Cooper University Health Care, Three Cooper Plaza Suite 309, Camden, New Jersey 08103, USA
9GeneDx, 207 Perry Parkway, Gaithersburg, Maryland 20877, USA

10Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Saint Mary's Hospital, Oxford Road, Manchester M13 9WL, United Kingdom

11Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands

12Department of Clinical Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands

13Pediatric Medical Genetics, The State University of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey 08854, USA

14University of Arkansas for Medical Sciences 1 Children's Way Slot 512-22 Little Rock, Arkansas 72202, USA

15Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva 4941492, Israel.

16Imaging department, Schneider Children's Medical Center of Israel, PO Box 559, Petach Tikva 4920235, Israel

17Epilepsy Unit and EEG Laboratory, Schneider Medical Center, Petach Tikva 4920235, Israel

18Laboratory of Molecular Medicine, Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel

19Genomic Research Department, Emedgene Technologies, Tel Aviv, Israel

20Research Center for Bone and Stem Cells, Department of Human Anatomy, Key Laboratory of Aging & Disease, Nanjing Medical University, Nanjing, Jiangsu 211166, China

21Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, USA
22Divisions of Newborn Medicine and Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA

23Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A3, Canada

24Department of Medicine, McGill University Health Center, Montreal, Quebec H3A 1A3, Canada

#These authors made equal contributions to the work.

*To whom correspondence should be addressed to P.M.C. at Medical Genetics Service, Room 4734, Sainte-Justine Hospital, 3175 Côte-Sainte-Catherine, Montréal, Quebec H3T 1C5, Canada, Tel: 514-345-4931 (extension 7146), p.campeau@umontreal.ca; or to X.J.Y at Goodman Cancer Research Center, Room 413, 1160 Pine Avenue West, Montreal, Quebec H3A 1A3, Canada, Tel: 514-398-5883, xiang-jiao.yang@mcgill.ca.

Running Title: KAT8 in cerebral development and intellectual disability

Keywords: Neurodevelopmental disorder, seizure, Sox2, neurogenesis, epigenetics, chromatin, chromodomain, histone acylation, histone propionyltransferase, hMOF
ABSTRACT

Epigenetic integrity is critical for many eukaryotic cellular processes. An important question is how different epigenetic regulators control development and impact disease. Lysine acetyltransferase 8 (KAT8) is critical for acetylation of histone H4 at lysine 16 (H4K16), an evolutionarily conserved epigenetic mark. It is unclear what roles KAT8 plays in cerebral development and human disease. Here, we report that cerebrum-specific knockout mice displayed cerebral hypoplasia in the neocortex and hippocampus, along with improper neural stem and progenitor cell (NSPC) development. Mutant cerebrocortical neuroepithelia exhibited faulty proliferation, aberrant neurogenesis, massive apoptosis and scant H4K16 propionylation. Mutant NSPCs formed poor neurospheres, and pharmacological KAT8 inhibition abolished neurosphere formation. Moreover, we describe KAT8 variants in nine patients with intellectual disability, seizures, autism, dysmorphisms and other anomalies. The variants altered chromobarrel and catalytic domains of KAT8, thereby impairing nucleosomal H4K16 acetylation. Valproate was effective for treating epilepsy in at least two of the individuals. This study uncovers a critical role of KAT8 in cerebral and NSPC development, identifies nine individuals with KAT8 variants, and links deficient H4K16 acylation directly to intellectual disability, epilepsy and other developmental anomalies.
INTRODUCTION

Hundreds of epigenetic regulators have been identified and characterized, but much less is known about their pathophysiological roles. Lysine acetyltransferases (KATs) form a prominent group of chromatin regulators, catalyze reversible N\(^e\)-acetylation of histones and other proteins, and generate dynamic N\(^e\)-acetylomes in response to signaling cues (1, 2). The human genome encodes ~15 KATs, grouped into three major families: GCN5 and its related proteins, CBP and its paralog p300, and the MYST family (1, 2). Within the latter, there are five members, including KAT5, KAT6A, KAT6B, KAT7 and KAT8. Despite their conserved MYST domains for intrinsic acetyltransferase activity (1, 2), these enzymes show site specificity towards histones and inscribe different epigenetic marks in vivo. KAT7 is critical for histone H3 acetylation at lysine 14 (3), whereas KAT6A and KAT6B are responsible for acetylation at lysine 23 (4, 5). KAT8 acetylates histone H4 at lysine (K)\(^{16}\) (H4K16) (6-9), indicating that this enzyme is functionally different from other MYST family members (10, 11). KAT6A and KAT6B pathogenic variants are linked to syndromic intellectual disability (11), but it remains unclear whether any other MYST proteins are altered in genetic diseases.

Like Drosophila Mof (critical for gene dosage compensation in male flies) (12-14), KAT8 is essential for H4K16 acetylation in mammals (7, 9) and critical for DNA damage responses and nuclear architecture (9, 15-18). Its loss causes cell cycle arrest, senescence and apoptosis (9, 17, 19). Biological functions of KAT8 have been investigated by gene disruption in mice. Global loss of Kat8 arrests mouse embryogenesis at the implantation (16) or gastrulation stage (7). Through conditional deletion, mouse Kat8 has been shown to be important for oocyte development (20), Purkinje cell maintenance (21), cardiomyocyte mitochondrial respiration (22), hematopoiesis (23, 24) and anti-viral immunity (25). However, it remains unclear whether KAT8 has any roles in cerebral development. To address this, we inactivated the mouse gene in the cerebrum and its embryonic primordium. The mutant pups display early
lethality and severe cerebral hypoplasia, along with defective NSPC development. Consistent with these murine results, we have identified KAT8 variants in nine human individuals who exhibit syndromic intellectual disability and brain abnormalities. Moreover, these variants are defective in promoting H4K16 acetylation in vitro. This study thus uncovers an essential role of mouse Kat8 in cerebral development, identifies human subjects with KAT8 variants and links this unique epigenetic modifier to cerebral and intellectual development.

RESULTS

Cerebrum-specific deletion of mouse Kat8 causes early lethality and cerebral hypoplasia

To investigate whether KAT8 is important for cerebral development, we took a mouse genetic approach. For this, we first analyzed distribution of H4K16 acetylation (H4K16ac) during mouse cerebral development. As shown in Figure S1A, the H4K16ac level was high in the neocortex and hippocampus of the adult brain, as well as in these areas at P5 and in the cerebrocortical neuroepithelium at E12.5. This distribution pattern suggests an important role of KAT8, the major enzyme responsible for H4K16ac (6, 7, 9), during cerebral development. Related to this, RNA-Seq revealed that Kat8 and the genes of KAT8-associated subunits are well transcribed in the neonatal cerebrum (Figure S1B) and embryonic neurospheres (Figure S1C), suggesting the importance of KAT8 during cerebral development.

To evaluate this link directly, we generated cerebrum-specific knockout mice by using the Emx1-Cre strain, which expresses the Cre recombinase specifically in the cerebrum and its embryonic precursor starting at E10.5 (26, 27). This Cre line was mated with Kat8/w mice (21), to produce Kat8/w;Emx1-Cre knockout (or cKO) mice. The knockout pups were born at a normal Mendelian ratio and appeared grossly normal. In week 1, visual inspection revealed no obvious abnormality in the gross appearance of homozygous mutant pups except some were slightly smaller than wild-type littermates (Figure S2A). However, starting from the middle of
week 2, they failed to thrive and became much smaller than the wild-type (Figures 1A & S2B). They were hyperactive and easily irritated. In week 3, a majority of them became runty (Figure 1A-B) and subsequently died (or required euthanization due to poor health). Thus, the homozygous mutant pups exhibited postnatal growth retardation and pre-weaning lethality.

Comparison of 3-week old wild-type and mutant mice led to recognition of a ‘flat-head’ phenotype, i.e. flatter surface above the mutant frontal skull than the wild-type counterpart (Figure 1C). Autopsy revealed a much smaller mutant cerebrum (Figure 1D). After recognizing this phenotype, we visually inspected younger pups and could identify homozygous mutant pups with this feature even at P6 (Figure S2A). We next dissected out and compared the wild-type and mutant brains. As shown in Figure 1E, the mutant cerebral cortex was largely missing. The defect was also evident in the mutant at P5 (Figures 1F & S2C) and P1 (Figure S2D). Quantification revealed that the mutant brain was significantly smaller than the wild-type, starting at P1 (Figure 1G). Interestingly, the defects could be traced back to the embryonic stage as early as E16.5 (Figure S2E-F). Thus, cerebrum-specific deletion of Kat8 causes severe cerebral hypoplasia, starting at embryonic stages.

We next analyzed the impact of Kat8 deletion on H4K16ac. Immunofluorescence microscopy was used to detect this modification in embryonic sections. As shown in Figure S1D, H4K16ac disappeared in the cerebrocortical neuroepithelium and hippocampal primordium at E12.5, but not the in the medial or lateral ganglionic eminence, indicating that the Emx1-Cre line induces Kat8 deletion and abolishes H4K16 acetylation in the cerebrocortical neuroepithelium.

Kat8 deletion leads to cerebral defects and premature neurogenesis

To examine the cerebral defects further, we performed histological analysis of wild-type and mutant brain or embryo sections with Nissl staining. As shown in Figure 1H-K, cerebral
morphology was altered in the neocortex and hippocampus (or their developmental precursors) of the mutant brain, starting at E13.5. By contrast, such alteration was not so obvious at E12.5 (Figure 1L). To substantiate these histological observations, we carried out immunostaining to examine defects at the molecular and cellular levels. For this, we used various antibodies specific to cortical lamination markers, such as CUX1 and CTIP2, to stain different layers of the neocortex as described (28). Even at E16.5, CTIP2+ cells were largely missing in the mutant cerebral cortex whereas such cells were found to form a layer at the normally expected position in the wild-type cortex (Figure S3). Moreover, CUX1+ cells were also largely missing in the mutant cerebral cortex (Figure S3). These results indicate that neocortical lamination was altered in the mutant brain, starting at a prenatal stage, as early as E16.5.

We also tested Tuj1, an antibody recognizing a neuron-specific β-tubulin, to stain embryonic sections at earlier developmental timepoints. As the morphological defects in the mutant cerebrocortical epithelium were obvious from Nissl staining at E13.5 (Figure 1K) but not E12.5 (Figure 1L), we analyzed embryonic sections at these two stages. As shown in Figure 2A, there were many more neurons in the mutant cerebrocortical neuroepithelium and hippocampal primordium at E13.5. Moreover, Tuj1+ neurons formed a discreet layer at the outer edge of the wild-type cerebrocortical neuroepithelium, the distribution of such neurons was much broader in the mutant, indicative of premature neuronal differentiation and/or aberrant neuronal migration in the mutant. By contrast, such abnormalities were not so obvious at E12.5 (Figure 2B). As H4K16ac disappeared in the mutant cerebrocortical neuroepithelia at E12.5 (Figure S1D), the lack of obvious defects with Tuj1+ neurons at E12.5 was not due to Kat8 deletion efficiency. Thus, cerebrum-specific Kat8 deletion leads to cerebrocortical neuroepithelial defects and promotes aberrant neurogenesis, starting at E13.5.
Kat8 deletion arrests development of neural stem and progenitor cells

Nissl staining revealed abnormal cerebrocortical neuroepithelia and hippocampal primordia in mutant embryos at E13.5 (Figure 1K) but not E12.5 (Figure 1L). NSPC precursors such as radial glia cells reside in the ventricular/subventricular zones (29). To investigate whether these cells are affected, we carried out immunostaining of embryonic and brain sections using an antibody against SOX2, an NSC-specific marker (30). At E13.5, there were dramatically fewer SOX2⁺ cells in the mutant cerebrocortical neuroepithelium and hippocampal primordium than the control (Figure 3A), whereas the number of these cells was not obviously affected in the mutant at E12.5 (Figure 3B), indicating that *Kat8* is essential for SOX2⁺ cell layer formation at E13.5 but not E12.5. We next analyzed embryonic and brain sections using an antibody specific to the transcription factor TBR2, a marker of neuronal progenitor cells important for hippocampus development (31, 32). As shown in Figure S4A, the TBR2⁺ progenitor number was reduced profoundly in mutant cerebrocortical neuroepithelia at E13.5, indicating that *Kat8* deletion exhausts the neural progenitor cell population at this stage of development. In stark contrast, the TBR2⁺ progenitor cell number remained comparable between the wild-type and mutant cerebrocortical neuroepithelia at E12.5 (Figure S4B), indicating that Kat8 is not required for formation of the TBR2⁺ progenitor cell layer at this stage. Thus, *Kat8* loss reduces the number of NSPCs available for cerebrocortical development, starting at E13.5.

Kat8 deletion inhibits cell proliferation and triggers massive apoptosis

To understand the cellular mechanisms underlying NPSC loss, we investigated how *Kat8* deletion affects different cellular programs. For this, we first analyzed the impact on cell proliferation, by 1 h BrdU labelling of E13.5 embryos in vivo. As shown in Figure 4A, there were significantly fewer BrdU⁺ or Ki67⁺ cells in the mutant cerebrocortical neuroepithelium
than the wild-type counterpart, indicating that Kat8 deletion inhibits cell proliferation. In stark contrast, the BrdU+ or Ki67+ cell number remained comparable between the wild-type and mutant cerebrocortical neuroepithelium at E12.5 (Figure S5A), indicating that Kat8 is not essential for cell proliferation at this embryonic stage.

Kat8 is critical for DNA damage responses and nuclear architecture (9, 15-17), so we investigated the impact of Kat8 deletion on DNA damage responses by immunostaining with an anti-phospho-Ser139 H2A.X (γH2A.X) antibody. As shown in Figure S5B, there was no obvious difference between the wild-type and mutant cerebrocortical neuroepithelia in terms of γH2A.X+ cells, suggesting that Kat8 deletion exerts minimal effects on DNA damage response under the uninduced conditions in vivo. We next analyzed the impact of Kat8 deletion on apoptosis. For this, we carried out TUNEL assays. As shown in Figure 5A, there were many TUNEL+ cells in the mutant cerebrocortical neuroepithelia at E13.5, indicating that Kat8 deletion promotes apoptosis. Consistent with this, immunostaining with the anti-cleaved caspase 3 antibody uncovered caspase 3 activation in the mutant (Figure 5B). Moreover, the TUNEL+ cell number also increased dramatically in the mutant cerebrocortical neuroepithelium and hippocampal primordium even at E12.5 (Figure S6A). Similarly, at this stage, many mutant cells were positive for activated caspase 3 (Figure S6B), indicating that Kat8 deletion also promotes apoptosis at E12.5. Together, the above assays indicate that Kat8 deletion impairs cell proliferation but stimulates apoptosis, starting at E12.5.

KAT8 is required for neurosphere formation in vitro

To investigate whether mutant NSPCs are still functional, we adopted neurosphere formation assays, which have been widely used to examine NSPC potential in vitro (33). For these assays, we collected cerebral cortices from wild-type and mutant embryos at E16.5 to prepare single cell suspension for subsequent neurosphere formation in vitro in an NSC culture
medium. As shown in Figure 6A, wild-type but not mutant single cells formed round neurospheres during the first 4 days of culturing, indicating that cerebrum-specific Kat8 deletion impairs neurosphere formation in vitro. We next took a pharmacological approach to substantiate this conclusion. No KAT8-specific inhibitors have been developed yet. To circumvent this, we utilized two selective inhibitors, MG149 and NU9056. The former targets both KAT5 and KAT8 (34), whereas NU9056 is specific to KAT5 (35). The difference between these two inhibitors would allow us to compare their impact and deduce the effect of KAT8 inhibition on neurospheres. Single-cell suspension was prepared from wild-type E16.5 embryonic cerebral cortices for neurosphere formation in vitro in the presence or absence of the inhibitors. As shown in Figure 6B, MG149 exerted much more dramatic effects than NU9056, supporting the importance of KAT8 in neurosphere formation in vitro.

KAT8 is critical for histone H4K16 propionylation in vivo

In addition to H4K16 acetylation, KAT8 promotes histone propionylation in vitro (36), but it is unclear which lysine residue is propionylated and nor was the physiological relevance investigated. KAT8 is an H4K16 acetyltransferase (6, 7, 9), so we postulated that it is also required for H4K16 propionylation (H4K16pr). To test this, we carried out immunofluorescence microscopy to detect H4K16pr in wild-type and mutant embryonic sections. As shown in Figure 6C, this novel acylation was detectable in the wild-type cerebrocortical neuroepithelium and hippocampal primordium. Its subnuclear distribution appeared more uniform than H4K16ac (Figure S7A-B). In the mutant, H4K16pr virtually disappeared in these two areas (Figure 6D). This difference was also obvious between the wild-type and mutant cerebrocortical neuroepithelia at E12.5 (Figure S7C-D). By contrast, the modification was not altered in the mutant ganglionic eminence (Figures 6C-D and S7C-D), where the *Emx1-Cre* transgene is not expressed (26, 27). These results indicate that *Emx1-Cre*
mediated deletion of Kat8 depletes H4K16 proionylation in the cerebrocortical neuroepithelium and hippocampal primordium.

Identification of intellectual disability individuals harboring KAT8 variants

No direct disease links to KAT8 have been reported, so we sought to identify patients possessing its variants. For this, we leveraged exome sequencing projects carried out around the world. In addition to use of prior collaborations, we employed Web-based matching tools such as Genematcher (37) and Decipher (38) to identify individuals with KAT8 variants. As a result, we identified nine unrelated cases (Figure 7A & Table S1), with eight (individuals T1-T8) carrying heterozygous de novo variants and one (individual T9) harboring biallelic variants. Coincidentally, three unrelated probands (T1, T2 and T3, Figure 7A & Table S1) share a recurrent de novo variant. Individual T9 inherited biallelic variants from her asymptomatic parents (Table S1). Her sister carried one such variant and showed no obvious symptoms (Table S1). One explanation for the asymptomatic phenotypes in her and the parents is incomplete genetic penetrance of the two variants. Of relevance, incomplete penetrance of heterozygous variants occurs with another epigenetic modifier (X.J.Y., unpublished data) (5), and one LMNA variant causes phenotypes in some but not other carriers (39). An alternative explanation is that the two variants from individual T9 and her family act differently from the de novo variants from individuals T1-T8. Related to this, dual-mode inheritance has been reported for some genes. For example, both monoallelic and biallelic EMC1 (and several other genes) variants cause developmental disorders (40).

Global developmental delay, intellectual disability, epilepsy and other developmental anomalies were frequently observed in the affected individuals (Figures 7B, S8 and Table S1), along with variable facial dysmorphism (Figures 7C & S8A). Related to epilepsy, some exhibited EEG abnormalities (Table S1). Variable language delay occurred in all individuals
(Figure 7B & Table S1): T5 had difficulty with pronunciation and could only form sentences at age 4; T6 did not speak and could only follow simple commands at age 2; T7 pronounced only one word at age 2; T8 only formed simple and short sentences at age 5; and T9 spoke no words at age 4. Two individuals also showed autistic features (Figure 7B) and one individual displayed characteristics of attention-deficit hyperactivity disorder (T2, Table S1). Gross and fine motor delays are other common anomalies (Figure 7B & Table S1). Four individuals have cardiac anomalies (Figure 7B & Table S1). Cranial and facial abnormalities were also observed in some individuals. Recurrent dysmorphisms include upper lateral eyelid fullness, low-set ears, downturned corners of the mouth, a depressed nasal bridge, mild malar hypoplasia, and epicanthi (Figure 7B & Table S1). Several individuals showed brain MRI anomalies (Figures 7B, S8C, S9A-B & Table S1). For the individuals with epilepsy, two of them have been treated with valproate and both were responsive (Figure 7B & Table S1). Valproate is a known deacetylase inhibitor and promotes histone acetylation (41), so it may ameliorate potential acetylation deficiency resulting from KAT8 impairment (see below). Intellectual disability, epilepsy/seizures (Figure 7B & Table S1) and variable brain MRI defects in the clinical cases (Figures S8C & S9A-B) suggest abnormal brain development, which is consistent with cerebral hypoplasia in the knockout mice (Figure 1).

Patient-derived variants inactivate KAT8 through different mechanisms

KAT8 is evolutionarily conserved from flies to humans (Figure S10A). It is predicted to be moderately intolerant of missense change (misZ score of 3.66) and highly intolerant of loss of function changes (pLI score of 0.91, ExAC database). Among the eight variants, seven are missense (Figures 7A & 8A). These missense variants alter key residues within the chromobase and enzymatic domains of KAT8 (Figure 8A). The residues are invariant in fly Mof, a KAT8 ortholog (Figure S10A), suggesting their importance. According to a 3D-
structural model, they are all on the same plane (Figure 8B). The recurrent variant in individuals T1, T2 and T3 alter Tyr90, whereas the missense variants in individuals T4 and T5 substitute Arg98 and Arg99, respectively. Tyr90, Arg98 and Arg99 are key residues of the chromobase domain (Figures 8A & S10A). The function of this domain of KAT8 remains unclear, but the equivalent domain in fly Mof mediates nucleosome association (42).

According to crystal structural analysis, this domain resembles chromodomains that recognize methylated histones (43). Moreover, a recent cryo-EM structural study has revealed that a similar domain of the yeast Esa1 acetyltransferase (another MYST family member) contributes to nucleosomal recognition and acetylation by its multisubunit complex (44). Tyr90, Arg98 and Arg99 of KAT8 are important for the structure of its chromobase domain (43), so their substitutions are likely to be deleterious. Structural modeling indicates that these residues are located at an interface with the catalytic domain (Figure 8B), so substitution of Tyr90, Arg98 or Arg99 may impede interaction with the catalytic domain and affect its acetyltransferase activity, especially towards nucleosomes. The missense variants in individuals T6-T8 alter Ala165, Lys175 and Lys181 within the catalytic domain (Figures 8A & S10A). These three residues are invariant in Drosophila Mof (Figure S10A) and located within a region not conserved in the acetyltransferase domains of other MYST proteins, suggesting that this region may possess KAT8/Mof-specific functions. Notably, this region contains at least five lysine residues for acetylation (18), with one of them being Lys175 (Figure S10A). Individual T9 carries two mutant alleles. One of them contains a missense variant that alters Arg325 (Figures 7A & 8A). This residue is located within a known acetyl-CoA binding motif (Figure S10A) and also structurally close to Arg98 and Arg99 (Figure 8B), so cysteine substitution may inactivate KAT8. The other allele encodes a nonsense variant (Figure 7A, c.523A>T), generating C-terminal truncation and removing the catalytic domain (Figures 8A & S10B, p.Lys175*). This variant should be thus defective. Moreover,
this but not the missense variant formed abnormal subnuclear localization (Figure 8C). Therefore, the eight variants reported here form distinct groups (Figure 8A) and may deregulate KAT8 functions through different mechanisms.

To assess impact of the variants experimentally, we determined acetyltransferase activities of the variants. KAT8 forms two stoichiometric multisubunit complexes, one of which is tetrameric and contains MSL1 (male-specific lethal 1), MSL2 and MSL3 as non-catalytic subunits (Figure S10B). Because MSL proteins directly activate the acetyltransferase activity of KAT8 towards H4K16 (45), we expressed wild-type KAT8 and its variants as FLAG-tagged fusion proteins along with HA-tagged MSL1, MSL2 and MSL3 for affinity-purification on anti-FLAG M2 agarose. Purified complexes were then used for acetylation of recombinant nucleosomes and subsequent detection of histone H4 acetylation by immunoblotting. While p.Lys175* was difficult to express (Figure 8D, top panel, lane 13), the seven missense variants were expressed to similar levels as wild-type KAT8 (Figure 8D, top panel, lanes 4-12). Like the wild-type, these missense variants promoted expression of MSL proteins in HEK293 cells (Figure 8D, panel 2 from the top, lanes 4-12). By contrast, p.Lys175* was unable to do so (lane 13). The missense variants also formed complexes with MSL proteins as wild-type KAT8 (panels 3-4 from the top, lanes 4-12). Unlike wild-type KAT8, the variants were defective in acetylating histone H4 at lysine 5 or 16 when recombinant nucleosomes were utilized as the substrate (bottom three panels), although the effects on lysine 5 acetylation were less dramatic for some variants. The severe impact of p.Tyr90Cys, p.Arg98Gln and p.Arg99Gln on H4K16 acetylation (bottom two panels, lanes 5-8) suggests that the chromobarrel domain is essential for KAT8 to acetylate nucleosomal H4K16. To substantiate this, we analyzed an N-terminal truncation mutant lacking an intact chromobarrel domain (Figure S10B, mutant 88-458). This mutant formed a similar complex with MSL proteins as wild-type KAT8 but did not acetylate nucleosomal H4K16 as...
efficiently as wild-type KAT8 did (Figure S10C), further supporting importance of the chromob barrel domain in the acetylation activity. This is also consistent with the conclusion that the substitutions p.Tyr90Cys, p.Arg98Gln and p.Arg99Gln impede the acetyltransferase activity of KAT8 (Figure 8D). Thus, the seven missense variants (Figure 8A) are considered to be pathogenic due to defects in nucleosomal histone H4K16 acetylation.

DISCUSSION

Results presented herein show that the mutant mice lacking Kat8 specifically in the cerebrum display early lethality before weaning at 3 weeks and show cerebral hypoplasia in the neocortex and hippocampus (Figure 1), at least in part due to poor development of NSPCs (Figures 3 & S4) and massive apoptosis (Figure 5). Mutant NSPCs failed to form neurospheres in vitro (Figure 6A), and KAT8 inhibition with a small-molecule inhibitor abolished neurosphere formation from wild-type NSPCs (Figure 6B). KAT8 is also essential for H4K16 propionylation in vivo (Figures 6C-D & S7C-D). In addition, human KAT8 deficiency, due mostly to de novo or occasionally to biallelically inherited variants, is associated with a new syndromic intellectual disability disorder (Figures 7-8 and Table S1). Developmental delay, intellectual disability, epilepsy and language impairment are consistent with cerebral hypoplasia in the mutant mice (Figures 1-5). This study thus develops a mouse model, identifies human individuals with KAT8 variants and uncovers the expected importance of the H4K16 acylation axis for mouse and human cerebral development (Figure 8E).

Multiple studies with cultured cells in vitro have established that KAT8 is critical for DNA damage responses (9, 15-18). By contrast, cerebrum-specific deletion exerted minimal effects on the H2A.X+ cell number (Figure S5B). Related to this difference, we have not tested conditions where DNA damage is induced (e.g., by irradiation), so further analyses are
needed to address this issue. Interestingly, *Kat8* deletion triggered apoptosis at both E12.5 and E13.5 (Figures 5 & S6). In agreement with this, inducible *Kat8* deletion triggers apoptosis in myeloid cells (46). Cerebrum-specific *Kat8* deletion affected NPSC proliferation (Figure 4A) and neurogenesis at E13.5 (Figure 2A), but not so obvious E12.5 (Figures 2B & S5A), indicating context-dependent effects. Further studies are needed to gain mechanistic insights into molecular mechanisms whereby KAT8 regulates cellular programs important for cerebral development.

KAT8 is the catalytic subunit of two different multiprotein complexes important for genome-wide epigenetic regulation (Figure S10B) (47, 48), raising the intriguing question how they contribute to the critical role of KAT8 in regulating cerebral development (Figure 8E). Subunits of the complexes are well expressed in the cerebral cortex of neonatal mice and neurospheres cultured from mouse embryos (Figure S1B-C) (49), suggesting involvement of both complexes in regulating cerebral development. In support of this, *KANSL1* (encoding the key KAT8-associated subunit NSL1) is altered in multiple individuals with syndromic intellectual ability (50, 51). Even though the significance remains unclear, partial *KANSL1* duplication is present in some Europeans (52). Moreover, a recent study identified *MSL3* variants in individuals with an X-linked developmental disorder with intellectual disability (53). *MSL3* cooperates with MSL1 and MSL2 in KAT8 activation (Figure 8D, lanes 1-5) (54). Notably, individuals with *Kat8* variants (Figure 7 and Table S1) variably exhibit epilepsy and other abnormalities absent in individuals with *MSL3* variants (53). These studies suggest that KAT8 may act through both MSL and NSL complexes (Figure S10B) to control H4K16 acylation during cerebral development (Figure 8E).

The potential of KAT8 to catalyze H4K16 propionylation is intriguing (Figures 6C-D and S7C-D) (36). The acetyl-CoA concentration is much higher than propionyl-CoA in vivo (55), so propionylation may function as a complementary mechanism under conditions when the
propionyl-CoA level is elevated (Figure S7E). The relative concentration of propionyl-CoA is also higher in the liver than heart, kidney, brain and muscle (55), so the importance of propionylation may vary from tissue to tissue. Notably, subnuclear distribution of H4K16pr is different from H4K16ac (Figure S7A-B). Clinically, the propionyl-CoA level is elevated in cases of propionic acidemia, a recessive rare genetic disorder (56). In such cases, there may be hyperpropionylation (57). As for functional difference of H4K16 acetylation and propionylation, they may recruit protein readers differently, as has been shown for acetylation and crotonylation of histone H3. These interesting issues deserve further investigation.

Some other acetyltransferases have been linked to neurodevelopmental disorders. Pathogenic variants of CREBBP and EP300 [encoding CBP and p300, respectively, required for histone H3 acetylation at lysine 27 in vivo (58)] cause Rubinstein-Taybi syndrome with learning difficulties (59). Moreover, KAT6A or KAT6B deficiency is linked to neurodevelopmental disorders with intellectual disability and global developmental delay (11). In addition, the multidomain scaffold BRPF1 activates KAT6A and KAT6B for acetylation of histone H3 at lysine 23 (60-62), and individuals with BRPF1 variants exhibit syndrome intellectual disability (5, 63). Among the remaining two MYST family members, KAT5 is responsible for acetylation of histones H4 and H2A.Z, whereas KAT7 is the major acetyltransferase acetylating histone H3 at lysine 14 (3). It remains unclear how KAT5 and KAT7 may regulate cerebral development or whether their variants are linked to any developmental disorders. Answers to these two questions will help understand how different acetyltransferases confer epigenomic dynamics and plasticity during cerebral development.

This study is about KAT8 as an essential H4K16 acetyltransferase for cerebral development, so a related question is what deacetylases are involved in H4K16 deacetylation. Early studies established that in yeast, Sir2 antagonizes Sas2 (a KAT8 ortholog) and controls H4K16 acetylation and heterochromatin spread (64), suggesting that a similar mechanism
may operate in higher organisms. Indeed, some evidence supports that mammalian Sir2-related proteins, such as SIRT1, serve as H4K16 deacetylases (65, 66). For example, inducible Sirt1 deletion enhances H4K16 acetylation in hematopoietic cells and (67) and some Sirt1-null embryos show cerebral defects (68). Moreover, Sirt2 is highly expressed in the neonatal cerebral cortex and E16.5 embryo-derived neurospheres (49). There is also evidence supporting the involvement of SIRT2 as an H4K16 deacetylase at least in cultured cells (69). However, treatment with classical deacetylase inhibitors enhances H4K16 acetylation (53, 70), suggesting the involvement of additional deacetylases. Related to this, HDAC1, HDAC2 and HDAC3 are all important for cerebral development (49, 71, 72). Among them, Hdac2 is very highly expressed in the neonatal cerebral cortex and embryo-derived neurospheres (49), suggesting a potentially prominent role of this deacetylase in cerebral development. Notably, even cerebrum-specific deletion of Hdac3 leads to H4K16 hyperacetylation (49). Thus, several deacetylases may control H4K16 acetylation during cerebral development. In addition, KAT8 is activated by autoacetylation (73, 74), while SIRT1 is known to deacetylate KAT8 and inhibit its activity (18, 75). These issues are clinically relevant, because in addition to association with the developmental disorder described herein (Figures 6-7), H4K16 acetylation is altered during aging and in Alzheimer’s disease (76).

In summary, we have identified an important role of mouse Kat8 in cerebral development and provided evidence that eight KAT8 variants are associated with intellectual disability, epilepsy and other anomalies. This report highlights the importance of KAT8 and its complexes (Figure S10B) in human development and sheds light on functions of their orthologs in different organisms. The findings also suggest the potential value of using Kat8 mutant mice (Figure 1) as preclinical models for exploring therapeutic options, e.g., for testing deacetylase inhibitor drugs such as valproic acid (Figure 6B). This study thus uncovers
an intimate link of syndromic intellectual disability disorders to deficient histone acylation and reiterates the importance of epigenetic regulation for cerebral and intellectual development in humans.

METHODS

Exome and Sanger sequencing. Exome sequencing was carried out as described (5). Specifically, whole exome sequencing of individual P5 was performed with the SeqCap EZ MedExome kit (Roche, Basel, Switzerland) and sequencing was performed on a HiSeq 2500 (Illumina); an inhouse bioinformatic pipeline was used to identify variants. For individual T8 and the parents, trio-based whole-exome sequencing was undertaken through the Deciphering Developmental Disorders (DDD) study (77). After exome sequencing, PCR fragments were amplified from genomic DNA or reverse transcribed cDNA to confirm KAT8 variant. For exome sequencing at GeneDx, genomic DNA from the proband and parents were used to capture the exonic regions and flanking splice junctions of the human genome via the Clinical Research Exome kit (Agilent Technologies, Santa Clara, CA) or the IDT xGen Exome Research Panel v1.0. Massively parallel (NextGen) sequencing was carried out on an Illumina system with 100 bp or greater paired-end reads. Reads were aligned to human genome build GRCh37/UCSC hg19 and analyzed for sequence variants using a custom-developed analysis tool. The general assertion criteria for variant classification are available on the GeneDx ClinVar page (http://www.ncbi.nlm.nih.gov/clinvar/submitters/26957/).

Lymphoblastoid cell preparation. Lymphoblastoid cells were established and cultured as described previously (5).
Mice. The Kat8f allele contains two LoxP sites within the Kat8 gene has been described (21). Cerebrum-specific knockouts were generated by mating Kat8f/f mice with the Emx1-Cre strain (Jackson Laboratory, 005648), as previously described for the Brpf1 gene (28, 78-80).

Immunoprecipitation and histone H4 acetylation assays. An expression plasmid for FLAG-tagged KAT8 was transfected into HEK293 cells along with expression vectors for HA-tagged MSL proteins as specified. About 48 h post-transfection, cells were washed twice with PBS and soluble protein extracts were prepared for affinity purification on the anti-FLAG M2 agarose (Sigma, A2220) as described (61, 81). The FLAG peptide (Sigma, F3290) was used to elute bound proteins for immunoblotting with anti-FLAG and -HA antibodies, or for acetyltransferase activity determination. Acetylation of recombinant nucleosomes (Epicypher, SKU16-0009) or histone octamer (Epicypher, SKU 16-0001) was performed as described (61, 81). After acetylation reactions, immunoblotting analyses were carried out, as described below, to detect histone H4 or its site-specific acetylation by use of anti-histone H4 (Abcam, ab18253), -H4K5ac (Millipore, 07-327), -H4K8ac (Millipore, 07-328), -H4K12ac (Millipore, 07-595) and -H4K16ac (Millipore, 07-329) antibodies. The SuperSignal™ West Pico Chemiluminescent Substrates (Pierce 34580) or the SuperSignal™ West Femto Maximum Sensitivity Substrates (Pierce 34095) was used to develop the signals.

Immunoblotting. On ice, neurospheres were suspended in the cold RIPA buffer (150 mM NaCl, 1.0% Nonidet P-40 (or Triton X-100), 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris-HCl, pH 8.0) containing a proteinase inhibitor cocktail, composed of 1 mM phenylmethylsulfonyl fluoride, 1 μg/ml pepstatin, 2 μg/ml aprotinin and 0.5 μg/ml leupeptin. After brief sonication (for 15 seconds at setting 5 with a VirSonic 100 Ultrasonic Cell Disrupter) on ice, the suspension was centrifugated in an Eppendorf centrifuge for 10 min at
20,000 g and 4°C. The supernatant was transferred to a new tube on ice. The protein concentration was determined by a Bradford protein assay kit (Sigma). Protein extracts were mixed with a 3xRSB buffer (240 mM Tris-HCl pH 6.8, 6% SDS, 30% glycerol, 16% β-mercaptoethanol, 0.06% bromophenol blue) and boiled for 8 min, for SDS-PAGE on 10-15% acrylamide gels and subsequent transfer onto a Nitrocellulose membrane (Pall Corp., P/N66485). The membrane was incubated with the blocking buffer [TBS-T (TBS supplemented with 0.1% Tween 20) containing 5% non-fat milk powder] for 30 min at room temperature on a rocking platform and then incubated with the same buffer containing primary antibodies overnight at 4°C on a rocking platform. After washing with TBS-T for 4 times (10 min each, with agitation), the membrane was incubated, on a rocking platform, with the blocking buffer containing the horse radish peroxidase-conjugated secondary antibodies at room temperature for 1 h. Alternatively, TBS-T was replaced with PBS-T (PBS containing 0.15% Tween 20). The membrane was washed as above and developed with the enhanced chemiluminescence substrates (FroggaBio, 16024), the SuperSignal™ West Pico Chemiluminescent Substrates (Pierce 34580) or the SuperSignal™ West Femto Maximum Sensitivity Substrates (Pierce 34095).

Green and indirect fluorescence microscopy. For analysis of subcellular localization, expression plasmids for EGFP-tagged KAT8 variants were transiently transfected into HEK293 cells with or without those for FLAG-tagged wild-type KAT8 as specified. About 16 h post transfection, cells were fixed for indirect fluorescence microscopy with the anti-FLAG M2 antibody (Sigma, F3165). Fluorescence signals were examined under a fluorescence microscope, and fluorescence images were captured for further processing as described (81).
Histology. Mouse brain and embryos were dissected out and fixed in 4% PFA for 24-48 h, as previously described (28, 78, 82). The tissues were then subject to dehydration and paraffin embedding. The paraffin blocks were sectioned to 5 μm and used for subsequent Nissl staining, H&E staining or immunofluorescence microscopy as described (28, 78, 82). The antibodies used for immunostaining are goat anti-SOX2 (R&D systems, AF2018, 1:200), rabbit anti-TBR2 (Abcam, ab23345, 1:400), rat anti-CTIP2 (Abcam, ab18465, 1:400), rabbit anti-CUX1 (kindly provided by Dr. Alain Nepveu, McGill University, 1:200) (83), mouse Tuj1 (Covance, MMS-435p, 1:1000), rat anti-BrdU (Abcam, ab6326, 1:400), mouse anti-Ki67 (BD Pharmingen, 550609, 1:200), rabbit anti-H4K16ac (Abcam, ab109463, 1:1500) and mouse anti-H4K16pr (PTM Biolabs, PTM-210, 1:1000) antibodies.

BrdU tracing in vivo. BrdU labeling was carried out as described (28, 78). It was injected intraperitoneally into pregnant mice at a dosage of 50 mg per kg of body weight. The mice were euthanized at different timepoints according to experimental goals. For S-phase analysis, mice were euthanized 1 h after injection.

Apoptosis detection. TUNEL assays were carried out with paraffin sections by use of the DeadEnd™ fluorometric TUNEL kit (Promega, G3250) according to the manufacturer’s instructions. After deparaffinization and rehydration, embryonic sections were re-fixed with 4% PFA for 10 min and washed once with PBS. The sections on slides were encircled with a hydrophobic PAP pen to build a hydrophobic barrier for permeabilization with 50 μl PBS (containing 0.2% triton X-100 and 20 μg/ml proteinase K) for 10 min at room temperature. The sections were then re-fixed again in 4% PFA again for 10 min, washed with PBS and equilibrated with the equilibration buffer provided with the kit. After equilibration, the sections were incubated with 50 μl of a TdT reaction mix for 1 h at 37°C and the reaction was
stopped by immersion of the slides in 100 ml of 2xSSC for 15 min at room temperature. The sections were then counterstained with 0.1 µg/ml DAPI (Sigma, D9542) in PBS for 15 min and the slides were mounted with coverslips for further analysis under a fluorescence microscope.

To detect activated caspase 3, after deparaffinization, rehydration, and antigen-retrieval [by boiling in a 10 mM sodium citrate buffer (pH 6.0, containing 0.05% Tween 20) for 20 min], the sections were incubated in a blocking buffer (PBS containing 2% BSA and 0.2% Triton X-100) at room temperature for 30 min, followed by incubation with rabbit anti-mouse cleaved caspase 3 antibody (Cell Signaling, 9661, 1:200) overnight at 4°C and an Alexa Fluor 568-conjugated secondary (Invitrogen, A-11011, 1:500) for 1 h at room temperature. Nuclei were counterstained with DAPI for slide mounting and subsequent examination under a fluorescence microscope.

Neurosphere formation assays. All the procedures were done in the tissue-culture hood unless indicated otherwise. All the surgical instruments and solutions used were either autoclaved or filter-sterilized. Briefly, pregnant mice at E16.5 or E18.5 were euthanized and embryos were dissected out and transferred to PBS. The embryo head was collected, washed with PBS and transferred to PBS/2% glucose on ice for subsequent manipulation. Under a dissecting microscope, the head skin was peeled off and the skull was opened with a pair of surgical scissors. The brain was dissected out with a pair of forceps. The cerebral cortices were segregated from the rest brain tissues and collected into Eppendorf tubes containing 1 ml of the complete neurosphere medium on ice. The medium contained mouse NeuroCult NSC Basal Medium (StemCell Technologies, 05700) supplemented with 10% NeuroCult Proliferation Supplement (StemCell Technologies, 05701) and 20 ng/ml rhEGF (StemCell Technologies, 78006.1). Once all cortices were collected, the tubes were transferred into the
cell culture hood and gently pipetted up and down with 1 ml Pipetman tips for 8 times to prepare single cell suspension (with the maximum pipetting volume set to 0.8 ml). Air bubbles were avoided by pipetting gently as excessive oxygen from the bubbles would be deleterious for NSC growth. Afterwards, the tubes were kept still at room temperature for 1 min and the supernatants were then transferred to new tubes for centrifugation at 150 g for 5 min with a bench centrifuge at room temperature. The supernatants were discarded, and each pellet was gently mixed with 1 ml of the fresh neurosphere medium. The suspension was filtered through a 40 μm nylon cell strainer (Fisher Scientific, 22363547) and the filtrate was considered as single-cell preparation. After counting, wild-type and mutant cells were seeded into wells of a 6-well plate at the same number. For treatment with the KAT5 and KAT8 inhibitors, NU9056 [Tocris Bioscience, 4903; 1x IC50 (2 μM) or 5x IC50 (10 μM), according to the IC50 value in TIP60 inhibition] and MG149 [Selleckchem, S7476; 0.3x IC50 (23.6 μM) or 1.3x IC50 (94 μM), according to the IC50 value in TIP60 inhibition]. For immunoblotting, neurospheres were washed once with PBS for extract preparation in the RIPA buffer as described above.

Statistical analysis

Statistical analysis was performed with unpaired 2-tailed Student’s t test. p<0.05 was considered to be statistically significant. Data represent mean ± S.E.M. Graphs were generated with GraphPad Prism 8 (Graphpad Software).

Study Approval. The clinical study was carried out according to a study protocol (#4181) approved by CHU Sainte-Justine Institutional Review Board #1 (Montreal, Quebec, Canada). The IRB at Boston Children's Hospital approved the family enrollment and human cell work on proband 6 (T6) under the protocol 10-02-0253. The non-identifying information of
proband 1 (T1) was collected at an institute that did not require consent for publication of such information as an isolated case study. For the other eight human subjects who participated in this clinical research study, written informed consent was received from the participants or their legal guardians. In addition, written informed consent was specifically obtained for the photographs presented in this manuscript. All biological samples from individual T8 and her family members were collected after written informed consent of the family, in agreement with the regulations of the institutional review boards (Beilinson Medical Center, Petah Tikva, Israel and Hadasah Ein Karem, Jerusalem, Israel) and the Helsinki guidelines. Mouse-related procedures carried in this study were performed according to Animal Use Protocol #5786, which was reviewed and approved by the Facility Animal Care Committee of McGill University, Montreal, Quebec, Canada.

AUTHOR CONTRIBUTIONS

L.L. characterized the knockout mice, performed data analysis and drafted the manuscript; M.G. analyzed patient-derived variants and discovered the mouse phenotype; M.W.H. identified the proband family and initiated clinical studies; J.R. generated patient-derived cells; I.T., R.E.S., C.B., K.G., S.W., H.K., J.A.H., E.M.B., L.B.S., O.K., H.G.S., L.B., S.T., M.W., Q.W., M.S., G.S.B., S.S.B., S.S.H., R.O., J.M.H. & P.B.A. identified individuals with KAT8 variants and obtained clinical data; J.J. repeated some assays at the manuscript revision stage; X.B. & M.B. helped with acetylation assays; T.K.P. supplied the floxed mice; P.M.C. initiated and supervised clinical studies; X.J.Y. generated knockout mice and coordinated the project; with contribution from all authors, P.M.C. & X.J.Y. wrote and finalized the manuscript.

ACKNOWLEDGEMENT
This work was supported by research grants from Natural Sciences and Engineering Research Council of Canada (NSERC to X.J.Y.), Canadian Institutes of Health Research (CIHR, to X.J.Y. & P.M.C.), Cancer Research Society (to X.J.Y.) and National Institutes of Health (CA129537 and GM109768, to T.K.P.). This study makes use of DECIPHER (http://decipher.sanger.ac.uk), which is funded by Wellcome Trust. The Deciphering Developmental Disorders Study (DDD) study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003); see reference (77) or www.ddduk.org/access.html for full acknowledgement. L.L. received stipend support from China Scholarship Council, the Clifford C.F. Wong Fellowship program, a CIHR/FRSQ training grant in cancer research for the McGill Integrated Cancer Research Training Program, and the Canderel Foundation.

COMPETING FINANCIAL INTERESTS

R.E.S., M.T.C. & K.M. are affiliated with GeneDx, Inc., a wholly owned subsidiary of OPKO Health, Inc., USA. The other authors declare no competing financial interests.
REFERENCES

Figure 1. Conditional Kat8 deletion causes early lethality and cerebral hypoplasia. (A) Growth curves for control and homozygous knockout (cKO) mice (n=14 and 4, respectively). (B) Photos of wild-type and cKO mice at P21. (C) Enlarged photos of head parts of the mice shown in (B). The “flat-head” phenotype refers to the flat head surface above the cerebrum (indicated with a red arrowhead). (D) Photos of de-skinned heads from the mice shown in (B). (E) Brain images for the wild-type and cKO mice shown in (B). (F) Representative brain images for the wild-type and cKO mice at P5. See Figure S2C-F for brain images of another pair at P5 and three pairs at P1, E18.5 and E16.5. (G) Brain weight at P1, P5 and P22 (n=5, 3 and 4 for each genotype, respectively). (H-I) Nissl staining of sagittal (H) or coronal (I) brain sections at P22 or P6. (J-L) Nissl staining of coronal (J) or sagittal (K-L) embryo sections at E16.5, E13.5 or E12.5. For panels H-L, mainly the cerebrum or its precursor is shown. Dashed lines demarcate the cerebral cortex. The mutant cortex is largely lost at P6 (I) and P22 (H). Neocortical and hippocampal lamination is not evident in the mutant at E16.5 (J). The small mutant LGE at E12.5 is due to section orientation. For (B-F), images are representative of five pairs of wild-type and mutant mice and for (H-L), each image is representative of three experiments. For (A) and (G), unpaired 2-tailed Student’s t tests were used; ***, p<0.001. Scale bars: 2 mm (E), 1 mm (F & H-J) and 0.5 mm (K-L). Abbreviations: Cb, cerebellum; CP, cortical plate; Cx, cerebral cortex; Hp, hippocampus; Hp-Pri, hippocampal primordium; LGE, lateral ganglionic eminence; MGE, medial ganglionic eminence; Ob, olfactory bulb; Th, thalamus.
Figure 2. *Kat8* deletion promotes neurogenesis at E13.5. (A) Immunostaining analysis of E13.5 brain sections uncovered many more Tuj1+ neurons in the mutant pre-cortical plate. (B) Immunostaining analysis of E12.5 brain sections similar distribution of Tuj1+ neurons between the wild-type and mutant pre-cortical plates. The images are representative from three different experiments. Only the pre-cortical plates are shown here. Scale bars: left panels, 500 μm; middle and right panels, 100 μm. See the Figure 1 legend for abbreviations.
Figure 3. Cerebrum-specific Kat8 deletion reduces the embryonic NSC population. (A) Immunostaining analysis of E13.5 control and mutant embryonic sections with an anti-SOX2 antibody. Enlarged images of the squared areas are shown at the middle and right. (B) Same as (A) except that E12.5 embryonic sections were analyzed. The images are representative of four (A) or three (B) different experiments. Scale bars: left panels, 500 μm; middle and right panels, 100 μm.
Figure 4. Cerebral *Kat8* deletion impairs cell proliferation. (A) Immunostaining analysis of E13.5 control embryonic sections with anti-BrdU and -Ki67 antibodies. Enlarged images of the boxed areas are shown at the middle and right. For BrdU labeling, timed mating was carried out and BrdU was injected intraperitoneally into E13.5 pregnant mice. After 1 h, the mice were euthanized for embryo retrieval, genotyping, section preparation and subsequent immunostaining with the antibodies. (B) Same as (A) but mutant embryonic sections were analyzed. Images are representative of three experiments. Scale bars: left panels, 500 μm; middle and right panels, 100 μm.
Figure 5. Cerebral *Kat8* deletion triggers massive apoptosis. (A) TUNEL staining of E13.5 embryonic sections uncovered massive apoptosis at the mutant cerebrocortical neuroepithelia. (B) Immunostaining analysis of E13.5 embryonic sections with anti-activated caspase 3 antibody confirmed massive apoptosis at the mutant cerebrocortical neuroepithelia. Images are representative of two experiments. Scale bars: left panels, 500 μm; middle and right panels, 100 μm.
Figure 6. Critical roles of KAT8 in neurosphere formation and H4K16 propionylation. (A) Defective neurosphere formation from mutant but not wild-type NPSCs isolated from the cerebral cortex of the cerebrum-specific Kat8 knockout embryo at E16.5. (B) MG149 (targeting KAT5 and KAT8 with IC50 values of 74 and 47 μM, respectively) affected neurosphere formation more dramatically than NU9056 (targeting KAT5 at an IC50 value of 2 μM). The inhibitors were added at the indicated concentrations (according to IC50 values against KAT5) after single cells were seeded for neurosphere formation. The vehicle (DMSO) amount was maintained at the same amount for all conditions. (C-D) Immunostaining of E13.5 wild-type (C) and mutant (D) embryonic sections with the anti-H4K16pr antibody to detect H4K16 propionylation (pr). Results are representative of three (A-B) or two (C-D) different experiments.
Figure 7. **KAT8 variants, clinical features and photographs of nine different individuals.** (A) Exon-intron structure of KAT8 and the location of its variants identified in nine individuals. All except individual T9 carry heterozygous de novo variants. Individuals T1, T2 and T3 are not related but share a recurrent variant. All except c.523A>T are missense variants. c.523A>T is a nonsense variant and converts codon 176 to a termination one. The regions encoding the chromobarrel and acetyltransferase domains of KAT8 are labelled with horizontal bars. (B) Heatmap comparing major clinical features in the nine individuals. See Table S1 for more detailed clinical information. (C) Photographs of five individuals. See Figures S8-S9 for photographs of individual T3 and MRI images of individuals T3, T6, T7 and T9.
Figure 8. Characterization of eight KAT8 variants associated with developmental anomalies. (A) Schematic representation of KAT8 and patient-derived variants (Figure 7A and Table S1 for the corresponding DNA sequence changes). KAT8 possesses a chromobarrel domain and an acetyltransferase core, both of which are conserved in fly Mof (Figure S10A). The acetyltransferase domain is composed of a KAT8/Mof-specific region (absent in other members of the MYST family) and a MYST domain. The acetyl-CoA binding site is indicated. Among the missense variants, three alter the chromobarrel domain and four change the acetyltransferase domain. Among the latter group, three affect residues located in the KAT8-specific region and the fourth alters Arg325 within the acetyl-CoA binding motif. (B) Location of the affected residues on a 3D model generated from crystal structures of the chromobarrel and acetyltransferase domains of KAT8 or orthologs. (C) Subcellular localization of the variants p.Lys175* and p.Arg325Cys. They were expressed as GFP-tagged proteins (green) in HEK293 cells together with FLAG-tagged wild-type KAT8 for immunostaining with anti-FLAG M2 antibody (red). The subcellular localization of p.Lys175* but not p.Arg325Cys is different from the wild-type. DAPI stains nuclei (blue).
(D) Nucleosomal histone H4 acetylation assays showing that the missense variants are inactive in H4K16 acetylation. Impact on H4K5 acetylation was also affected, to a less extent. Extract preparation, complex purification and acetylation assays were carried out as in Figure S10C. Results are representative of two (C) or three (D) different experiments. (E) Cartoons illustrating how KAT8 regulates cerebral and NSPC development through H4K16 acylation in normal individuals (left) and patients with KAT8 variants (right). In the patients, the regulatory axis is impaired, leading to intellectual disability, epilepsy and other anomalies. MSL and NSL (non-specific lethal) proteins form stoichiometric complexes with KAT8 (Figure S10B) and enhance its acyltransferase activities.