Free fatty acid processing diverges in human pathologic insulin resistance conditions

Hilal Sekizkardes, … , Marissa Lightbourne, Rebecca J. Brown

J Clin Invest. 2020. https://doi.org/10.1172/JCI135431.

Background. Post-receptor insulin resistance (IR) is associated with hyperglycemia and hepatic steatosis. However, receptor-level IR (e.g. insulin receptor pathogenic variants, INSR) causes hyperglycemia without steatosis. We examined four pathologic conditions of IR in humans to examine pathways controlling lipid metabolism and gluconeogenesis.

Methods. Cross-sectional study of severe, receptor IR (INSR, n=7), versus post-receptor IR that was severe (lipodystrophy, n=14), moderate (type 2 diabetes [T2D], n=9) or mild (obesity, n=8). Lipolysis (glycerol turnover), hepatic glucose production (HGP), gluconeogenesis (deuterium incorporation from body water into glucose), hepatic triglyceride (magnetic resonance spectroscopy), and hepatic fat oxidation (plasma β-hydroxybutyrate) were measured.

Results. Lipolysis was 2-3-fold higher in INSR versus all other groups, and HGP 2-fold higher in INSR and lipodystrophy versus T2D and obesity (p<0.001) suggesting severe adipose and hepatic IR. INSR subjects had a higher contribution of gluconeogenesis to HGP, ~77%, versus 52-59% in other groups (p=0.0001). Despite high lipolysis, INSR subjects had low hepatic triglycerides (0.5 [0.1-0.5]), in contrast to lipodystrophy (10.6 [2.8-17.1], p<0.0001). β-hydroxybutyrate was 2-7-fold higher in INSR versus all other groups (p<0.0001) consistent with higher hepatic fat oxidation.

Conclusion. These data support a key pathogenic role of adipose tissue […]

Find the latest version:

https://jci.me/135431/pdf
Title: Free fatty acid processing diverges in human pathologic insulin resistance conditions

Authors and affiliations:

Hilal Sekizkardes¹, Stephanie Therese Chung², Shaji Chacko³, Morey W. Haymond³, Megan Startzell², Mary Walter², Peter J. Walter², Marissa Lightbourne³, Rebecca J. Brown².

¹National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
²National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
³Department of Pediatrics, Children’s Nutrition Research Center, US Department of Agriculture/Agricultural Research Service, Baylor College of Medicine, Houston, Texas, USA

Changes to affiliations since the time the work was completed:

Hilal Sekizkardes is currently affiliated with:

Pediatric Obesity Program, Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center and Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, Tennessee, USA

Correspondence:

Rebecca J. Brown
National Institute of Diabetes and Digestive and Kidney Diseases
Building 10-CRC, Room 6-5942
10 Center Drive
Bethesda, MD 20892
Conflict of Interest Statement:
The authors have declared that no conflict of interest exists
Abstract

Background. Post-receptor insulin resistance (IR) is associated with hyperglycemia and hepatic steatosis. However, receptor-level IR (e.g. insulin receptor pathogenic variants, INSR) causes hyperglycemia without steatosis. We examined four pathologic conditions of IR in humans to examine pathways controlling lipid metabolism and gluconeogenesis.

Methods. Cross-sectional study of severe, receptor IR (INSR, n=7), versus post-receptor IR that was severe (lipodystrophy, n=14), moderate (type 2 diabetes [T2D], n=9) or mild (obesity, n=8). Lipolysis (glycerol turnover), hepatic glucose production (HGP), gluconeogenesis (deuterium incorporation from body water into glucose), hepatic triglyceride (magnetic resonance spectroscopy), and hepatic fat oxidation (plasma β-hydroxybutyrate) were measured.

Results. Lipolysis was 2-3-fold higher in INSR versus all other groups, and HGP 2-fold higher in INSR and lipodystrophy versus T2D and obesity (p<0.001) suggesting severe adipose and hepatic IR. INSR subjects had a higher contribution of gluconeogenesis to HGP, ~77%, versus 52-59% in other groups (p=0.0001). Despite high lipolysis, INSR subjects had low hepatic triglycerides (0.5 [0.1-0.5]), in contrast to lipodystrophy (10.6 [2.8-17.1], p<0.0001). β-hydroxybutyrate was 2-7-fold higher in INSR versus all other groups (p<0.0001) consistent with higher hepatic fat oxidation.

Conclusion. These data support a key pathogenic role of adipose tissue IR to increase glycerol and FFA availability to the liver in both receptor and post-receptor IR. However, the fate of FFA diverges in these populations. In receptor-level IR, FFA oxidation drives gluconeogenesis rather than being reesterified to triglyceride. In contrast, in post-receptor IR, FFA contributes to both gluconeogenesis and hepatic steatosis.

Trial registration. ClinicalTrials.gov NCT01778556; NCT00001987; NCT02457897

Funding. NIDDK, USDA ARS 58-3092-5-001
INTRODUCTION

Insulin is a hormone that signals the fed state, promoting a switch from net glucose production to net glucose uptake and shifting lipids from lipid metabolism to lipid storage. In adipose tissue, insulin’s major role is to suppress lipolysis, thus reducing plasma concentrations of free fatty acid (FFA) and glycerol availability. In the liver, insulin suppresses glucose production, and increases de novo lipogenesis (DNL) in the presence of carbohydrate precursors (1). Brown and Goldstein first proposed that hepatic insulin resistance is selective in type 2 diabetes. In the selective insulin resistance model, the ability of insulin to suppress hepatic glucose production is impaired, contributing to hyperglycemia, whereas the ability of insulin to stimulate DNL is intact, and in fact is upregulated by compensatory hyperinsulinemia, contributing to hypertriglyceridemia and hepatic steatosis (2, 3).

In contrast to type 2 diabetes, inhibition of insulin signaling at the level of the insulin receptor causes extreme insulin resistance in all pathways downstream of the insulin receptor. In humans, this phenomenon clinically manifests in patients with pathogenic variants of the insulin receptor (INSR) as a phenotype of hyperglycemia, with low hepatic and serum triglycerides, presumably from failure of insulin to stimulate DNL (4). However, although DNL contributes to excess hepatic and serum triglyceride in insulin-resistant patients, it is not the major contributor (5). Instead, the major contributor appears to be reesterification of circulating FFA, which are present in high abundance due to failure of insulin to suppress lipolysis. As hepatic reesterification of FFA is not thought to be insulin dependent (6), the lack of hepatic steatosis in rodents and humans with receptor-level insulin signaling defects suggests either low FFA delivery to the liver due to low lipolysis, or shunting of FFA in the liver into β-oxidation to drive gluconeogenesis, rather than reesterification.

The objectives of the current study were to define the role of lipolysis in contributing into hepatic glucose production versus hepatic lipid accumulation in states of receptor-level versus post-receptor insulin resistance in humans. We studied subjects with severe, receptor level insulin resistance due to INSR pathogenic variants, compared to subjects with severe post-receptor insulin resistance due to lipodystrophy.
Additional cohorts with mild to moderate post-receptor insulin resistance (type 2 diabetes, obesity) were included for comparison. We hypothesized that both cohorts with severe insulin resistance (receptor-level and post-receptor) would have higher whole-body lipolysis compared to the less insulin resistant groups (type 2 diabetes and obesity). However, we further hypothesized that the fate of FFA in the liver would diverge in receptor-level versus post-receptor insulin resistance: In subjects with lipodystrophy, high FFA flux from adipose tissue lipolysis would thus contribute to both gluconeogenesis and hepatic steatosis. By contrast, in subjects with \textit{INSR} pathogenic variants, FFA would be shunted toward β-oxidation, resulting in increased ketone production and gluconeogenesis, with lack of hepatic steatosis.
RESULTS

Baseline characteristics

Baseline characteristics are given in Table 1. Seven subjects with \textit{INSR} pathogenic variants, 14 with lipodystrophy, nine adolescents within 2 weeks of diagnosis of type 2 diabetes, and eight obese non-diabetic adolescents were studied (Figure 1). Five of seven subjects with insulin receptor dysfunction had bi-allelic pathogenic variants in \textit{INSR} (resulting in more severe insulin resistance), whereas two had mono-allelic variants (resulting in less severe insulin resistance). Four of 14 subjects with lipodystrophy had generalized lipodystrophy, while 10 had partial lipodystrophy. Genetic details of subjects with lipodystrophy and \textit{INSR} pathogenic variants are in Supplemental Table 1.

Subjects with lipodystrophy were older than the other groups (mean±SD 21.9±6.0 years for \textit{INSR} pathogenic variants, 37.2±17.2 for lipodystrophy, 13.9±3.5 for type 2 diabetes, and 15.3±1.8 for obesity, \textit{p}<0.0001); unadjusted comparisons are presented with age-adjusted analyses in Supplemental Table 2. Subjects with \textit{INSR} pathogenic variants and lipodystrophy had lower BMI compared to subjects with type 2 diabetes and obesity (19.6 ± 8.4, 24.6 ± 4.9, 41.4 ± 7.9, 35.6 ± 5.5 kg/m², \textit{p}<0.0001). Likewise, fat mass was lower in subjects with \textit{INSR} pathogenic variants and lipodystrophy compared to those with type 2 diabetes and obesity (11.9±12.8, 16.9±10.4, 50.4±16.0, and 39.1±9.2 kg, respectively, \textit{p}<0.0001).

The three groups with diabetes (\textit{INSR} pathogenic variants, lipodystrophy and type 2 diabetes) did not have statistically different glycemia control as measured by HbA1c (means 7.4-8.4%, \textit{p}=0.47). Fasting plasma glucose was higher in subjects with lipodystrophy compared to those with obesity but was otherwise comparable among groups. Fasting insulin was higher in subjects with \textit{INSR} pathogenic variants compared to all other groups. Four of seven (57%) subjects with \textit{INSR} pathogenic variants and nine of 14 (64%) with lipodystrophy were taking insulin at the time of the study. Insulin doses among insulin users were ~10-fold higher in subjects with \textit{INSR} pathogenic variants compared to subjects with lipodystrophy, again consistent with greater insulin resistance in the \textit{INSR} group (22.9±21.3 versus 2.6±1.9 units/kg/day, \textit{p}=0.012).
number of antidiabetic medications and use of metformin was similar in subjects with INSR pathogenic variants and lipodystrophy. However, five of seven subjects with INSR pathogenic variants were taking metreleptin as an experimental drug for diabetes, versus none of the subjects with lipodystrophy. Subjects with type 2 diabetes and obesity were not taking any medications.

Lipolysis was elevated in subjects with severe receptor level insulin resistance (INSR pathogenic variants).

Whole body lipolysis was measured as glycerol rate of appearance by infusion of 2H$_5$-glycerol and normalized to body weight. Lipolysis was elevated in subjects with INSR pathogenic variants compared to all groups with post-receptor insulin resistance: ~2 fold higher than subjects with lipodystrophy and type 2 diabetes, and ~3 fold higher than subjects with obesity (p=0.0001) (Figure 2A) consistent with failure of insulin to suppress lipolysis in the context of severe insulin resistance. The results were unchanged when glycerol turnover was normalized to fat mass as a measure of adipose tissue lipolysis; however, patients with generalized lipodystrophy were outliers in this analysis due to low fat mass (Supplemental Table 2 and Supplemental Figure 1). Similarly, plasma glycerol concentrations were ~2-fold higher in subjects with INSR pathogenic variants compared to subjects with obesity (p=0.013) and ~40 and ~80% higher compared to subjects with type 2 diabetes and lipodystrophy, although the latter differences were not statistically significant (Figure 2B).

In subjects with INSR pathogenic variants and lipodystrophy, free fatty acid turnover was measured as palmitate rate of appearance by stable-isotope infusion of [U-13C$_{16}$] palmitate normalized to body weight. There was no difference in palmitate turnover between the two groups (Figure 2C). Palmitate turnover was not measured in subjects with type 2 diabetes or obesity. Plasma palmitate concentrations were comparable in subjects with INSR pathogenic variants and lipodystrophy and were higher in subjects with type 2 diabetes compared to those with obesity (Figure 2D). Similarly, plasma total free fatty acid concentrations were comparable in subjects with INSR pathogenic variants and lipodystrophy and were higher in subjects
with *INSR* pathogenic variants and type 2 diabetes compared to those with obesity, and higher in subjects with type 2 diabetes compared to lipodystrophy (Figure 2E).

The contribution of gluconeogenesis to hepatic glucose production was higher in receptor level versus post-receptor insulin resistance.

Hepatic glucose production rates were calculated from glucose appearance rate measurements under fasting steady state conditions after the infusion of [6,6-\(^2\)H\(_2\)] glucose, and were normalized to body weight. The fraction of glucose derived from gluconeogenesis was measured using incorporation of deuterium on newly formed glucose from body water enriched with \(^2\)H\(_2\)O. Absolute rates of gluconeogenesis and glycogenolysis were calculated from glucose appearance and fractional gluconeogenesis measurements. Rates of hepatic glucose production were ~2-fold higher in subjects with severe insulin resistance due to both *INSR* pathogenic variants and lipodystrophy compared to subjects with type 2 diabetes and obesity (Figure 3A, p<0.0001). However, subjects with *INSR* pathogenic variants had a much higher fractional contribution of gluconeogenesis to hepatic glucose production at ~77%, compared to only 52-59% in the other three groups (Figure 3B, p=0.0001). Similarly, absolute gluconeogenesis rates were highest in subjects with *INSR* pathogenic variants: 47% higher than lipodystrophy, and ~2-fold higher than type 2 diabetes and obesity (Figure 3C, p<0.0001). The absolute glycogenolysis rate in subjects with lipodystrophy was 2-fold higher than those with *INSR* pathogenic variants, type 2 diabetes, and obesity (Figure 3D, p<0.0001).

The concentration of plasma lactate, a principle substrate for gluconeogenesis, was ~50% higher in subjects with lipodystrophy and type 2 diabetes compared to those with *INSR* pathogenic variants and obesity (p=0.0067, Figure 3E). The concentration of plasma alanine, another substrate for gluconeogenesis, was higher in subjects with *INSR* pathogenic variants compared to those with obesity (p=0.011) but was otherwise comparable across groups (Figure 3F).
Hepatic triglyceride content and fasting plasma triglycerides were low in severe receptor level insulin resistance \((INSR\) pathogenic variants) and high in post-receptor insulin resistance \((lipodystrophy)\).

Hepatic triglyceride content, measured by proton magnetic resonance spectroscopy, was significantly higher in subjects with lipodystrophy \((n=14)\) compared to subjects with \(INSR\) pathogenic variants \((n=3)\) \((10.6 \ [2.8-17.1] \ versus \ 0.5 \ [0.1-0.5]\%\), \(p<0.0001\), Figure 4A\), consistent with presence of non-alcoholic fatty liver disease \((NAFLD)\) in subjects with lipodystrophy, and absence of this condition in those with \(INSR\) pathogenic variants. Hepatic triglyceride content was not measured in subjects with type 2 diabetes or obesity.

Fasting plasma triglycerides were normal in subjects with \(INSR\) pathogenic variants and markedly elevated in subjects with lipodystrophy \((60 \ [38-79] \ versus \ 423 \ [214-1080] \ mg/dL, \ p=0.0001,\) \ Figure 4B\). Similarly, HDL was normal in subjects with \(INSR\) pathogenic variants and markedly low in subjects with lipodystrophy \((64\pm14 \ versus \ 27\pm6 \ mg/dL, \ p<0.0001)\). Total cholesterol \((145\pm25 \ versus \ 189\pm64 \ mg/dL, \ p=0.10)\) and LDL cholesterol \((71 \ [60-86] \ versus \ 71 \ [60-78] \ mg/dL, \ p=0.99)\) were comparable in subjects with \(INSR\) pathogenic variants and lipodystrophy, respectively. Lipids were not available in subjects with type 2 diabetes and obesity.

Hepatic fatty acid oxidation was higher in receptor level versus post-receptor insulin resistance.

\(\beta\)-hydroxybutyrate, measured by enzymatic assay, was assessed as a surrogate measure of hepatic fat oxidation. \(\beta\)-hydroxybutyrate was 4 to 10-fold higher in subjects with \(INSR\) pathogenic variants compared to all other groups \((0.73 \ [0.44-1.26] \ in \ INSR vs 0.35 \ [0.28-0.43] \ in \ lipodystrophy, \ 0.10 \ [0.08-0.11] in \ type \ 2 \ diabetes, \ and \ 0.11 \ [0.10-0.13] \ in \ obesity, \ p<0.0001)\) consistent with higher hepatic fat oxidation in the \(INSR\) group \((Figure 4C)\). Subjects with generalized lipodystrophy were not outliers in this analysis \((Supplemental \ Figure \ 3 \ and \ Supplemental \ Table \ 2)\).
Lipolysis appears to drive gluconeogenesis, particularly in subjects with severe receptor level insulin resistance (INSR pathogenic variants).

In the combined patient population (INSR pathogenic variants, lipodystrophy, type 2 diabetes, and obesity), there were significant correlations between lipolysis (glycerol rate of appearance per kg), β-hydroxybutyrate, gluconeogenesis and hepatic glucose production (Table 2). In the combined cohorts of INSR pathogenic variants and lipodystrophy in whom palmitate flux was measured, palmitate rate of appearance per kg was also a significant predictor of β-hydroxybutyrate, gluconeogenesis and hepatic glucose production. Among the separate subgroups, these correlations were strongest in subjects with INSR pathogenic variants (e.g. R² 0.56 to 0.73 for correlations of lipolysis and palmitate rate of appearance with gluconeogenesis and hepatic glucose production). These findings are consistent with a model in which adipose tissue insulin resistance results in high lipolysis, leading to increased hepatic delivery of glycerol and free fatty acids. β-oxidation of free fatty acids both increases β-hydroxybutyrate and drives gluconeogenesis.
In this study, we investigated mechanisms by which insulin regulates hepatic glucose and triglyceride production in humans with severe receptor-level insulin resistance (mutations of the insulin receptor) compared to severe, moderate, and mild post-receptor insulin resistance (lipodystrophy, type 2 diabetes, and obesity). We observed elevated lipolysis rates in subjects with \textit{INSR} pathogenic variants, with comparable free fatty acid flux and total free fatty acid levels in subjects with \textit{INSR} pathogenic variants and lipodystrophy, consistent with severe insulin resistance. We also observed higher hepatic glucose production, consistent with higher hepatic insulin resistance, in subjects with both \textit{INSR} pathogenic variants and lipodystrophy compared to subjects with type 2 diabetes and obesity. However, subjects with \textit{INSR} pathogenic variants had a markedly higher contribution of gluconeogenesis to hepatic glucose production. The high gluconeogenesis rate in subjects with \textit{INSR} pathogenic variants appeared to be driven by high lipolytic rates, leading to increased glycerol availability as a substrate for gluconeogenesis. Despite high glycerol and FFA availability due to high lipolysis, subjects with \textit{INSR} pathogenic variants had low hepatic and circulating triglycerides. The coexistence of increased lipolysis, high hepatic gluconeogenesis, and low hepatic triglycerides in subjects with \textit{INSR} pathogenic variants suggests that glycerol and FFA from lipolysis drive hepatic gluconeogenesis and not hepatic lipogenesis in these subjects with severe, receptor-level insulin resistance.

These data provide direct kinetic evidence in humans to support non-selective insulin resistance in this population. By contrast, our data in subjects with severe, post-receptor insulin resistance due to lipodystrophy suggest that glycerol and FFA from lipolysis stimulates both hepatic gluconeogenesis and hepatic triglyceride accumulation. These clinical data provide further evidence to support the concept of selective hepatic insulin resistance in subjects with lipodystrophy proposed by Brown and Goldstein, such that insulin’s action to suppress hepatic glucose production is impaired, whereas insulin’s action to stimulate hepatic lipogenesis remains intact, and is stimulated by the presence of hyperinsulinemia.
Insulin has direct effects on the hepatocytes to suppress gluconeogenesis, largely mediated by FOXO transcription factors and cyclic AMP response element binding protein (CREB) transcriptional complex (7-9). However, multiple rodent studies support the concept that insulin’s action to suppress gluconeogenesis is largely indirect and is mediated by suppression of adipose tissue lipolysis (10-12).

Suppression of lipolysis reduces glycerol availability, which is a direct substrate for gluconeogenesis. Suppression of lipolysis also reduces FFA availability. FFA is oxidized in the hepatocyte to mitochondrial acetyl coA, which allosterically activates pyruvate carboxylase, thus increasing gluconeogenesis (1). Our data in humans with \textit{INSR} pathogenic variants provide strong support for this model. In these subjects, higher lipolysis rates were observed compared to subjects with obesity, type 2 diabetes or lipodystrophy, presumably due to the severe impairment in insulin signaling in adipose tissue. The resultant increase in glycerol and FFA availability is presumably driving the elevated rates of gluconeogenesis observed in these subjects, as insulin cannot directly suppress gluconeogenesis in the hepatocytes due to the mutation of the insulin receptor. Plasma lactate was lower in subjects with \textit{INSR} pathogenic variants compared to those with severe post-receptor insulin resistance due to lipodystrophy. This may be caused by increased lactate utilization as a substrate for gluconeogenesis; however, lactate flux measurements were not available to support this hypothesis. Although absolute gluconeogenesis was elevated in subjects with INSR pathogenic variants compared to all other groups, absolute rates of glycogenolysis did not differ from subjects with type 2 diabetes or obesity. This suggests that high gluconeogenesis is the major driver of high hepatic glucose production in subjects with INSR pathogenic variants. However, one may still consider that glycogenolysis is low in subjects with INSR pathogenic variants relative to their degree of hyperinsulinemia. Lower glycogenolysis rates in subjects with \textit{INSR} pathogenic variants may be due to failure of insulin to generate the expected amount of glycogen in the post-prandial state. Unfortunately, post-prandial liver imaging for measurement of hepatic glycogen content was not available in this study to test this hypothesis.
In this study, we explored the mechanisms that may lead to increased hepatic triglyceride in insulin resistant states. Consistent with prior observations, our subjects with post-receptor insulin resistance due to lipodystrophy had markedly elevated hepatic triglyceride (13-16), whereas subjects with receptor-level insulin resistance due to INSR pathogenic variants did not develop hepatic steatosis despite extreme insulin resistance and hyperinsulinemia (4, 16, 17). Hepatic triglyceride accumulation is mainly derived from three sources: hepatic de novo lipogenesis from carbohydrate precursors, free fatty acids released from adipose tissue lipolysis, and dietary fatty acids (18). In subjects with obesity-associated NAFLD and lipodystrophy, the rate of de novo lipogenesis is elevated and contributes to hepatic triglyceride accumulation (17, 19, 20).

Insulin has direct effects to upregulate transcription of several genes promoting de novo lipogenesis (SREBP-1c, FAS, ACC, SCD1, lipin 1), and activates enzymes involving lipogenic pathways (21, 22). Overnutrition can stimulate de novo lipogenesis either by increasing carbon precursors, by increasing insulin stimulation of lipogenic pathways, or both. A study from the Biddinger lab showed that, in insulin sensitive rodents, physiologic induction of lipogenic pathways in the liver (e.g. SREBP-1c transcription) was activated by feeding and was not dependent on insulin. However, in obesity-induced insulin resistance, the pathological induction of SREBP1c and other lipogenic genes that is needed to develop NAFLD or hypertriglyceridemia was insulin dependent (23). Furthermore, de novo lipogenesis rates are low in subjects with INSR pathogenic variants, comparable to healthy, insulin sensitive controls (17). These observations are consistent with the selective insulin resistance model proposed by Brown and Goldstein, in which pathologic hyperinsulinemia drives hepatic de novo lipogenesis in obesity-associated, post-receptor insulin resistance.

Although increased de novo lipogenesis plays an important role in obesity-associated NAFLD, the dominant contributor to hepatic triglyceride accumulation was found to be hepatic re-esterification of FFA derived from adipose tissue lipolysis (5). In subjects with NAFLD, ~26% of hepatic and VLDL triglyceride are derived from de novo lipogenesis, whereas ~60% arose from circulating FFA (presumably derived from adipose tissue), and 15% from the diet. Thus, adipose tissue insulin resistance with the resultant increase
in FFA availability appears to be the major mechanism leading to hepatic steatosis in humans with post-receptor insulin resistance.

Rodent studies suggest that hepatic FFA re-esterification is insulin independent (6). If hepatic FFA re-esterification in humans is independent of insulin-receptor signaling, the high lipolytic rates with increased FFA availability in subjects with INSR pathogenic variants should lead to increased hepatic FFA re-esterification and hepatic steatosis. Our observations of increased gluconeogenesis and low hepatic triglyceride in subjects with INSR pathogenic variants suggest that FFA delivered to the liver in these subjects is directed into mitochondrial β-oxidation, thus driving gluconeogenesis, rather than reesterified to triglyceride. Supporting this hypothesis, β-hydroxybutyrate, which is only generated by hepatic β-oxidation, was elevated in subjects with INSR pathogenic variants compared to all other groups. The molecular switch point routing cytosolic FFA into either β-oxidation or re-esterification is movement of cytosolic FFA into mitochondria (18). Transport of FFA into the mitochondria is regulated by malonyl CoA, such that increased malonyl CoA inhibits FFA transport into mitochondria (24). In the fed state and during de novo lipogenesis, malonyl CoA levels rise, thus increasing the cytosolic FFA pool. Cytosolic FFA is then esterified with glycerol to form triglyceride (25). Thus, we speculate that, in subjects with INSR pathogenic variants, lack of insulin stimulation of de novo lipogenesis results in lower malonyl CoA. This would lead to increased FFA transport into mitochondria, increased β-oxidation of FFA, and stimulation of gluconeogenesis. An alternative explanation for low hepatic triglyceride in subjects with INSR pathogenic variants is increased hepatic triglyceride export in VLDL. Although VLDL secretion was not directly measured in this study, subjects with INSR pathogenic variants had low circulating triglycerides, which does not support increased VLDL secretion as a mechanism for low hepatic triglyceride content.

The strength of this study is the use of human models of severe insulin resistance at the receptor and post-receptor level to characterize the fates of products of lipolysis in the liver. Due to the rarity of these subjects, prior studies have largely been limited to rodent models and mild forms of post-receptor
insulin resistance in humans, such as obesity and non-alcoholic fatty liver disease. Lipodystrophy and insulin receptor pathogenic variants are very rare conditions, and it is not possible to control for all variables in clinical studies. As a result, there was heterogeneity of etiology and severity among subjects with severe insulin resistance syndromes in this study, as well as baseline differences in age, body composition, and medication treatment among the patient cohorts. Sensitivity analyses adjusting for age differences between groups did not meaningfully alter the results (Supplemental Table 2); however, this approach has limited statistical validity due to the small overlap in ages between groups. While there were differences between cohorts in medication use (in particular, no medications in those with type 2 diabetes or obesity, versus multiple medications in those with INSR pathogenic variants and lipodystrophy) these medications are unlikely account for the worse metabolic parameters seen in the latter groups. Instead, greater medication use in these groups is an attempt to control more severe metabolic dysregulation. In particular, use of metformin (which lowers hepatic glucose production) in all subjects with INSR pathogenic variants and 86% of subjects with lipodystrophy, cannot account for the higher hepatic glucose production seen in these groups. Similarly, the higher use of lipid lowering drugs in subjects with lipodystrophy cannot account for the higher circulating and hepatic triglycerides seen in this group. The differences in body composition, particularly fat mass, between groups requires careful interpretation. Glycerol Rₐ is typically normalized to fat mass to provide a measure of adipose tissue lipolysis. However, because patients with generalized lipodystrophy have very low fat mass, most lipolysis in these patients is likely occurring in extra-adipose sites. Moreover, measurement of fat mass by dual-energy X-ray absorptiometry cannot distinguish between lipid in adipose tissue versus ectopic sites. We therefore normalized glycerol and palmitate Rₐ to total body mass as measures of total body lipolysis and FFA turnover and performed sensitivity analyses normalizing these measures to fat mass and excluding patients with generalized lipodystrophy (Supplemental Table 2 and Supplemental Figure 1). All of these analyses showed higher lipolysis and FFA turnover in patients with INSR pathogenic variants, supporting the unique pathophysiology in this cohort. An additional limitation is that quantification of hepatic triglyceride content was available in only 3 subjects with INSR pathogenic variants, and none of the subjects with type 2 diabetes or obesity. However, our findings of low
hepatic triglyceride in the INSR pathogenic variant cohort is consistent with a prior publication (17).

Finally, it would have been informative to measure de novo lipogenesis in this study; unfortunately, these measures were not available.

In conclusion, our data support a key pathogenic role of adipose tissue insulin resistance to increase glycerol and FFA availability to the liver in subjects with both post-receptor and receptor level insulin resistance. However, the fate of FFA and glycerol diverges in these two populations. Our data support a model in which, in subjects with receptor level insulin resistance, FFA is selectively directed toward β-oxidation, thus driving gluconeogenesis, rather than reesterified to hepatic triglyceride. By contrast, in our model, FFA derived from lipolysis in subjects with post-receptor insulin resistance contributes both to hepatic triglyceride accumulation and drives gluconeogenesis. Insulin is well-established as a stimulator of de novo lipogenesis, and in subjects with post-receptor insulin resistance, hyperinsulinemia increases de novo lipogenesis per the selective insulin resistance model of Brown and Goldstein. However, non-insulin dependent reesterification of FFA derived from adipose tissue lipolysis has been shown to be the major mechanism contributing to hepatic steatosis in insulin resistant states. Our data showing lack of hepatic triglyceride accumulation despite high FFA availability in subjects with receptor-level insulin resistance suggest that insulin is indirectly required for accumulation of hepatic triglyceride from hepatic FFA reesterification. We hypothesize that stimulation of de novo lipogenesis by hyperinsulinemia in post-receptor insulin resistance leads to increased hepatic malonyl CoA, thus directing FFA away from β-oxidation and gluconeogenesis, and toward reesterification. Further mechanistic studies are needed to test this hypothesis.
METHODS

Subjects

Subjects with pathogenic variants of the insulin receptor (*INSR*), lipodystrophy, type 2 diabetes, and obesity were recruited in the context of multiple clinical trials. Subjects with lipodystrophy were recruited and studied between 2013 and 2016 (NCT01778556, NCT00001987), and those with *INSR* pathogenic variants during 2016 (NCT02457897) at the National Institutes of Health. Subjects who received stable isotope tracers for measurement of lipolysis, hepatic glucose production, and gluconeogenesis were included in this cross-sectional study. Subjects with lipodystrophy included in this analysis were naïve to metreleptin. Subjects continued their pre-admission medications throughout the study, including oral hypoglycemic agents, lipid-lowering medications, and other medications either related or unrelated to lipodystrophy and its complications. Subjects with newly diagnosed type 2 diabetes and obese adolescent subjects without diabetes were enrolled in a study during 2012 at Texas Children’s Hospital (26). Type 2 diabetes was diagnosed based on American Diabetes Association criteria (27). All subjects with type 2 diabetes were newly diagnosed and naïve to insulin, oral hypoglycemic agents or lipid-lowering medications. Subjects with obesity were matched for age and BMI and diabetes was excluded using a 75g oral glucose tolerance test using American Diabetes Association criteria.

Laboratory assays

In subjects with lipodystrophy and *INSR* pathogenic variants, glucose, insulin, triglyceride, total cholesterol, LDL, HDL, FFA, and HbA1c were measured using the standard techniques of the NIH Clinical Center after an 8-12 hour fast. In subjects with type 2 diabetes and obesity, insulin, FFA, and HbA1c (in subjects with diabetes) were measured as previously reported (26). Additional blood samples for measurement of palmitate, glycerol, lactate, alanine, and beta-hydroxybutyrate were frozen at -80°C prior to analysis; these assays were performed in the same laboratory for all subjects.
Plasma palmitate concentration was measured using ultra performance liquid chromatography - tandem mass spectrometry (UPLC-MS/MS) utilizing a Thermo Scientific Vanquish UPLC with a Thermo Scientific Altis triple quadrupole mass spectrometer, heated electrospray ionization (HESI-II) in negative ion mode. Quantitation of palmitate was based on mass fragmentation, mass selectivity and retention time.

Plasma glycerol concentration was measured using UPLC high resolution accurate mass spectrometer (HRMS) utilizing a Thermo Scientific Vanquish UPLC and a Thermo Scientific QExactive HRMS with heated electrospray ionization (HESI-II, Thermo Scientific) in negative ion mode (2500V). Quantitation of glycerol was based on 91.0388 m/z and the internal standard 13C$_1$-glycerol based on 92.0333 m/z measured at 70k mass resolution. Plasma lactate concentration was measured using a Yellow Springs Instrument 2900 Biochemistry Analyzer. Plasma alanine concentration was measured via NMR spectroscopy using the 400-MHz proton Vantera Clinical Analyzer with LP4 deconvolution algorithm as previously described (28).

Beta-hydroxybutyrate was measured in plasma after an 10-12 hour fast using an enzymatic assay with colorimetric detection (Cayman Chemical, Ann Arbor, MI). The intra assay and inter assay coefficient of variation were 3.4% and 3.7% respectively.

Tracer dilution studies

Following a 10-12 hour fast, stable isotope tracers (Cambridge Isotope Laboratories) were used to measure glucose and glycerol turnover (all patient groups), and palmitate turnover (in subjects with lipodystrophy and INSR pathogenic variants) using the tracer dilution method. One catheter was inserted into the forearm vein to infuse stable isotopically labeled tracers. A second catheter was inserted into a vein in the contralateral hand or arm to obtain blood samples. A primed, continuous $[6,6^{-2}$H$_2$] glucose infusion was given for 3 hours in subjects with lipodystrophy and INSR pathogenic variants, and for 5 hours in subjects with type 2 diabetes and obesity. A primed, continuous 2H$_5$-glycerol infusion was given for 1 hour in subjects with lipodystrophy and INSR pathogenic variants, and 5 hours in subjects with type 2 diabetes and obesity. In subjects with lipodystrophy and INSR pathogenic variants an unprimed $[U-^{13}$C$_{16}]$ palmitate...
infusion was given for one hour. After these equilibration periods, blood samples to measure isotope enrichment were obtained every 10 minutes over a period of 30 minutes at steady state.

In subjects with lipodystrophy and \(INSR \) pathogenic variants, enrichments of \([6,6-^2\text{H}_2]\) glucose, \(^2\text{H}_5\)-glycerol, and \([\text{U}-^1\text{C}_{16}]\) palmitate were measured by liquid chromatography-mass spectrometry as previously published (29). In subjects with type 2 diabetes and obesity, enrichments of \([6,6-^2\text{H}_2]\) glucose, \(^2\text{H}_5\)-glycerol were measured using gas chromatograph mass spectrometry as previously published (26). Validation of the comparability of these techniques was performed in a separate group of subjects (unpublished data). The turnover rate (rate of appearance) of glucose, glycerol, and palmitate was calculated by measuring isotope enrichment using the single pool model (30).

Fractional gluconeogenesis (i.e. the fraction of glucose derived from gluconeogenesis) was measured after the oral administration of deuterated water \((^2\text{H}_2\text{O})\) as previously published (31). A total of 3 grams per kg lean body mass of \(^2\text{H}_2\text{O}\) was given in three or four divided doses between 9 pm and 3 am in order to enrich the subject’s body water pool to approximately 0.3% \(^2\text{H}_2\text{O}\) (26). Since body water serves as the precursor pool for deuterium, the average deuterium enrichment on glucose carbons (C-1,3,4,5,6,6) derived from body water during the gluconeogenic process is a measure of gluconeogenesis [30]. Briefly, this method involves preparation of the pentaacetate derivative of glucose, followed by sample analyses using gas chromatography-mass spectrometry in the positive chemical ionization mode (6890/5973 Agilent Technologies, Wilmington, DE). Deuterium enrichment in plasma water was determined by Isotope Ratio Mass Spectrometry (Delta\(^\text{®}\)XL IRMS Thermo Finnigan, Bremen, Germany) at Baylor College of Medicine for all subjects. The absolute rate of gluconeogenesis was calculated as the product of total glucose appearance rate and fractional gluconeogenesis. Glycogenolysis rate was calculated by subtracting the rate of gluconeogenesis from the glucose production rate.

Hepatic triglyceride content
Hepatic triglyceride content was measured by proton nuclear magnetic resonance spectroscopy (MRS) as previously described (32). In subjects with lipodystrophy, MRS was performed at the same visit as studies of gluconeogenesis and glycogenolysis. In subjects with INSR pathogenic variants, liver spectroscopy was performed 29-33 months after studies of gluconeogenesis and glycogenolysis; only three of the seven subjects were available to have liver spectroscopy performed.

Body Composition

Fat mass and fat free mass were measured by dual energy X-ray absorptiometry as reported (26, 29, 33).

Statistics

Statistical analyses were performed using GraphPad Prism version 8 (GraphPad Software, La Jolla, CA) and SAS Enterprise Guide version 7.1 (Cary, NC). For continuous outcomes, normally distributed data are reported as the mean ± SD and non-normally distributed data are reported as the median [25th-75th percentiles]. For comparisons of continuous outcomes between subjects with INSR pathogenic variants, lipodystrophy, type 2 diabetes, and obesity, mixed models were performed with post-hoc pairwise comparisons and Tukey correction for multiplicity. Sensitivity analyses were conducted for each model with the addition of age as a covariate and excluding patients with generalized lipodystrophy (Supplemental Table 2). Graphs highlighting data from patients with generalized lipodystrophy are shown in Supplemental Figures 1, 2, and 3. Correlations among metabolic variables were assessed using Pearson correlations. Non-normally distributed variables were log-transformed prior to analysis. P-values <0.05 were considered statistically significant. All statistical tests were two-sided. No sample size calculations were performed.

Study Approval
Studies in subjects with lipodystrophy (NCT01778556, NCT00001987) and INSR pathogenic variants (NCT02457897) were approved by National Institutes of Health Institutional Review Board. Studies in subjects with type 2 diabetes and obese adolescent subjects without diabetes were approved by the Baylor College of Medicine Institutional Review Board. All subjects or their legal guardians provided written consent, and minors provided written assent, prior to inclusion.
AUTHOR CONTRIBUTIONS

HS analyzed data and wrote the manuscript. STC contributed to study design, conducted experiments, analyzed data, and contributed to manuscript writing. SC acquired and analyzed data, and critically reviewed the manuscript. MWH contributed to study design and critically reviewed the manuscript. MS, MW, and PJW conducted experiments, acquired data, and critically reviewed the manuscript. ML analyzed data and critically reviewed the manuscript. RJB designed the study, conducted experiments, acquired data, analyzed data, and wrote the manuscript.

ACKNOWLEDGMENTS

This work was supported by the intramural research programs of the National Institute of Diabetes and Digestive and Kidney Diseases (STC, MS, MW, PW, RJB) and the Eunice Kennedy Shriver National Institute of Child Health and Human Development (HS, ML). This work was also supported in part by federal funds from the USDA, Agricultural Research Service under Cooperative Agreement Number 58-3092-5-001 (SC, MWH). We thank the volunteers (and their families) whose participation made this study possible. We gratefully acknowledge Elaine Cochran (NIDDK, Bethesda, MD, USA) and S. Sharma (Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA) who facilitated patient care, data acquisition and study execution. The contents of this publication do not necessarily reflect the views or policies of the US Department of Agriculture or the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement from the US government.

Figure 1 Legend: Subjects with pathogenic variants of the insulin receptor (INSR), lipodystrophy, type 2 diabetes, and obesity were recruited in the context of multiple clinical trials. Subjects who received stable isotope tracers for measurement of lipolysis, hepatic glucose production, and gluconeogenesis were included in this cross-sectional study. ANCT01778556, BNCT00001987.
Figure 2 Legend: Lipolysis (A), measured as glycerol rate of appearance (Ra) per kg of body weight, was highest in subjects with pathogenic variants of the insulin receptor (INSR, black squares) compared to those with lipodystrophy (white circles), type 2 diabetes (gray triangles), or obesity (gray diamonds). Similarly, plasma glycerol concentration (B) was highest in subjects with INSR pathogenic variants, although only significantly different from subjects with obesity. Free fatty acid (FFA) turnover, measured as palmitate Ra per kg of body weight (C), plasma palmitate concentrations (D) and total FFA concentrations (E) were comparable in subjects with INSR pathogenic variants and lipodystrophy. Subjects with type 2 diabetes had higher palmitate (D) and total FFA (E) compared to those with obesity and higher total FFA compared to those with lipodystrophy. Statistical comparisons were performed using mixed models with post-hoc pairwise comparisons and Tukey correction for multiplicity.
Figure 3 Legend: Hepatic glucose production (A), measured as glucose rate of appearance per kg of body weight, was higher in subjects with pathogenic variants of the insulin receptor (INSR, black squares) and lipodystrophy (white circles) compared to those with type 2 diabetes (gray triangles) and obesity (gray diamonds). The percentage of hepatic glucose derived from gluconeogenesis (fractional gluconeogenesis), as well as absolute rates of gluconeogenesis and glycogenolysis, were measured using incorporation of deuterium into newly formed glucose after labeling of body water with 2H$_2$O. Fractional gluconeogenesis (B) was higher in subjects with INSR pathogenic variants compared to all other groups. Accordingly, the absolute rate of gluconeogenesis (C) was highest in subjects with INSR pathogenic variants. The absolute rate of glycogenolysis (D) was highest in subjects with lipodystrophy. Plasma lactate (E), a substrate for gluconeogenesis, was highest in subjects with lipodystrophy, whereas plasma alanine (F), another gluconeogenic substrate, was highest in subjects with INSR pathogenic variants. Statistical comparisons were performed using mixed models with post-hoc pairwise comparisons and Tukey correction for multiplicity.
Figure 4 Legend: Hepatic triglyceride content (A), measured using magnetic resonance spectroscopy, and plasma triglycerides (B) were normal in subjects with pathogenic variants of the insulin receptor (\textit{INSR}, white circles), and elevated consistent with non-alcoholic fatty liver disease and severe dyslipidemia in subjects with lipodystrophy (black squares). Plasma β-hydroxybutyrate (C), a measure of hepatic free fatty-acid oxidation, was higher in subjects with \textit{INSR} pathogenic variants compared to all other groups, including lipodystrophy, type 2 diabetes (gray triangles) and obesity (gray diamonds). Statistical comparisons were performed using mixed models with post-hoc pairwise comparisons and Tukey correction for multiplicity.
Table 1. Baseline Characteristics

<table>
<thead>
<tr>
<th></th>
<th>INSR pathogenic variants (n=7)</th>
<th>Lipodystrophy (n=14)</th>
<th>Type 2 Diabetes (n=9)</th>
<th>Obesity (n=8)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yr)</td>
<td>21.9 ± 6</td>
<td>37.2 ± 17.2</td>
<td>13.9 ± 2.5</td>
<td>15.3 ± 1.8</td>
<td><0.0001<sup>B,E,F</sup></td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>48.4 ± 23.5</td>
<td>70.3 ± 18.0</td>
<td>107.1 ± 31.4</td>
<td>95.4 ± 19.3</td>
<td><0.0001<sup>C,D,E</sup></td>
</tr>
<tr>
<td>Height (cm)</td>
<td>155.7 ± 7.1</td>
<td>168.2 ± 9.1</td>
<td>159.6 ± 12.0</td>
<td>163.3 ± 11.5</td>
<td>0.055</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>19.6 ± 8.4</td>
<td>24.6 ± 4.9</td>
<td>41.4 ± 7.9</td>
<td>35.6 ± 5.5</td>
<td><0.0001<sup>C,D,E,F</sup></td>
</tr>
<tr>
<td>Fat mass (kg)</td>
<td>11.9 ± 12.8</td>
<td>16.9 ± 10.4</td>
<td>50.4 ± 16.0</td>
<td>39.1 ± 9.2</td>
<td><0.0001<sup>C,D,E,F</sup></td>
</tr>
<tr>
<td>Fat free mass (kg)</td>
<td>36.5 ± 11.1</td>
<td>53.4 ± 10.2</td>
<td>56.7 ± 16.7</td>
<td>56.3 ± 13.4</td>
<td>0.013<sup>B,C,D</sup></td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>8.2 ± 2.8</td>
<td>8.4 ± 1.9</td>
<td>7.4 ± 0.9</td>
<td>N/A</td>
<td>0.47</td>
</tr>
<tr>
<td>Fasting glucose (mg/dl)</td>
<td>120 ± 70</td>
<td>159 ± 55</td>
<td>126.8 ± 31.9</td>
<td>90.7 ± 5.7</td>
<td>0.022<sup>F</sup></td>
</tr>
<tr>
<td>Fasting insulin (mcU/ml)</td>
<td>129.0 [81.5-1000]</td>
<td>33.1 [18.3-54.6]</td>
<td>47.8 [34.7-65.8]</td>
<td>17.6 [12.5-26.1]</td>
<td><0.0001<sup>B,C,D</sup></td>
</tr>
<tr>
<td>Insulin dose<sup>A</sup>(U/kg/day)</td>
<td>22.9 ± 21.3</td>
<td>2.6 ± 1.9</td>
<td>none</td>
<td>none</td>
<td>0.012</td>
</tr>
<tr>
<td>Antidiabetic medication (#)</td>
<td>2.3 ± 1.0</td>
<td>1.8 ± 1.1</td>
<td>none</td>
<td>none</td>
<td>0.33</td>
</tr>
<tr>
<td>Cholesterol (mg/dl)</td>
<td>145 ± 25</td>
<td>189 ± 64</td>
<td>N/A</td>
<td>N/A</td>
<td>0.1</td>
</tr>
<tr>
<td>Triglyceride (mg/dl)</td>
<td>60 [38-79]</td>
<td>423 [214-1080]</td>
<td>N/A</td>
<td>N/A</td>
<td><0.0001</td>
</tr>
<tr>
<td>HDL (mg/dl)</td>
<td>64 ± 14</td>
<td>27 ± 6</td>
<td>N/A</td>
<td>N/A</td>
<td><0.0001</td>
</tr>
<tr>
<td>LDL (mg/dl)</td>
<td>71 [60-86]</td>
<td>71 [60-78]</td>
<td>N/A</td>
<td>N/A</td>
<td>0.99</td>
</tr>
<tr>
<td>Lipid lowering medication (#)</td>
<td>0.1 ± 0.4</td>
<td>1.5 ± 1.0</td>
<td>none</td>
<td>none</td>
<td>0.0018</td>
</tr>
</tbody>
</table>

Data are presented as mean ± SD or median [25th-75th confidence interval] based on data distribution.

N/A, not available

^A Among insulin users only

^B P<0.05 for INSR pathogenic variants vs. Lipodystrophy

^C P<0.05 for INSR pathogenic variants vs. Type 2 Diabetes

^D P<0.05 for INSR pathogenic variants Obesity

^E P<0.05 for Lipodystrophy vs. Type 2 Diabetes

^F P<0.05 for Lipodystrophy vs. Obesity
Table 2: Correlations among metabolic variables

<table>
<thead>
<tr>
<th>Predictor</th>
<th>Cohort(s)</th>
<th>β-hydroxybutyrate (mmol/L)</th>
<th>Gluconeogenesis (umol/kg/min)</th>
<th>Hepatic Glucose Production (umol/kg/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycerol R_a (umol/kg/min)</td>
<td>All</td>
<td>r</td>
<td>0.645</td>
<td>0.808</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
<tr>
<td>INSR</td>
<td>r</td>
<td>0.814</td>
<td>0.791</td>
<td>0.855</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0.026</td>
<td>0.034</td>
<td>0.014</td>
</tr>
<tr>
<td>Lipodystrophy</td>
<td>r</td>
<td>-0.508</td>
<td>0.630</td>
<td>0.353</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0.064</td>
<td>0.016</td>
<td>0.22</td>
</tr>
<tr>
<td>Type 2 Diabetes</td>
<td>r</td>
<td>0.516</td>
<td>-0.473</td>
<td>-0.355</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0.16</td>
<td>0.20</td>
<td>0.35</td>
</tr>
<tr>
<td>Obesity</td>
<td>r</td>
<td>-0.146</td>
<td>0.050</td>
<td>0.126</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0.73</td>
<td>0.91</td>
<td>0.77</td>
</tr>
<tr>
<td>Palmitate R_a (umol/kg/min)</td>
<td>All</td>
<td>r</td>
<td>0.502</td>
<td>0.715</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
<td>0.029</td>
<td>0.001</td>
</tr>
<tr>
<td>INSR</td>
<td>r</td>
<td>0.751</td>
<td>0.781</td>
<td>0.800</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0.052</td>
<td>0.038</td>
<td>0.031</td>
</tr>
<tr>
<td>Lipodystrophy</td>
<td>r</td>
<td>-0.262</td>
<td>0.642</td>
<td>0.355</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0.41</td>
<td>0.024</td>
<td>0.26</td>
</tr>
<tr>
<td>β-hydroxybutyrate (mmol/L)</td>
<td>All</td>
<td>r</td>
<td></td>
<td>0.764</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P</td>
<td></td>
<td><0.0001</td>
</tr>
<tr>
<td>INSR</td>
<td>r</td>
<td>0.558</td>
<td></td>
<td>0.688</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0.19</td>
<td></td>
<td>0.088</td>
</tr>
<tr>
<td>Lipodystrophy</td>
<td>r</td>
<td>-0.269</td>
<td></td>
<td>-0.453</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0.35</td>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td>Type 2 Diabetes</td>
<td>r</td>
<td>0.030</td>
<td></td>
<td>0.191</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0.94</td>
<td></td>
<td>0.62</td>
</tr>
<tr>
<td>Obesity</td>
<td>r</td>
<td>0.071</td>
<td></td>
<td>-0.373</td>
</tr>
<tr>
<td></td>
<td>P</td>
<td>0.87</td>
<td></td>
<td>0.36</td>
</tr>
</tbody>
</table>

$INSR$, pathogenic variants in the insulin receptor; R_a, rate of appearance. Bold type indicates statistically significant associations.
Graphical Abstract Legend: Insulin resistance results in loss of inhibition of adipose tissue lipolysis and consequent increased flux of products of lipolysis (glycerol and free fatty acids (FFA)). In this study, lipolysis was markedly elevated in subjects with severe receptor level insulin resistance (INSR pathogenic variants) compared to subjects with post-receptor insulin resistance of varying severity (lipodystrophy, type 2 diabetes, and obesity). Furthermore, the fate of free fatty acids (FFA) derived from lipolysis diverged in receptor versus post-receptor insulin resistance. In post-receptor insulin resistance, FFA appeared to both drive gluconeogenesis via mitochondrial β-oxidation and contributed to hepatic triglyceride (TG) accumulation via re-esterification. By contrast, in receptor-level insulin resistance, FFA appeared to be shunted away from re-esterification, resulting in low hepatic triglyceride content. Instead, FFA was shunted toward β-oxidation, resulting in increased ketones (β-hydroxybutyrate) and driving increased gluconeogenesis (presumably mediated by increased acetyl CoA and ATP production). These findings suggest that hepatic FFA reesterification, which is the largest source of hepatic triglyceride in post-receptor insulin resistance, indirectly requires insulin signaling through its receptor.