Supplementary Appendix

This appendix has been provided by the authors to give readers additional information about their work.

Table of Contents

List of investigators .. 3
Inclusion and exclusion criteria .. 4
Site-specific contributions and study design .. 5
TUNE analysis .. 7
Figure S1: Incidence and severity of a TUNE-defined hearing loss in cisplatin-treated patients with head and neck cancer .. 9
Figure S2: Correlation of cochlear radiation dose and high frequency hearing sensitivity ... 10
Table S1: Study participation criteria .. 11
Table S2: Site contributions .. 12
Table S3: Ototoxicity grading criteria .. 13
Table S4: Logistic regression with adjusted odds ratio (OR) on the incidence of a CTCAE or TUNE grade hearing loss .. 14
Supplementary Appendix References .. 15
List of investigators

Listed in alphabetical order by institution.

Emory University, Department of Otolaryngology – Head and Neck Surgery and Winship Center Institute
 Nicole C. Schmitt

Johns Hopkins University, Department of Radiation Oncology and Molecular Sciences
 Jaylon Garrett
 Brandi Page

Medical University of South Carolina, Department of Otolaryngology – Head and Neck Surgery
 Judy R. Dubno

National Institute on Deafness and Other Communication Disorders, NIH
 Carmen Brewer
 Hui Cheng
 Anna Clements
 Lisa L. Cunningham
 Katharine Fernandez
 Chuan-Ming Li
 Marcia Mulquin
 Nicole C. Schmitt

University of Rochester Medical Center, Department of Medicine
 Deborah Mulford

University of Rochester Medical Center, Department of Otolaryngology
 Paul Allen
 Maura Campbell
 Shawn Newlands

Walter Reed National Military Medical Center
 Thomas Townes
 Candice Ortiz
Inclusion and exclusion criteria

Inclusion criteria

- Newly diagnosed with head and neck squamous cell carcinoma
- Adult, 18 years or older
- Scheduled for treatment with cisplatin

Exclusion criteria

- Prior exposure to cisplatin, taxanes or other cytotoxic chemotherapy drugs
- Baseline audiogram >90 days before onset of first cisplatin treatment
- Baseline hearing ≥95 dB HL average threshold at 1, 2, and 4 kHz
- Indication of active middle ear disease
- Follow up audiogram >90 days after cessation of last cisplatin treatment
Site-specific contributions and study design

This study consisted of combined retrospective and prospective observational data obtained from three clinical sites. Audiometric data collected ≤90 days from the onset of cisplatin therapy were compared against audiometric data collected ≤90 days from completion of cisplatin therapy to determine threshold shifts. Subjects whose baseline audiogram was collected up to 1 week after the first cisplatin infusion (n=12 subjects) were included only if their hearing was within normal limits (≤20 dB HL from 1 to 8 kHz).

Retrospective data were collected from the University of Rochester Medical Center (URMC) (N=215 subjects). All audiometric data were collected in a sound-attenuated booth using either a Grason Stadler GSI 61 or SGI AudioStar Pro audiometer and Telephonics TDH50 headphones or EAR ER3A insert earphones and Sennheiser HDA 200 headphones. Air conduction (AC) thresholds for standard frequencies (0.25 to 8 kHz) as well as 12 kHz were obtained. Bone conduction (BC) audiometric thresholds were reported for 1, 2, and 4 kHz and used to screen for the presence of active middle ear disease. Additional retrospective data were collected from Walter Reed National Military Medical Center (WRNMMC) (N=34 subjects). AC thresholds were collected in a sound-attenuated booth for standard audiometric frequencies (0.25 to 8 kHz) as well as over the sensitive range for ototoxicity (SRO), up to 12.5 kHz, using an Otometrics Madsen Astera audiometer and with Sennheiser HDA-200 or RadioEar IP30 headphones. Tympanometry was used to screen for active middle ear disease. Prior to data sharing with NIH collaborators for analyses, URMC and WRNMMC removed personal identifiable information (PII)/personal health information (PHI) from the
dataset. Coded IDs were assigned to each subject, and the code was not shared with NIH investigators.

Prospective data were collected in a collaborative, observational study through a National Institutes of Health (NIH) partnership with Johns Hopkins University (JHU). Audiometric data were collected using an FDA-approved SHOEBOX iPad-based audiometer (Clearwater Clinical, Inc), with Sennheiser HDA-280 headphones (ANSI S3.6), for standard test frequencies (1 to 8 kHz) and extended high frequencies (EHF) including 10 and 12.5 kHz. The SHOEBOX Audiometer has been validated for use outside of a sound booth. All auditory thresholds were measured in a quiet meeting room with SHOEBOX Smart Testing enabled to monitor ambient noise. Tympanometry (MT10 Interacoustics) was used to screen for the presence of active middle ear disease. AC thresholds for all 277 subjects were analyzed at 0.25, 0.5, 1, 2, 3, 4, 6, 8 and 12.5 kHz from baseline and post-treatment audiograms. Data from URMC collected at 12 kHz were grouped with 12.5 kHz data from WRNMMC and NIH/JHU. Frequencies at which data were available for <70% of the total number of subjects were excluded from analyses; an example of this is the interoctave frequencies measured using SRO monitoring at WRNMMC only. If a subject had no response at the output limits of the audiometer, a threshold value was assigned as the maximum output level plus 5 dB.
TUNE analysis

Changes in hearing were primarily defined using CTCAEv5.0 criteria. However, cisplatin-induced ototoxicity is characterized initially as a high frequency (above 8 kHz) hearing loss that can spread to include lower frequencies. Therefore, we also applied the TUNE grading scale, which reports incidence and severity of hearing loss based on shifts in auditory thresholds across two frequency ranges: 1 - 4 kHz and 8-12.5 kHz (Table S3). We modified the higher-frequency range of the TUNE scale to include 6, 8 and 12.5 kHz due to insufficient data at 10 kHz in our dataset. Because many of our subjects had some hearing loss at baseline, we further modified the TUNE criteria so that Grades 3 and 4 utilized threshold shift data instead of absolute thresholds. A TUNE Grade 3 was redefined for this study as a ≥ 35 dB PTA threshold shift from the baseline to the post-treatment audiogram, and similarly Grade 4 was redefined as a ≥ 50 dB PTA threshold shift.

Changes in hearing, defined by TUNE criteria, were analyzed using categorical incidence (per ear) data. The incidence and severity distribution of a clinically meaningful hearing change, per ear, relative to statin use was analyzed using chi-square analyses (SAS PROC FREQ procedure). The rate difference, with 95% confidence intervals, of a TUNE-defined hearing loss between atorvastatin and non-statin users was estimated by fitting the Poisson model using PROC NLMIXEDA for the total population as well as for subgroups (sex, cumulative cisplatin dose, individual cisplatin dose, baseline hearing status and radiation). A logistic regression analysis (SAS PROC LOGISTIC procedure) with calculation of odds ratios and 95% confidence
intervals was performed to identify associations between TUNE-defined changes in
hearing and statin use after adjustment for significant covariates.

Among subjects not taking any statin, the incidence of a hearing loss per TUNE criteria
was 53.4% (Fig. S1A). The incidence of Grade 1 or higher cisplatin-induced hearing
loss was significantly reduced relative to the non-statin user group from 53.4% to 39.9%
($\chi^2 = 9.6, p<0.01$) in the any-statin user group and 34.0% in the atorvastatin user group,
($\chi^2 = 11.2, p<0.001$) (Supplementary Fig. S1A). 36.5% of subjects in the no statin group
had a grade 2 or higher change in hearing compared to 14.4% of those in the
atorvastatin group ($\chi^2 = 21.2, p<0.001$) (Fig. S1B)

The logistic regression allowed us to calculate adjusted odds ratios (OR) with 95%
confidence intervals for the three variables identified in our mixed effects analysis
(MEM) analysis (Table S2) that were significantly associated with cisplatin-induced
hearing loss: statin use, cumulative cisplatin dose and baseline hearing status. Using
TUNE-defined hearing loss criteria, results indicate that for every 100 mg/m^2 increase in
cisplatin dose, a person is 1.8 times more likely to develop hearing loss (OR=1.80, 95%
CI:1·36-2.43) (Table S5). Additionally, with every 20 dB increase in PTA threshold at
baseline, a person is 44% (OR=0.56, 95% CI: 0.41-0.76) less likely to acquire a
cisplatin-induced hearing loss. Finally, an individual on atorvastatin is 56% less likely
(OR= 0.44, 95% CI: 0.27-0.72) to acquire a cisplatin-induced hearing loss compared to
a non-statin user after controlling for cumulative cisplatin dose and baseline hearing.
Figure S1: Incidence and severity of a TUNE-defined hearing loss in cisplatin-treated patients with head and neck cancer

Figure S1: The incidence and severity of cisplatin-induced hearing loss (as defined by TUNE criteria) is reduced among atorvastatin users relative to non-statin users. **A:** The incidence of cisplatin-induced hearing loss is 52% per TUNE criteria amongst non-statin users (black). Subjects taking any statin (blue bar) had significantly lower incidence of cisplatin-induced hearing loss than non-statin users. The incidence of hearing loss was further reduced among atorvastatin users to 34% (orange bar). Data are percent of ears per group. Statistical analysis consisted of Chi-Square, **p<0.01.** **B:** Statin use, atorvastatin in particular, is associated with reduced severity of hearing loss. TUNE scale criteria were used to categorize the severity of cisplatin-induced hearing loss. Subjects taking any statin had significantly reduced incidence of a Grade 2 or higher hearing loss compared to non-statin users. This difference was even greater for atorvastatin users. Data are percentage of ears per group. Statistical analysis consisted of Chi-Square, *p<0.05, ***p<0.001.
Figure S2: Correlation of cochlear radiation dose and high frequency hearing sensitivity

Figure S2: Cochlear radiation dose is not correlated with changes in high frequency hearing sensitivity. Plotted are high frequency (6 to 12.5 kHz) threshold shifts and the mean cochlear radiation dose for each ear in the prospective cohort. Pearson r and Spearman correlation, p>0.05. N=56 ears.
Table S1: Study participation criteria

<table>
<thead>
<tr>
<th>Inclusion</th>
<th>Exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult, 18 yr or older</td>
<td>Prior exposure to cisplatin, taxanes or cytotoxic chemotherapy drugs</td>
</tr>
<tr>
<td>Confirmed HNSCC Diagnosis</td>
<td>Profound hearing loss at baseline<sup>a</sup></td>
</tr>
<tr>
<td>Prescribed cisplatin-based chemotherapy</td>
<td>Indication of active middle ear disease<sup>b</sup></td>
</tr>
</tbody>
</table>

^aPure tone average (PTA) at 1, 2, and 4 kHz >95 dB hearing level (HL).

^bActive middle ear disease determined by tympanometry and/or bone conduction audiometry.
Table S2: Site contributions

<table>
<thead>
<tr>
<th></th>
<th>Retrospective Data</th>
<th>Prospective Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>University of Rochester Medical Center (URMC)</td>
<td>National Institutes of Health (NIH)/Johns Hopkins University (JHU)</td>
</tr>
<tr>
<td></td>
<td>N=215 (78%)</td>
<td>N=28 (10%)</td>
</tr>
<tr>
<td>Subject Characteristics (Table 1)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Concomittent Statin Medications</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Cancer Diagnosis/Treatment Parameters</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Assessments of Middle Ear Function</td>
<td>Bone Conduction</td>
<td>Tympanometry</td>
</tr>
<tr>
<td>Auditory Assessments</td>
<td>Std (^a) + EHF(^b)</td>
<td>SRO(^c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Std (^a) + EHF(^b)</td>
</tr>
</tbody>
</table>

\(^a\)Standard audiometric frequencies include 1, 2, 3, 4, 6, and 8 kHz

\(^b\)Extended high frequencies include 10 and 12 or 12.5 kHz

\(^c\)Sensitive region for ototoxicity frequencies include 0.25, 1, 1.5, 2, 3, 4, 5.6, 6, 6.3, 7.1, 8, 9, 10, 11.2, 12.5 kHz
Table S3: Ototoxicity grading criteria

<table>
<thead>
<tr>
<th>Scale</th>
<th>Frequency Range</th>
<th>Grade</th>
<th>Criteria</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTCAE</td>
<td>1-8 kHz</td>
<td>Grade 1</td>
<td>Average 15-25 dB TS at 2 consecutive frequencies</td>
<td>National Cancer Institute (NCI), 2017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grade 2</td>
<td>Average >25 dB TS at 2 consecutive frequencies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grade 3</td>
<td>Average >25 dB TS at 3 consecutive frequencies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grade 4</td>
<td>Absolute threshold >80 dB at 2 kHz and above</td>
<td></td>
</tr>
<tr>
<td>TUNE</td>
<td>PTA 1-2-4 kHz</td>
<td>Grade 1</td>
<td>≥10 dB TS at 1-2-4 kHz or 6-8-12 kHz</td>
<td>Theunissen et al., 2014</td>
</tr>
<tr>
<td>or 8-10-12 kHz</td>
<td>Grade 2</td>
<td>≥20 dB TS at 1-2-4 kHz or 6-8-12 kHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grade 3</td>
<td>≥35 dB TS at 1-2-4 kHz or 6-8-12 kHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grade 4</td>
<td>≥50 dB TS at 1-2-4 kHz or 6-8-12 kHz</td>
<td></td>
</tr>
</tbody>
</table>

*Data based on shifts in dB hearing levels obtained using air conduction (AC) audiometry

*Scale criteria modified from original reference to accommodate threshold shift data
Table S4: Logistic regression with adjusted odds ratio (OR) on the incidence of a CTCAE or TUNE grade hearing loss

<table>
<thead>
<tr>
<th>Effect</th>
<th>OR (95% CI)</th>
<th>df</th>
<th>P value</th>
<th>OR (95% CI)</th>
<th>df</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atorvastatin Use</td>
<td>0.46 (0.29 - 0.81)</td>
<td>1</td>
<td>0.006</td>
<td>0.46 (0.28 - 0.76)</td>
<td>1</td>
<td>0.002</td>
</tr>
<tr>
<td>Cisplatin Dose<sup>a</sup></td>
<td>1.01 (1.01 - 1.01)</td>
<td>1</td>
<td><0.001</td>
<td>1.01 (1.00 - 1.01)</td>
<td>1</td>
<td><0.001</td>
</tr>
<tr>
<td>Baseline Hearing<sup>b</sup></td>
<td>0.60 (0.44 - 0.83)</td>
<td>1</td>
<td>0.002</td>
<td>0.56 (0.41 - 0.76)</td>
<td>1</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Confidence intervals (CI)

^aHearing loss defined as a change in hearing meeting CTCAE or TUNE Grade 1 minimum criteria

^bCisplatin dose is cumulative cisplatin dose over length of cisplatin therapy. OR data calculated based on units of 100 mg/m²

^bBaseline hearing based on the pure tone average (PTA) of 1, 2, and 4 kHz
Supplementary Appendix References

