Antituberculosis BCG vaccination: more reasons for varying innate and adaptive immune responses

Sarah Prentice, Hazel M. Dockrell

Bacillus Calmette-Guérin (BCG) vaccination induces variable protection against pulmonary tuberculosis (TB), and a more effective TB vaccine is needed. The potential for BCG to provide protection against heterologous infections, by induction of innate immune memory, is increasingly recognised. These non-specific responses may substantially benefit public health, but are also variable. In this issue of the JCI, Koeken and de Bree et al. report that BCG reduces circulating inflammatory markers in males but not in females, whilst de Bree and Mouritis et al. describe how diurnal rhythms affect the degree of BCG-induced innate memory. These studies further delineate factors that influence the magnitude of responses to BCG and may be crucial to harnessing its potential benefits.
Anti-tuberculosis BCG vaccination: more reasons for varying innate and adaptive immune responses

S. Prentice¹ and H.M. Dockrell²*

¹ Department of Paediatrics, East and North Hertfordshire NHS Trust, Stevenage, United Kingdom.
² Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom.

Address correspondence to:

H.M. Dockrell
Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
Phone: 00442079272466
Email: hazel.dockrell@lshtm.ac.uk

COI Statement: HMD and SP declare no conflicts of interest.
Abstract

Bacillus Calmette-Guérin (BCG) vaccination induces variable protection against pulmonary tuberculosis (TB), and a more effective TB vaccine is needed. The potential for BCG to provide protection against heterologous infections, by induction of innate immune memory, is increasingly recognised. These non-specific responses may substantially benefit public health, but are also variable. In this issue of the JCI, Koeken and de Bree et al. report that BCG reduces circulating inflammatory markers in males but not in females, whilst de Bree and Mouritis et al. describe how diurnal rhythms affect the degree of BCG-induced innate memory. These studies further delineate factors that influence the magnitude of responses to BCG and may be crucial to harnessing its potential benefits.

A long history

Bacillus Calmette-Guérin (BCG) is the oldest vaccine in use today. Yet, despite widespread use for nearly 100 years, much about it remains to be discovered. Epidemiological studies have shown that BCG can provide protection against the disseminated forms of tuberculosis (TB) in young children, but it induces very variable protection against pulmonary tuberculosis in adolescents and adults (1). Factors such as geographical location, age at vaccination and vaccine strain have all been associated with varying BCG-specific responses, but they do not completely explain the heterogeneity seen (1,2). The variable efficacy of BCG against TB has driven the search for an improved, more efficacious TB vaccine (3). However, as some of the current vaccine candidates would be given as a boosting vaccine following BCG, and others are genetically modified live BCG vaccines (or other live mycobacteria), we still need to understand why BCG induces such variable protection. Proven correlates of protection against tuberculosis
also remain elusive, despite a resurgence in mechanistic research on BCG. Heterogeneity in an individual’s immune response to BCG vaccination is likely to contribute considerably to the challenges in identifying specific correlates of protection.

Increased resistance to bacterial and viral infections?

More recently, the possibility that BCG may produce protection against heterologous, non-tuberculous, infectious disease has been recognised. Trials have shown that BCG has protective effects against morbidity and mortality from unrelated infections in neonates and young children, in countries with high-infectious disease burden (4, 5), corroborating epidemiological studies associating BCG with reductions in sepsis and lower respiratory tract infections in children (6, 7). Mechanistic studies suggest that this heterologous protection afforded by BCG may result, at least in part, from the induction of non-specific innate immune memory via epigenetic reprogramming of myeloid cells (8). Heterogeneity in the non-specific beneficial effects induced by BCG has also been noted (9).

Interest in BCG has markedly increased since the start of the COVID-19 pandemic, with the possibility that BCG might provide protection against SARS-CoV-2 infection or disease, in the absence of a specific vaccination, being explored. Given that BCG protects against viral infections in a number of animal models (10) and has been shown to protect against viremia after experimental infection with the attenuated Yellow Fever vaccine (11), hopes are high. Trials are ongoing to test whether BCG vaccination would prevent SARS2-CoV-2 infection or severe COVID-19 disease in health-care workers and the elderly (12).

Host and environmental factors that impact immune response
In this climate, the two papers by Koeken and de Bree et al. (13) and de Bree and Mouritis et al. (14) in this issue of the JCI provide further important insights into host and environmental factors that may modulate immune responses, and in particular innate immunity, following BCG vaccination. The study by Koeken and de Bree et al. (13) investigated how the Bulgarian strain of BCG vaccine regulated markers of inflammation in a cohort of 303 healthy volunteers recruited in The Netherlands, and how sex affected these responses. Twenty-five circulating inflammatory markers were reduced two weeks post BCG-vaccination; possibly more interestingly, 10 markers remained lower three months post-vaccination. Further, individuals with larger BCG scars showed a greater decrease in some inflammatory markers after BCG vaccination. Strikingly, males had higher pre-vaccination concentrations of 41 of the inflammatory markers, with significant decreases post-vaccination, while BCG had no significant effects on the concentrations of these inflammatory mediators in females after adjusting for multiple testing (13). Reduced expression of four inflammatory markers (including tumor necrosis factor ligand superfamily member 12 (TWEAK) and sirtuin 2 (SIRT2)) persisted three months post-BCG; a finding that was validated in 39 additional individuals from three other studies (13).

The finding of reduced systemic inflammation induced by BCG in Koeken and de Bree et al.’s study (13) is striking in the context of the potential use of BCG for prevention of COVID-19 infection/disease, as severe forms of COVID-19 are characterised by a hyper-inflammatory state. Dexamethasone, a corticosteroid with potent anti-inflammatory properties, is the only current treatment with proven benefits for SARS-CoV2 (15). The Koeken and de Bree study (13), therefore, provides further theoretical evidence to suggest that the non-specific effects of BCG might be harnessed in the fight against COVID-19.
The finding by Koeken and de Bree et al. (13), of sex-differential effects of BCG on systemic inflammation is also important. Earlier trials in Guinea-Bissau where BCG was given to low-birth weight infants, showed greater non-specific benefits in males compared to females (6), and a similar effect has been observed in East Africa (7). A meta-analysis of more than 3000 COVID-19 patients in China showed that males had a higher rate of disease progression than females (16), so a more marked effect of BCG on inflammation might substantially benefit males. Sex differences are being increasingly recognised throughout medicine, with impacts on drug efficacy and side-effects, immunity, vaccine responses, and the presentation, course and outcomes of many diseases (17). It is imperative, therefore, that going forward, human studies, including vaccination trials, should recruit a balanced number of male and female participants, where appropriate, and report sex-disaggregated results as standard.

Another risk factor for severe COVID-19 disease is diabetes, which also induces changes in inflammation. A recent study showed how the interaction of infection with tuberculosis and type 2 diabetes, or even intermediate hyperglycaemia insufficient to diagnose diabetes, resulted in marked increases in the expression of markers of inflammation whilst dampening the interferon response (18). Potentially, diabetes could exacerbate COVID-19 disease via a similar mechanism, so reducing inflammation via BCG vaccination would be beneficial.

The study by de Bree and Mouritis et al. (14) shows that the circadian rhythm can also influence the immunogenicity and immune modulation induced by BCG vaccination; trained immunity was greater when BCG vaccination was performed at 8-9 am rather than 6 pm. Again, there is a large literature on how peripheral blood counts and immune parameters are influenced by the time of day (19). Studies in mice have also shown circadian variation in LPS-induced secretion
of TNFα and IL-6 with the greatest cytokine secretion occurring in daytime (20) as well as a higher mortality rate in mice administered with high doses of LPS at the end of the day than those administered in the middle of the night (21). Vaccination in the morning has also been shown to increase antibody responses (22). Diurnal rhythms link to metabolic processes and immune function (23) and metabolism plays a key role in training and the induction of non-specific immunity by BCG (24). More research will be needed to determine the importance of circadian rhythms on vaccine responses in neonates as the circadian system is immature at birth (25), and in the elderly as disordered circadian rhythms can occur with age (26).

Conclusions and future studies

Overall, these studies put two more pieces into the jigsaw that when complete will show us why BCG does what it does in different circumstances and different individuals in the real world, and how to ensure that optimal responses are induced. Other pieces of the puzzle remain incomplete. Factors including heterogeneity in the BCG vaccine itself, vaccination history with other vaccines, maternal factors, nutrition, our microbiota, prior and subsequent infections with other mycobacteria and unrelated viruses, as well as genetics may also be important (9, 27, 28). With the advent of big data and artificial intelligence, we should be better able to integrate the large datasets that these types of studies produce and better understand the complex and varied immune responses seen in human populations. Complete identification of the causes of heterogeneity in vaccine responses may help in the search for correlates of specific and non-specific BCG-induced protection. In turn, robust correlates of protection should help us to investigate which of the various factors influencing BCG responses are relevant on a public health scale. Immunization schedules are already complex. Are the enhanced individual
responses provided by early morning BCG sufficiently profound to limit vaccinations to the morning, potentially at the expense of broad vaccine coverage? If the sex-differential effects of BCG are confirmed to be clinically important, would a different BCG vaccination dose or schedule in girls and boys be acceptable to the general public? In this era of increasing vaccine hesitancy, it is imperative that questions such as these are answered.

In the meantime, we can only hope that BCG will provide some useful protection against SARS2-CoV-2, while we wait for a specific vaccine. Based on the findings of Koeken and de Bree et al. (13) and de Bree and Mouritis et al. (14), prudent clinical trials would assess the efficacy of BCG for protection against COVID-19 following morning vaccination. If protection is induced, it will be interesting to know whether these beneficial effects are present to an equal extent in males and females.

Acknowledgments:

HMD and SP thank FJ Sanchez-Garcia and Jackie Cliff for helpful discussions and for reviewing the manuscript. FJ. Sanchez-Garcia, S. Smith and HMD are recipients of a grant from the GCRF Networks in Vaccines Research and Development VALIDATE Network (grant P020).

References:

dysfunction in tuberculosis [published online ahead of print, 2020 Jun 13]. Clin Infect
Dis. 2020;ciaa751. doi:10.1093/cid/ciaa751

2018;18(7):423-437. doi:10.1038/s41577-018-0008-4

doi:10.1073/pnas.0906361106

variation in endotoxin-induced mortality in mice: correlation with proinflammatory

vaccination enhances antibody response over afternoon vaccination: A cluster-
randomised trial. Vaccine. 2016 May 23;34(24):2679-85. doi:
10.1016/j.vaccine.2016.04.032.

23. Aguilar-López BA, Moreno-Altamirano MMB, Dockrell HM, Duchen MR, Sánchez-
García FJ. Mitochondria: an integrative hub coordinating circadian rhythms, metabolism,
doi:10.3389/fcell.2020.00051

