XMEN (X-linked immunodeficiency with magnesium defect, EBV infection, and neoplasia) is a complex primary immunological deficiency caused by mutations in MAGT1, a putative magnesium transporter. In this issue of the JCI, Ravell et al. greatly expand the clinical picture. The authors investigated patients’ mutations and symptoms and reported distinguishing immunophenotypes. They also showed that MAGT1 is required for N-glycosylation of key T cell and NK cell receptors that can account for some of the clinical features. Notably, transfection of the affected lymphocytes with MAGT1 mRNA restored both N-glycosylation and receptor function. Now we can add XMEN to the ever-growing family of congenital disorders of glycosylation (CDG).

Find the latest version:
https://jci.me/134240/pdf
A comprehensive clinical description of patients with XMEN

XMEN is the attention-grabbing name for a rare primary immunodeficiency (X-linked immunodeficiency with magnesium defect, EBV infection, and neoplasia) first described for 3 male patients in 2011 (1). Mutations in the X-linked gene MAGT1 were thought to disrupt magnesium transport and homeostasis; a putative magnesium transporter. In this issue of the JCI, Ravell et al. greatly expand the clinical picture. The authors investigated patients’ mutations and symptoms and reported distinguishing immunophenotypes. They also showed that MAGT1 is required for N-glycosylation of key T cell and NK cell receptors that can account for some of the clinical features. Notably, transfection of the affected lymphocytes with MAGT1 mRNA restored both N-glycosylation and receptor function. Now we can add XMEN to the ever-growing family of congenital disorders of glycosylation (CDG).

Related Article: https://doi.org/10.1172/JCI131116

Conflict of interest: The author has declared that no conflict of interest exists.

Copyright: © 2019, American Society for Clinical Investigation.

Reference information: J Clin Invest. https://doi.org/10.1172/JCI34240.
ration of those glycans. The glycosylation status of serum carbohydrate-deficient transferrin (CDT) is often used as a simple diagnostic surrogate to distinguish these groups. The absence of glycans can sometimes lead to protein instability and degradation. Clearly, if a specific mature glycan structure is needed for a physiological activity, the entire absence of that glycan will reduce or eliminate that function.

Ravell et al. hypothesized that selective N-glycosylation deficiency of multiple immune proteins was the basis of XMEN pathology (Figure 1). Indeed, they found that selective reduction of NKG2D was due to poor glycosylation that greatly reduced the presence of the receptor (5). Previous studies had shown that silencing the expression of human NKG2D or DAP10 decreases the cytotoxic effector function of CD8+ T cells and NK cells, leading to impaired EBV antiviral immunity (19). But perhaps other proteins were also affected. To answer this, the authors performed extensive glycoproteomic site occupancy analysis of normal T cells and T cells from patients with XMEN (5).

Proteomic analysis using liquid chromatography with tandem mass spectrometry revealed no major differences in peptide abundance, however, the authors found that patients with XMEN had more peptides with lower glycosylation than did controls. The analysis of 2481 peptides from 1421 proteins showed that only a small set (73 proteins) were affected in XMEN. Decreased glycan site occupancy was observed for the proteins CD28, CD70, HLA-DRβ1, T cell receptor α chain (TCR-α), ceramide synthase 2 (CERS2), and solute carrier family 4 member 7 (SLC4A7). CD28, CD70, HLA-DRβ1, TCR-β, CERS2, and SLC4A7 had a reduction in fully or partly glycosylated species.

Importantly, transfection of MAGT1 into PBMCs restored defective glycosylation of NKG2D, CD70, and CERS2, incompatible with the clear immunological phenotype of XMEN.

The pioneering work of Gilmore focused on the structure and function of the OST complex, which is responsible for adding N-glycans to proteins in the ER (10, 13). He and his colleagues showed the existence of two separate complexes containing either catalytic subunit STT3A or STT3B. STT3A adds N-glycans cotranslationally and toward the N-terminal, whereas STT3B adds glycans to sites skipped by STT3A, to those near the C-terminus, or in short membrane loops. MAGT1 is exclusive to STT3B-containing complexes, and TUSC3 is found in STT3A complexes. Although many glycosylation sites are available for either complex, some glycosylation sites and proteins are specifically STT3B dependent (12). Extensive studies with these STT3A- versus STT3B-dependent proteins in cellular knockout models or in patients’ fibroblasts deficient in either STT3A or STT3B confirmed a series of only STT3A- or STT3B-dependent proteins (14). Only a few months ago, this specificity strategy identified two patients with XLMR harboring MAGT1 mutations, who resembled other patients with CDG. An additional patient had symptoms consistent with XMEN (15).

CDG defines approximately 140 rare disorders caused by mutations that affect one or more glycosylation pathways (16, 17). Approximately half of the disorders affect N-glycosylation of potentially hundreds of proteins carrying N-glycans. Patients often have multisystemic symptoms, and the majority include intellectual disability, failure to thrive, and a host of neurological abnormalities. Many of these disorders also compromise the immune system (18). The N-glycosylation disorders fall into two groups: (a) those that limit the synthesis and OST-dependent transfer of a universal precursor to acceptor sites on the client proteins and (b) those that impair the complete maturation of those glycans. The glycosylation status of serum carbohydrate-deficient transferrin (CDT) is often used as a simple diagnostic surrogate to distinguish these groups. The absence of glycans can sometimes lead to protein instability and degradation. Clearly, if a specific mature glycan structure is needed for a physiological activity, the entire absence of that glycan will reduce or eliminate that function.

Ravell et al. hypothesized that selective N-glycosylation deficiency of multiple immune proteins was the basis of XMEN pathology (Figure 1). Indeed, they found that selective reduction of NKG2D was due to poor glycosylation that greatly reduced the presence of the receptor (5). Previous studies had shown that silencing the expression of human NKG2D or DAP10 decreases the cytotoxic effector function of CD8+ T cells and NK cells, leading to impaired EBV antiviral immunity (19). But perhaps other proteins were also affected. To answer this, the authors performed extensive glycoproteomic site occupancy analysis of normal T cells and T cells from patients with XMEN (5).

Proteomic analysis using liquid chromatography with tandem mass spectrometry revealed no major differences in peptide abundance, however, the authors found that patients with XMEN had more peptides with lower glycosylation than did controls. The analysis of 2481 peptides from 1421 proteins showed that only a small set (73 proteins) were affected in XMEN. Decreased glycan site occupancy was observed for the proteins CD28, CD70, HLA-DRβ1, T cell receptor α chain (TCR-α), ceramide synthase 2 (CERS2), and solute carrier family 4 member 7 (SLC4A7). CD28, CD70, and HLA-DRβ1 had lower surface expression in T cells. CD28, CD70, HLA-DRβ1, TCR-β, CERS2, and SLC4A7 had a reduction in fully or partly glycosylated species. All XMEN patients tested (n = 10) possessed a mild, but distinctly abnormal transferrin glycosylation–typical type I CDG. They also found mild changes in apolipoprotein CIII (Apo-CIII), which only contains O-linked glycans. Further, 36% and 17% of the differentially glycosylated peptides mapped to STT3B- and STT3A-predicted motifs, respectively. Importantly, transfection of MAGT1 into PBMCs restored defective glycosylation of NKG2D, CD70, CERS2,
SLC4A7, and TCR-β. Diagnostically, surface staining for NKG2D and CD107 together offers the best test for patients with XMEN (5).

In a separate study (20), researchers from this group showed that MAGT1 was present in T cells, B cells, NK cells, and monocytes, whereas TUSC3 was absent. These results suggest that these cells may rely on STT3B-dependent glycosylation more than do other types of cells.

Conclusions

Clearly, the analysis of T cell glycoproteins has provided reasonable explanations for some key pathological features of XMEN. Two questions remain unanswered: Why do severe mutations that seem to eliminate MAGT1 generate the XLMR versus the XMEN phenotype in patients? And what specific proteins in other cell types might account for the nonimmunological maladies seen in the expanded spectrum of patients with XMEN? Perhaps, once again, there are other currently unknown functions of MAGT1. For now, XMEN is definitely a CDG. Welcome!

Acknowledgments

This work was supported by The Rocket Fund and NIH grant R01DK99551. Linda Bradley provided valuable comments, and Paulina Sosicka adapted the figure.

Address correspondence to: Hudson H. Freeze, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, California 92037, USA. Phone: 858.646.3142; Email: hudson@SBPDiscovery.org.