Up-regulated YB-1 protein promotes glioblastoma growth through an YB-
1/CCT4/mLST8/mTOR pathway

Jin-Zhu Wang,1 Hong Zhu,¹ Pu You,2 Hui Liu,¹ Wei-Kang Wang,¹ Xiaojuan Fan,³ Yun
Yang,³ Keren Xu⁴, Yingfeng Zhu,⁵ Qunyi Li,⁶ Ping Wu,⁷ Chao Peng,⁷ Catherine C. L.
Wong,⁷,¹³ Kaicheng Li,² Yufeng Shi⁸, Nu Zhang⁹, Xiuxing Wang¹⁰, Rong Zeng⁴, Ying
Huang,¹¹ Liusong Yang,¹² Zefeng Wang,³ and Jingyi Hui¹

¹State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and
Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy
of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
²Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Institute
of Brain-Intelligence Technology, Zhangjiang Laboratory, Shanghai, China.
³CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and
Health, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of
Sciences, University of Chinese Academy of Sciences, Shanghai, China.
⁴CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell
Biology, CAS Center for Excellence in Molecular Cell Sciences, Chinese Academy of
Sciences, University of Chinese Academy of Sciences, Shanghai, China.
⁵Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China.
⁶Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China.
⁷National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai
Advanced Research Institute, Chinese Academy of Science, Shanghai, China.

8Tongji University Cancer Center, Shanghai Tenth People's Hospital of Tongji University, Center for Brain and Spinal Cord Research, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China.

9Department of Neurosurgery, Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong, China.

10School of Basic Medical Science, Nanjing Medical University, Nanjing, China.

11Department of General Surgery, Shanghai Key Laboratory of Biliary Tract Disease Research, State Key Laboratory of Oncogenes and Related Genes, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China.

12Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.

13Current address: Center for Precision Medicine Multi-Omics Research, Peking University Health Science Center; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.

JZW, HZ, PY, HL, and WKW contributed equally to this work.

Address correspondence to: Liusong Yang, Department of Neurosurgery, Huashan Hospital, Fudan University, 518 Jingpohu Road, Shanghai 201907, China. Phone: 86.21.66895203; Email: 061105208@fudan.edu.cn. Or Zefeng Wang, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, 320 Yueyang Road,
Shanghai 200031, China. Phone: 86.21.54020416; Email: wangzefeng@picb.ac.cn. Or Jingyi Hui, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China. Phone: 86.21.54921354; Email: jyhui@sibeb.ac.cn.

The authors have declared that no conflict of interest exists.
Abstract
The Y-box binding protein 1 (YB-1) is a multi-functional RNA binding protein involved in virtually each step of RNA metabolism. However, the functions and mechanisms of YB-1 in one of the most aggressive cancers, glioblastoma, are not well understood. In this study, we identified that YB-1 protein was markedly overexpressed in glioblastoma and acted as a critical activator of both mTORC1 and mTORC2 signaling. Mechanistically, YB-1 bound the 5’ untranslated region (UTR) of the CCT4 mRNA to promote the translation of CCT4, a component of CCT chaperone complex, that in turn activated the mTOR signal pathway by promoting mLST8 folding. In addition, YB-1 autoregulated its own translation by binding to its 5’ UTR, leading to sustained activation of mTOR signaling. In glioblastoma patients, the protein level of YB-1 positively correlated with CCT4 and mLST8 expression as well as activated mTOR signaling. Importantly, the administration of RNA decoys specifically targeting YB-1 in a mouse xenograft model resulted in slower tumor growth and better survival. Taken together, these findings uncover a disrupted proteostasis pathway involving YB-1/CCT4/mLST8/mTOR axis in promoting glioblastoma growth, suggesting that YB-1 is a potential therapeutic target for the treatment of glioblastoma.
Introduction

Recent large-scale surveys of proteins identified more than 1500 RNA binding proteins that bind to single or double stranded RNAs (1-4). RNA binding proteins together with different classes of RNAs form dynamic ribonucleoprotein (RNP) complexes in cells to determine the fates and functions of various RNAs (5). Dysregulation of RNA binding proteins has been linked to various human diseases, especially in cancers where a number of RNA binding proteins function as master regulators during cancer development and progression (6, 7). However, our current understanding of the molecular roles of RNA binding proteins in cancers remains very limited.

Gliomas are the most prevalent primary brain tumors in adults, and glioblastoma accounts for approximately 60-70% of malignant gliomas (8, 9). The majority of patients with glioblastoma received surgical resection followed by radiation and chemotherapy (10, 11). Despite these therapeutic interventions, glioblastoma is associated with a poor prognosis with a 5-year survival rate of 5.1% and a median survival of 15-23 months (12, 13). Some new investigational treatments including targeted, radio-, chemo-, and immuno-therapies only yielded limited improvement of patient outcome (14). Therefore, a better understanding of the key molecules and pathways that trigger glioblastoma is warranted, which will facilitate the identification of novel targets for early diagnosis and effective treatment of glioblastoma.

The cold shock domain (CSD) is an evolutionarily conserved nucleic acid binding domain, which carries two consensus motifs found in a typical RNA recognition motif (RRM), RNP1 and RNP2 (15). The human Y-box binding protein 1 (YB-1) is a key
member of the mammalian CSD-containing protein family, which has been implicated in a wide variety of cellular processes under physiological and pathological conditions (16, 17). Through recognizing RNA, YB-1 has been suggested to participate in virtually all RNA-associated processes including RNA splicing (18-21), stability (22, 23), packaging (24), and translation (25-28), as well as sorting, displacing, and processing non-coding RNAs (29-31). The expression of YB-1 is developmentally regulated with distinct patterns in various tissues (32). In brain, YB-1 is expressed in fetal brain tissues and lost during glial differentiation, while re-expressed in glioblastoma tissues (33). Recent studies indicate that high YB-1 expression in glioma is associated with increased cell proliferation, survival, migration, and resistance to temozolomide (29, 34-36) and suggest YB-1 as a potential biomarker for glioma progression (37). However, the molecular functions and regulatory mechanisms of YB-1 in glioblastoma are not well understood.

The mechanistic target of rapamycin (mTOR), a member of the serine/threonine protein kinase family, plays a critical role in cell growth, survival, motility, and metabolism via the regulation of protein synthesis (38). mTOR participates in the formation of two functionally distinct complexes in mammals, mTORC1 and mTORC2 (39). In this study, we applied transcriptomic and proteomic approaches to search for the downstream targets and pathways of YB-1 in glioblastoma. We identified YB-1 as a critical activator of both mTORC1 and mTORC2 signaling via stabilizing mLST8. Our data showed that YB-1 enhances the translation of CCT4, a component of the protein chaperone complex CCT, that in turn facilitates mLST8 folding via the CCT complex.
Furthermore, RNA decoy oligonucleotides specifically bind to YB-1 and inhibit tumor growth in a mouse xenograft model. Our work highlights targeting YB-1 as a potential effective strategy for the treatment of glioblastoma.
Results

The level of YB-1 protein, but not its mRNA, is dramatically elevated in glioblastoma tissues

To gain insights into the role of YB-1 in glioblastoma, we first examined the expression of YB-1 at both mRNA and protein levels in glioblastoma patient tissues. Consistent with previous results from mouse brain (33), YB-1 protein was expressed at a low level in normal glial tissues (Figure 1A). Surprisingly, the protein levels of YB-1 in 8 glioblastoma tissues were dramatically up-regulated compared to those in paired adjacent tissues (Figure 1A), while the mRNA levels of YB-1 did not show significant changes between glioblastoma and adjacent tissues (Figure 1B), suggesting that aberrant overexpression of YB-1 in glioblastoma predominantly takes place at the protein level. Immunohistochemical (IHC) staining of YB-1 was detected mainly in the cytoplasm of glioblastoma tissue cells (Figure 1C). Moreover, in a cohort of 75 patients with primary glioblastoma (Supplemental Table 1), higher protein expression of YB-1 predicts a poor prognosis (Figure 1D), supporting an oncogenic role of YB-1 in glioblastoma.

Reduction of YB-1 in glioblastoma cells inhibits mTOR signaling

To investigate the functions and mechanisms of YB-1 in glioblastoma cells, we first established YB-1 knockdown in glioblastoma cell lines U251 and U87 by stably expressing two shRNAs targeting YB-1, respectively. Both shRNAs resulted in an efficient depletion of YB-1 in U251 and U87 cells (Supplemental Figure 1, A and B),
and led to decreased cell proliferation, migration and invasion (Supplemental Figure 1, C-H). These results suggested that overexpression of YB-1 may contribute to the highly proliferative, migratory and invasive properties of glioblastoma. Next, we used multi-omics approaches to identify YB-1-regulated pathways in glioblastoma. Transcriptomic analyses by RNA-seq detected 227 and 208 up-regulated genes and 550 and 199 down-regulated genes (fold change [FC] >2, FDR<0.05) after YB-1 knockdown in U251 and U87 cells, respectively. Gene ontology (GO) analyses (40, 41) showed that YB-1 regulated genes are enriched in the categories of nervous system development, neurogenesis, neuron differentiation, receptor ligand activity and extracellular matrix organization (Supplemental Figure 2, A and B). Interestingly, the quantitative proteomic analysis showed that a much larger number of proteins are significantly down-regulated in YB-1 knockdown cells compared to the number of up-regulated proteins (FC>1.5), i.e. 213 down-regulated vs 2 up-regulated in U251 cells and 467 down-regulated vs 45 up-regulated in U87 cells. The down-regulated proteins are enriched in the GO categories of cadherin binding, translation, ribosome assembly, RNA processing and focal adhesion in both cell lines (Figure 2, A and B). Furthermore, combining transcriptomic and proteomic data, we found that, among genes with little changes at the mRNA level (FC<1.2) after YB-1 depletion the majority of genes had decreased expression at the protein level in both cell lines (Figure 2, C and D), suggesting that YB-1 promotes the expression of a large number of genes at the translational level. We noticed that YB-1 up-regulated proteins include a set of translation and ribosomal factors and components of glycolysis, autophagy, lipogenesis, and pentose phosphate
pathways, which are known targets of mTOR signaling (42). We validated the mass spectrometry data by performing immunoblotting assays and found that YB-1 depletion repressed the expression of TPI1, PGAM1, PKM, G6PD and FASN in both U251 and U87 cells (Supplemental Figure 2, C and D). Knockdown of YB-1 also reduced p62 protein level, which is a signature for the activation of autophagy. Accordingly, YB-1 depletion resulted in the increase of LC3-II, another marker for autophagic activity (Supplemental Figure 2, C and D). Based on these results, we hypothesized that knockdown of YB-1 inhibits mTOR signaling. To test this idea, we examined several markers for mTORC1 (phospho-S6K1 T389 and phospho-4EBP1 T37/46) and mTORC2 (phospho-AKT S473). All these markers showed significant decrease in YB-1-knockdown U251 and U87 cells compared to control cells, indicating that both mTORC1 and mTORC2 signaling were repressed when YB-1 expression was inhibited (Figure 3, A and B).

YB-1 activates both mTORC1 and mTORC2 signaling through mLST8

Since YB-1 is capable of up-regulating both mTORC1 and mTORC2 signaling, we first speculated that YB-1 stimulates the expression of a common component shared by both mTOR complexes. Besides mTOR protein, mTORC1 contains mLST8 (mammalian lethal with SEC13 protein 8), DEPTOR (DEP domain-containing mTOR-interacting protein), and RAPTOR (regulatory associated protein of mTOR), while mTORC2 consists of mLST8, DEPTOR, RICTOR (rapamycin-insensitive companion of mTOR), and mSIN1 (mammalian stress-activated MAP kinase-interacting protein 1). We tested
these proteins by immunoblotting and found that the shared component of both mTOR complexes, mLST8, was repressed after knockdown of YB-1 in U251 and U87 cells (Figure 3, C and D), while the expression of other major mTOR components did not show apparent changes (Supplemental Figure 2, E and F). mLST8 was identified as a member of mTOR pathway that binds and stimulates the mTOR kinase activity (43). Consistently, ectopic expression of mLST8 in YB-1 knockdown cells rescued the attenuated signaling activity of both mTORC1 and mTORC2 (Figure 3, E and F).

We further examined how YB-1 controls the expression of mLST8. RT-qPCR analysis showed that the mRNA level of mLST8 was not affected by YB-1 (Figure 3G), suggesting that YB-1 post-transcriptionally controls mLST8 expression. To test whether YB-1 regulates the translation of mLST8 mRNA, we performed the polysome profiling assay and did not observe apparent changes of mLST8 mRNA abundance upon YB-1 knockdown in sucrose gradient fractions corresponding to different stages during active translation (Supplemental Figure 3, A-C). We therefore hypothesized that YB-1 might play a role in stabilizing the mLST8 protein. To test this hypothesis, we investigated the stability of mLST8 in the control- or YB-1-knockdown cells treated with translation inhibitor cycloheximide (CHX) and found that knockdown of YB-1 led to a faster degradation of mLST8 (Figure 3, H and I). We further examined which protein degradation pathway is involved in mLST8 destabilization after YB-1 knockdown using different inhibitors. Our results showed that the lysosome inhibitor Bafilomycin A1 (Baf A1), but not the proteasome inhibitor MG132, rescued the protein level of mLST8 in YB-1 knockdown cells (Supplemental Figure 4, A and B), suggesting
that YB-1 depletion induced lysosome-mediated protein degradation of mLST8.
Together, these data indicate that YB-1 up-regulates both mTORC1 and mTORC2
signaling by stabilizing mLST8 protein.

YB-1 stabilizes mLST8 protein via increasing CCT4 mRNA translation

To further examine how YB-1 safeguards mLST8 protein, we searched for mLST8
interacting proteins that may regulate the stability of mLST8. We performed
immunoprecipitation using anti-FLAG antibody from cells stably expressing FLAG-
tagged mLST8 followed by mass spectrometry analysis (Figure 4A). Besides mTOR
components mTOR, RICTOR, and mSIN1 (MAPKAP1), all components of a
chaperone complex, CCT (chaperonin containing TCP-1, also known as TRiC, T-
complex protein-1 ring complex) and tubulin proteins were recovered with high
confidence (Figure 4B). Interestingly, tubulin proteins are well-studied substrates of the
CCT complex (44). These data suggested that the CCT complex may participate into
the regulation of mLST8 stability.

The CCT complex is composed of 8 proteins (CCT1-8, CCT1 is named as TCP1 in
humans), and plays critical roles in regulating cellular proteostasis (45). We first
verified the interactions between mLST8 and CCT components by
immunoprecipitation using FLAG-tagged mLST8 as a bait (Figure 4C), suggesting that
mLST8 is a potential substrate of the CCT complex. Next, we hypothesized that YB-1
might affect the stability of mLST8 by regulating the expression of CCT proteins.
Indeed, among the 8 components of CCT complex, CCT4 was markedly repressed upon
knockdown of YB-1, whereas subtle effects were observed for other CCT components (Figure 4D). Notably, knockdown of CCT4 suppressed mLST8 protein expression without changing the mRNA level of \textit{mLST8} (Figure 4, E and F). Treatment of CCT4 knockdown cells with Baf A1 but not MG132 rescued mLST8 protein level (Supplemental Figure 4, C and D), indicating that CCT4 protected mLST8 from lysosomal degradation. Since the CCT complex has been shown to function in protein folding, we hypothesized that down-regulation of CCT4 might induce malfunction of the CCT complex, in turn leading to misfolding of mLST8 and its degradation by lysosome. Thermolysin is a proteinase that was previously shown to preferentially degrade unfolded proteins (46). We found that the mLST8 protein protected by Baf A1 treatment was more sensitive to thermolysin in CCT4 knockdown cells compared to Baf A1-treated control cells (Figure 4, G and H). These results indicated that CCT4 promotes appropriate folding of mLST8 and protects it from degradation induced by misfolding. In addition, ectopically expressing CCT4 in YB-1 knockdown cells rescued repressed signaling activity of mTORC1 and mTORC2 (Figure 4, I and J). These data indicated that CCT4 facilitates efficient folding of mLST8 by the CCT complex and YB-1 up-regulates mTOR signaling through the CCT4/mLST8 cascade.

YB-1 promotes \textit{CCT4} mRNA translation by interacting its 5’ UTR

To mechanistically understand how YB-1 up-regulates CCT4 protein expression without changing the mRNA level of \textit{CCT4} (Figure 5A), we further determined the association of \textit{CCT4} mRNA with ribosomes and polysomes using sucrose gradient
fractionation. We found a decrease of CCT4 transcripts in polysome fractions of YB-1 knockdown cells compared to control cells, suggesting that CCT4 translation initiation was blocked by depletion of YB-1 (Supplemental Figure S3). We performed reporter assays using GFP expression constructs carrying the 5’ UTR or 3’ UTR sequence of CCT4 cloned upstream or downstream of the GFP coding region. A construct expressing 2 copies of GFP protein served as a transfection control. YB-1 knockdown reduced the expression of the 5’ UTR reporter, but not that of the 3’ UTR reporter (Figure 5B). To examine whether YB-1 regulates CCT4 translation by binding to its 5’ UTR, we reanalyzed our previous iCLIP-seq data from U251 cells that provided the information on a genome-wide mapping of in vivo YB-1 binding sites (29) and found a binding peak in the 5’ UTR of CCT4 (Figure 5C). CLIP-RT-PCR analysis confirmed YB-1 binding to CCT4 5’ UTR (Figure 5D). Importantly, when we mutated this binding site, the CCT4 5’ UTR mutant reporter was not sensitive to YB-1 overexpression anymore (Figure 5E), indicating that YB-1 recognizes its binding site in the 5’ UTR of CCT4 mRNA to stimulate CCT4 translation.

YB-1 autoregulates its own protein synthesis

In Figure 5E, we made an intriguing observation that overexpression of YB-1 enhanced endogenous YB-1 expression in HEK293T cells. Similarly, overexpression of YB-1 in U251 cells also stimulated the expression of endogenous YB-1 together with CCT4 and mLST8 (Figure 5F). RT-PCR results showed that the mRNA level of endogenous YB-1 was not affected by ectopically expressed YB-1 (Figure 5G), and thus we reasoned that
YB-1 may be capable of up-regulating the translation of its own mRNA. Combined with iCLIP-seq data and CLIP-RT-PCR validation, we identified several YB-1 binding sites in the 5’ UTR of YB-1 mRNA (Figure 5, H and I). Mutation of the YB-1 binding site at the 3’ end of the CLIP peak in its 5’ UTR resulted in decreased expression of reporter gene and loss of response to YB-1 overexpression, while YB-1 3’ UTR did not respond to YB-1 overexpression (Figure 5J). Taken together, these data indicated that YB-1 activates the translation of its own mRNA and CCT4 mRNA through binding to their 5’ UTRs, forming a positive feedback that activates the CCT complex.

YB-1 maintains the self-renewal of glioblastoma stem-like cells (GSCs) via the CCT4/mLS8 cascade

A growing number of studies indicate that GSCs can recapitulate the heterogeneity and plasticity state of glioblastoma in vivo and are crucial for glioblastoma initiation, maintenance and resistance to conventional therapies (47-49). We applied the GSC model to obtain a deeper understanding of the role of the YB-1/CCT4/mLST8/mTOR axis in glioma growth. We established the GSC lines stably transduced with control shRNA, YB-1 shRNA or YB-1 shRNA complemented with CCT4 or mLST8 expression plasmids. Compared to control shRNA, two independent YB-1 shRNAs markedly reduced CCT4 and mLST8 expression in GSCWL1 and GSC456 cells (Supplemental Figure 5, A and B), while exogenous expression of YB-1 increased CCT4 and mLST8 expression as well as endogenous YB-1 protein (Supplemental Figure 5, C and D), suggesting the existence of the YB-1/CCT4/mLST8/mTOR axis.
and autoregulation of YB-1 in GSCs. Knockdown of YB-1 substantially inhibited cell proliferation in GSCWL1 and GSC456 cells (Supplemental Figure 5, E and F) and reduced GSC frequency and self-renewal (Supplemental Figure 5, G-J). Reintroduction of CCT4 or mLST8 expression in YB-1 knockdown GSCWL1 and GSC456 cells reactivated mTOR signaling (Figure 6, A and B) and partially rescued cell proliferation, tumorsphere formation and GSC self-renewal (Figure 6, C-H). Collectively, these data indicate that the YB-1/CCT4/mLST8 axis is required for cell proliferation and the self-renewal of GSCs.

The YB-1/CCT4/mLST8/mTOR axis promotes glioblastoma growth in vivo

The above results indicated that YB-1 increases CCT4 translation, resulting in increased mLST8 folding/stability. Concordantly, overexpression of either CCT4 or mLST8 rescued the activity of mTORC1 and mTORC2 signaling in YB-1 knockdown cells (Figure 3, E and F; Figure 4, I and J; Figure 6, A and B). To examine the functional significance of this pathway, we carried out nude mouse xenograft experiments. GSCWL1 and U87 cells infected by AAV carrying luciferase coding sequence were used to establish stable cell lines expressing control shRNA, YB-1-specific shRNA, YB-1-specific shRNA supplemented with CCT4 or mLST8 expression. YB-1 knockdown cells formed smaller tumors compared to control cells (Figure 7, A-C, and Supplemental Figure 6, A-C). Introduction of CCT4 or mLST8 into YB-1 knockdown cells partially rescued in vivo tumor cell growth (Figure 7, A-C, and Supplemental Figure 6, A-C) and the intratumoral activity of both mTOR1 and mTOR2 signaling.
The mice injected with YB-1 knockdown cells had the longest survival, while increasing the expression of CCT4 or mLST8 in YB-1 depletion cells shortened the survival of mice that received YB-1 knockdown cells (Figure 7E and Supplemental Figure 6E). These results demonstrated that YB-1 enhances tumor growth via CCT4 and mLST8 in vivo.

The YB-1/CCT4/mLST8/mTOR pathway is up-regulated in glioblastoma patients

To investigate the biological significance of the YB-1/CCT4/mLST8/mTOR axis in glioblastoma, we first determined the expression of CCT4 and mLST8 in 8 pairs of glioblastoma tumor tissues (the same samples used in Figure 1A). Comparing to adjacent tissues, both CCT4 and mLST8 were up-regulated in glioblastoma tumor tissues, and CCT5 which was not affected by YB-1 did not show significant changes (Figure 8A). Next, we surveyed the expression of YB-1, CCT4, mLST8, and phospho-S6K1 (T389) using a cohort of glioblastoma patient samples (Supplemental Table 1) by performing IHC assays (Figure 8B). The expression levels of YB-1, CCT4, and mLST8 were mutually and positively associated with each other (Figure 8, C-E), and had a positive correlation with activated S6K1 signals (Figure 8, F-H). Moreover, higher levels of CCT4, mLST8 and activated S6K1 predicted a poor survival similar to YB-1 (Figure 8, I-K), implying that YB-1 may serve as a promising target for the treatment of glioblastoma.

Decoy oligonucleotides specifically binding to YB-1 inhibit glioblastoma growth in
Previously, we defined the RNA binding consensus of YB-1 as CAU/CC or UYAUC through in vitro SELEX and in vivo iCLIP-seq approaches (20, 29). The crystal structure of CSD in complex with an RNA probe containing CAUC sequence reveals that four highly conserved aromatic residues (W65, F74, F85, and H87) in YB-1 CSD interact with CAUC mainly through π-π stacking interactions with high affinity (50).

In an attempt to target YB-1, we designed RNA decoy probes which contain CAUC sequence and used them to block the RNA binding activity of YB-1. As shown in Figure 9, A and B, transfection of RNA decoys carrying one copy of CAUC inhibited cell growth to a similar extent as YB-1 knockdown in U251 and U87 cells, and such inhibition required YB-1 protein since no further cell growth reduction was observed after YB-1 depletion, suggesting that these RNA decoys indeed repress the cell growth through targeting YB-1.

We further compared RNA decoys carrying one or two copies of CAUC motifs and found that RNA decoys with two copies of CAUC have a stronger effect than those with one copy (data not shown). Biotinylated RNA oligonucleotides carrying two copies of CAUC pull-downed YB-1 specifically from cellular extracts of U87 cells, but not other RNA binding proteins which recognize C/A- or C-rich sequence (Figure 9, C and D). Notably, introduction of YB-1 specific RNA decoys carrying two copies of CAUC into cells inhibited both mTORC1 and mTORC2 signaling in U251, U87 and GSCWL1 cells (Figure 9, E-G). In addition, YB-1 RNA decoys also inhibited the expression of YB-1, indicating that they are able to block the autoregulation of YB-1.
(Figure 9, E-G). Notably, YB-1 RNA decoys inhibited cell proliferation and self-renewal of GSCWL1 cells (Figure 9, H and I). Importantly, the mice implanted with GSCWL1 or U87 cells transfected with YB-1 RNA decoys resulted in a slower tumor growth (Figure 9, J-L, and Supplemental Figure 7, A-C), an improved survival compared to those with scrambled oligonucleotides (Figure 9M and Supplemental Figure 7D) and a reduced intratumoral activity of both mTORC1 and mTORC2 (Supplemental Figure 7, E and F). Collectively, RNA decoy oligonucleotides recognizing YB-1 have an anti-glioblastoma function through targeting YB-1 in vivo.
Discussion

In this study, we discovered that YB-1 can function as a critical activator of mTOR signaling through mediating a self-activated pathway that impairs the protein homeostasis program in glioblastoma (Figure 9N). Our results showed that the level of YB-1 protein but not its mRNA is markedly elevated and predicts a poor prognosis. YB-1 activates mTOR signaling through promoting efficient folding of mLST8 via up-regulation of CCT4 translation. The autoregulation of its own translation maintains YB-1 expression at a higher level and active mTOR signaling. This self-reinforced regulation pathway is abnormally activated in glioblastoma to support tumor progression, and thus targeting YB-1 by RNA decoys dramatically reduces tumor growth, providing evidence that YB-1 is potentially a good target for the treatment of glioblastoma.

The PI3K/AKT/mTOR signaling is one of the most frequently activated pathways during the tumorigenesis of numerous malignancies including glioblastoma, as a consequence of loss of PTEN or activating mutations found in PIK3CA and PIK3R1 genes (51). Thus, mTOR has been considered as a potential therapeutic target for glioblastoma treatment. However, mTOR inhibitors Rapamycin and its analogs have been ineffective in clinical trials, in part due to incomplete inhibition of mTORC1 and unexpected activation of mTOR via the loss of negative feedback loops (52). Understanding the regulation of the mTOR signaling in glioblastoma may promote the development of novel strategies for targeting mTOR pathway. Using RNA decoy oligonucleotide technology, we established the concept that targeting YB-1 inhibits the
growth of glioblastoma in vivo.

In addition to the clinical relevance, this study provided mechanistic insights into cellular proteostasis, which is tightly controlled at different steps including protein biogenesis, folding, assembly, localization and degradation. We found multiple routes for modulating proteostasis directly or indirectly by an RNA binding protein, YB-1. First, YB-1 binds the 5’ UTR of CCT4 and its own mRNAs, and increases the translation initiation of CCT4 and itself (Figure 5). Secondly, through CCT4, YB-1 enhances the folding and stability of mLST8, which is a substrate of the protein chaperone complex CCT (Figure 4). Thirdly, YB-1 promotes the translation of mTOR downstream targets indirectly by activating mTOR signaling. Previous studies showed that YB-1 contains a terminal oligopyrimidine (TOP)-like sequence and was down-regulated by mTOR inhibitors Torin1, PP242, or INK128 in several cultured mammalian cell lines, suggesting that YB-1 might be a downstream target of the mTOR pathway(53-55). Although we did not observe significant change in YB-1 expression after the treatment of mTOR inhibitors in glioblastoma cells (data not shown), these data suggest that besides YB-1 autoregulation, YB-1/CCT4/mLST8/mTOR might form a positive feedback loop leading to altered proteostasis network in certain tissues.

The eukaryotic group II chaperonin CCT has been shown to play an important role in protein folding (56, 57). The CCT complex forms a double-ring shape structure. Each ring is composed of 8 protein paralogous subunits (CCT1-8) with a central cavity for positioning the substrate (58). CCT requires the binding and hydrolysis of ATP to induce conformational changes during the folding process (59). The cryo-electron
microscopy (cryoEM) structures of yeast CCT complex revealed that CCT4 is the last component in the complex to bind ATP during the step of CCT ring closure, suggesting that CCT4 serves as an ATP sensor and a rate-limiting component (60). Up-regulation of CCT4 in glioblastoma may increase the recognition of certain substrates and accelerate conformational changes during the folding process. Initially, it was proposed that CCT recognizes its substrates through specific sequence determinants, such as the charged and polar residues found in the two well-characterized CCT substrates tubulin and actin (61). Using a combined proteomic and bioinformatics approach, around 300 CCT-interacting proteins were predicted as potential substrates of CCT, which are involved in a variety of cellular processes (62). These substrate candidates tend to have β-strands and hydrophobic polypeptides with complex topologies and are enriched in components of oligomeric protein complexes. In mTOR complexes, two mTOR components, mLST8 and RAPTOR, contain β-propeller structures. A recent structural study reported that both mLST8 and RAPTOR are substrates for the CCT complex (63). However, in glioblastoma cells, we found that only the expression of mLST8 protein was regulated by CCT, but not RAPTOR (data not shown), suggesting that CCT promotes the folding of its substrate in a cell type-dependent manner. Our findings highlight that the CCT complex plays a critical role in glioblastoma growth. It will be interesting to identify the full repertoire of CCT complex substrates, which will improve our understanding of the regulatory mechanisms at protein levels in glioblastoma.

RNA decoy oligonucleotides have the advantages targeting existing cellular proteins directly and blocking the RNA binding activity of RNA binding proteins efficiently and
quickly without interfering with their other activities. A previous study showed that RNA decoy oligonucleotides containing 3 or 4 tandem motif repeats can specifically inhibit the activity of several splicing factors in the nucleus (64). We used RNA decoys carrying 1 or 2 motif repeats (YBX1-1 or YBX1-2), which resulted in repression of the downstream targets or pathways of YB-1, suggesting that shorter oligonucleotides which are competent for delivery may also work efficiently. Future investigations including optimizing the length, chemical structure, dose of RNA decoys and as well as using antisense oligonucleotides targeting YB-1 are warranted for therapeutic tests or combination therapy.

Moreover, intertumoral and intratumoral heterogeneity has been a major consideration for the treatment of glioblastoma. Individualized treatment based on tumor molecular classification holds the promise to become a more effective therapeutic strategy than a universal approach. Glioblastoma can be subdivided into different subtypes based on genetic alterations, gene expression profiles, and epigenetic modifications (51, 65-68). Clinically-related and gene expression-based molecular subclasses of glioblastoma mainly include proneural, classical, and mesenchymal types (65, 68). We analyzed the genomic and proteomic data from a recent integrated study of 99 glioblastoma(69) and found that YB-1 protein was enriched in classical subtype, suggesting that a subset of patients with classical subtype might have better clinical benefit from targeting YB-1. Systematic characterization of the molecular features of glioblastoma with high YB-1 expression in large-scale cohort studies is necessary for the future development and implementation of an effective strategy for targeting YB-1. Taken together, we have
identified the YB-1/CCT4/mLST8/mTOR axis during glioblastoma growth and suggested a therapeutic approach to target this axis using competitive RNA oligonucleotides.
Methods

Cell culture. U251, U87 (cell bank of the Chinese Academy of Sciences) and HEK293T cells (ATCC) were grown in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum. GSC456 cells were gifts from UCSD. The GSCs were cultured in DMEM/F12 media supplemented with EGF and bFGF (20 ng/mL each), B27 without vitamin A, sodium pyruvate, and Glutamax. All cell culture reagents were purchased from Thermo Scientific. GSCs were isolated from surgical specimens or xenografts through fluorescence-activated cell sorting (FACS) and functionally characterized as previously described (70, 71). Briefly, tumors were dissociated with Papain Dissociation System (Worthington Biochemical) according to the manufacturer’s instructions and recovered in above stem cell medium for at least 6 h. GSCs were sorted using CD133/1 antibody-conjugated magnetic beads (Miltenyi Biotec) followed by confirmatory assays for the expression of stem cell markers including Sox2 and Olig2, the sphere formation (in vitro limiting dilution assay), and the secondary tumor initiation in immunocompromised mice. GSCWL1 cells were derived from a primary glioblastoma of a 55 year old male patient.

Cell transfection and reagent treatment. 2×10^5 U251 and U87 cells seeded in 35 mm culture dishes were transfected with a final concentration of 50 nM for siRNAs, 500 nM for YBX1-1 and 200 nM for YBX1-2 RNA decoys using Lipofectamine 3000 (Thermo Scientific). 1×10^5 GSCWL1 and GSC456 cells seeded in 60 mm culture dishes were transfected with a final concentration of 200 nM RNA decoys using Lipofectamine RNAiMAX (Thermo Scientific). U251 cells were treated with CHX
(100 μg/mL, Sigma) for 0, 1, 2, 4, 8, or 12 h, MG132 (100 μM, Sigma) for 8 h, or Baf A1 (200 nM, Sigma) for 24 h.

Oligonucleotides. The sequences of all the oligonucleotides purchased from Invitrogen, Ribobio (siRNAs) or GenePharma (RNA decoys) for this study are listed in Supplemental Table 2.

Plasmid Construction. To clone shRNA expression plasmids, primer pairs containing shRNA sequences were mixed, annealed and inserted into pSIREN RetroQ or pLVX Lenti vectors between EcoRI and BamHI. To clone FLAG-tagged CCT4 or mLST8 expression plasmids, PCR fragments encoding the CCT4 or mLST8 were amplified from U251 cell cDNAs and inserted into the polylinker region of pCDH-CMV-MCS-EF1-Puro vector between NheI and BamHI. To clone GFP reporter plasmids, the 5’ UTR and 3’ UTR sequences of CCT4 or YB-1 were amplified from U251 cell cDNAs and inserted into the polylinker region of pEGFP-N1 or pEGFP-C1 vector. Point mutations were introduced by a two-step PCR method.

Establishment of stable knockdown or overexpression cell lines using lentivirus or retrovirus systems. HEK293T cells were transfected with lentiviral or retroviral expression constructs together with respective helper plasmids using the calcium phosphate method. U251, U87, GSCWL1 and GSC456 cells were infected by recombinant viruses and selected for stable expression of FLAG-tagged proteins or shRNAs using puromycin according to the manufacturer’s instruction (System Biosciences and Clontech).

MTT cell proliferation assay. U251 and U87 cells were seeded at a density of 2000 per
well in 24-well culture plates. After 24, 48, 72, 96, and 120 h of incubation, cells were
-treated with 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT, Sigma) at a final concentration of 0.5 μg/μL for 4 h. The resulting formazan was
solubilized with dimethylsulfoxide (DMSO), and the absorption was measured at 570
nm using a spectrophotometer (Thermo Scientific).

Cell migration and invasion assay. The cell migration assay was performed as
previously described (72). For the cell invasion assay, the upper chamber was coated
with matrigel and then performed as migration assay.

Cell viability and sphere formation assay. Cell viability was measured using CellTiter-
Glo kit (Promega) by plating GSCs at a density of 1000 cells per well in 96-well plates
with 3 replicates wells. Neurosphere formation assay was performed by plating GSCs
in 48-well plates at a density of 2,000 cells per well with 5 replicates wells. The number
of tumor spheres with a diameter over 50 μm were counted seven days after plating.

In vitro extreme limiting dilution assay. The GSCs were seeded on 96-well plates with
20, 50, 100, 150, and 200 cells per well. Each cell density was plated with 12 replicates.
Seven days after plating, the presence and number of neurospheres in each well were
scored and counted. Extremely limiting dilution analysis was performed using software
available at http://bioinf.wehi.edu.au/software/elda. Three biological replicates from
each GSC culture were plated.

Real-time quantitative reverse-transcription polymerase chain reaction (RT-qPCR).
Total RNA was extracted from cultured cells or patient tissues using TRIzol (Invitrogen)
and reverse transcribed into first-strand cDNA using random hexamers by MMLV
reverse transcriptase (Promega). PCR was performed using SYBR Green PCR Master Mix on a 7500 Fast Real-Time PCR system according to the manufacturer’s instruction (Applied Biosystems).

Western Blotting. To extract the proteins from patient samples, adjacent and tumor tissues were homogenized in RIPA buffer containing 50 mM Tris-Cl pH 7.4, 150 mM NaCl, 1% NP-40, 0.1% SDS, 0.5% sodium deoxycholate, 1 mM EDTA-free protease inhibitor cocktail (Roche), and 1 mM phenylmethylsulfonyl fluoride (PMSF). Lysates were collected following the removal of insoluble material from tissue extracts by centrifugation at 14,000 rpm for 20 min at 4°C, and then separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) followed by gel transfer to a nitrocellulose membrane (BioRad). The membranes were incubated first with the primary antibodies, and then with secondary antibodies coupled to horseradish peroxidase (HRP). Band signals were detected with an enhanced chemiluminescence (ECL) system (Merck). Quantification of band intensity was performed using Image J software. The primary antibodies used for this study are anti-GAPDH (AC033, clone AMC0062), anti-CCT1 (A13364), anti-CCT3 (A6547), anti-CCT4 (A6548), anti-CCT5 (A6549), anti-CCT6 (A3589), anti-CCT7 (A12146), anti-CCT8 (A4449), anti-mLST8 (A1059), anti-pan S6K1 (A16658), anti-p62 (A0682), anti-PCBP1 (A1044), anti-FASN (A0461), anti-G6PD (A1537), anti-TPI1 (A2579), anti-P GAM1 (A4015), anti-DEPTOR (A9447), anti-pan 4EBP1 (A1248), anti-p-4EBP1 (T37/46; AP0030) from ABclonal, anti-hnRNP A1 (sc-32301, clone 4B10), anti-hnRNP LL (sc-132712), anti-CCT2 (sc-374152, clone D-8) from Santa Cruz Biotechnology, anti-YB-1 (Y0396),
anti-FLAG (F3165, clone M2), anti-LC3B (L7543), anti-hnRNP L (R4903, clone 4D11) from Sigma, anti-p-S6K1 (T389; 9234S), anti-p-AKT (S473; 9271S), anti-pan AKT (4691P), anti-PKM2 (405), anti-RICTOR (2114T), anti-RAPTOR (2280T) from Cell Signaling Technology, anti-pan mTOR (66888-1-Ig, clone 1G11A3) from Proteintech, anti-p-mTOR (S2481; AB137133, clone EPR427(N)) from Abcam, and anti-GFP (11814460001, clones 7.1 and 13.1) from Roche. The HRP-conjugated secondary antibodies anti-mouse IgG (W4021) and anti-rabbit IgG (W4011) were purchased from Promega.

Thermolysin treatment. Cell lysates in buffer containing 50 mM Tris-Cl, pH 7.5, 50 mM KCl, 5 mM CaCl2, 5% glycerol, 0.05% NP-40 were incubated with thermolysin (Sigma) at a final concentration of 150 μg/mL at 4°C. Reactions were stopped by the addition of 1 mM PMSF and 5 mM EDTA.

RNA-seq and data analysis. Total RNAs were processed for paired-end (2×150 nt) RNA-seq on an Illumina NovaSeq 6000 platform according to manufacturer’s instruction (Illumina). Data analysis was carried out as previously described (73). Briefly, we used Trimmmomatic (v0.39) to remove Illumina adapter and low-quality sequence. The trimmed reads were mapped to human reference genome hg38 using hisat2 (v2.2.1) with default parameters. Then, the reads were counted for each gene by htseq-count, and the differential expression was performed with the R package edgeR (v3.28.1). Genes with low counts were filtered by keeping only genes with rowSums (CPM(y) > 1) >= 2 and the logCPM from edgeR was converted to RPKM using the formula RPKM=2^(logCPM-log2(gene length in kb)). Custom R scripts were used to
obtain for significantly up- or down-regulated genes which were defined by a FDR<0.05 with fold change>2 and RPKM>0.5 as cut-offs.

Quantitative Proteomics. Cells were lysed with SDT lysis buffer (4% w/v SDS, 100 mM Tris-HCl, pH 7.6, 0.1 M DTT) and then heated for 5 min at 95°C, followed by sonication for 2 min (6 sec on and 4 sec off, power 40 Watts). After centrifugation for 5 min at 14,000×g, the supernatant was collected in new tubes. Quantification of the protein extract was carried by tryptophan-based fluorescence quantification method (74). Then the protein sample was digested on 10 kDa centrifugal filter tubes (Millipore) via filter-aided sample preparation protocol (FASP) (75). Digestion was performed in 50 mM NH₄HCO₃ solution, and the trypsin (Promega) was first added at 1:50 of protein amount and incubated for 12 h at 37°C, followed by adding equal trypsin amount for an additional 4 h of incubation. After centrifugation at 12,000×g for 10 min at room temperature, the peptide mixture was eluted into clean tubes and quantified using a Pierce BCA Protein Assay kit (Thermo Scientific). The peptide mixture was desalted by StageTips. Finally, the purified peptide samples were redissolved in 0.1% formic acid and quantified by NanoDrop™ 2000c Spectrophotometers (Thermo Scientific). Equivalent peptides of each sample were analyzed on Thermo Scientific™ Q Exactive™ HF hybrid quadrupole-Orbitrap mass spectrometer coupled with Thermo Scientific™ EASY-nLC™ 1000 nanoflow LC. Samples were separated at a constant flow rate of 650 nL/min using a home-made micro-tip C18 column (75 μm×250 mm) packed with ReproSil-Pur C18-AQ, 2.4 μm resin (Dr. Maisch GmbH, Germany). The separation was at the following gradients: 0-2 min, 2-4% buffer B (0.1% formic acid in
acetonitrile); 2-104 min, 4-25% B; 104-114 min, 25-35% B; 114-116 min, 35-90% B; 116-120 min, 90% B. Xcalibur software was applied for data-dependent acquisition. A lock-mass m/z 445.12003 was used for internal calibration. Electrospray voltage (2.8 kV) was applied and the capillary temperature was set at 320°C. It performed 120 K resolution MS scan, collecting from 350-1500 m/z for 120 min (AGC target 3×10^6, maximum ion time of 30 ms). Top 15 precursors were collected at 15 K resolution (AGC target 1×10^5, maximum ion time of 35 ms) with isolation window of 1.0 m/z, using 28% normalized collision energy. The exclude isotope state was ‘on’, rejecting unassigned, 1+, 7+, 8+, and >8+ ions with dynamic exclusion time of 40 sec. For quantification of cells proteomics data, raw data searching was conducted on MaxQuant 1.6.0.16 with default settings against human Uniprot database (Downloaded on December 2017), combined with contaminant and decoy sequences. Carbamidomethyl (C) was set as fixed modification, besides oxidation (M) and acetyl (Protein N-term) as variable modifications. Each peptide was allowed for no more than five modifications. Digestion mode set Trypsin/P as specific enzyme and the maximum missed cleavage site was made 2. First search peptide tolerance and main search peptide tolerance were 20 ppm and 4.5 ppm, respectively. The searching criteria of proteins and peptides were at a FDR of below 0.01. The minimal peptide length was set at 7 amino acids. R version 4.0.5 (http://www.R-project.org/) was used to carry out mass-spec data normalization and statistical analysis. To identify significantly differential protein groups between control and YB-1 KD cells, we performed two-sided Student’s t tests. P values less than 0.05 were considered as significant.
Immunoprecipitation. Cells were lysed in 50 mM Tris-Cl, pH 7.5, 150 mM KCl, 0.5% NP-40, 1 mM PMSF at 4 °C for 30 min with rotation. The lysate was centrifuged at 13,000 rpm for 10 min at 4 °C. The supernatant was collected and incubated with anti-FLAG M2 beads (Sigma) or the appropriate antibodies which were previously immobilized on Protein G Dynabeads (Thermo Scientific) at 4°C for 3 h with rotation. The beads were washed three times with the above buffer.

mLST8 interactome determined by immunoprecipitation coupled with mass spectrometry analysis. FLAG-mLST8 was immunoprecipitated with the anti-FLAG M2 beads from U251 cells stably expressing FLAG-mLST8. Beads were washed with 500 μL 100 mM NH₄HCO₃ three times followed by adding 20 μL 8 M urea in 100 mM Tris-Cl, pH 8.5 and sonication for 30 minutes. Dithiothreitol with a final concentration 10 mM (Sigma) and Iodoacetamide with a final concentration 10mM (Sigma) for reduction and alkylation were added to the solution and incubated at 56°C and room temperature for 30 min, respectively. For optimizing the activity of trypsin, the protein mixture was diluted four times and digested with trypsin at 1:50 (w/w) (Promega). The digestion was stopped by adding formic acid to 5%. The peptide mixture was desalted by use of a monospin C18 column (SHIMADZU-GL), and dried out by speed vacuum.

All the raw files from Q-Exactive were searched against the UniProt human database (released on 2015.10.22) using the Integrated Proteomics Pipeline v3.1. Precursor and product ion spectra were searched with an initial mass tolerance of 50 ppm and 600 ppm, respectively. Tryptic cleavage was selected, and up to three missed cleavages were allowed. Carbamidomethylation on cysteine (+57.02Da) was set as a fixed modification,
oxidation (+15.99Da) on methionine was set as a variable modification. The target-decoy-based strategy was applied to control both peptide and protein-level FDRs at lower than 0.01.

RNA immunoprecipitation (RIP). Cells were irradiated with UV light at 150 mJ/cm² and lysed in buffer containing 50 mM Tris-HCl, pH 7.4, 100 mM NaCl, 1% NP-40, 0.1% SDS, 0.5% sodium deoxycholate, and protease inhibitor cocktail. RNAs were partially fragmented using RNase A (QIAGEN). After centrifuging at 10,000 g for 10 min, an aliquot (10%) of supernatant was removed and served as input. The remaining supernatant was immunoprecipitated with either rabbit IgG or anti-YB-1 antibody immobilized on Protein G Dynabeads. The bound RNAs were washed extensively and isolated using TRIzol (Invitrogen) followed by RT-qPCR.

Biotinylated RNA pull-down assay. Streptavidin beads (Thermo Scientific) were washed using binding/washing buffer (10 mM Tris-Cl, pH 7.5, 1 M NaCl, 1 mM EDTA) and then incubated with biotinylated RNA oligonucleotides for 15 min at room temperature. Cells were lysed in buffer containing 50 mM Tris-Cl, pH 7.5, 150 mM KCl, 0.2% NP-40, and 1 mM PMSF. Cell lysate was centrifuged at 13,000 rpm for 10 min at 4°C. Then the supernatant was collected and incubated with biotinylated RNA immobilized streptavidin beads for 2 h at room temperature. The bound proteins were analyzed by Western blot analysis or silver staining. Silver staining was performed according to the manufacturer’s instruction (Beyotime Biotech).

Polysome Profiling Assay. Polysome profiling was carried out as previously described (76, 77). Briefly, control- and YB-1-specific knockdown U251 cells were pre-treated
with 200 μM CHX for 5 min at 37°C, and lysed in polysome lysis buffer (100 mM KCl, 5 mM MgCl₂, 10 mM HEPES, pH 7.4, 100 μg/mL CHX, and 1×protease inhibitor cocktail, 100 units/mL RNase inhibitor, 25 units/mL Turbo DNase I, 2 mM DTT, 0.5% Triton X-100 and 0.5% Sodium Deoxycholate). Debris was removed by centrifugation at 12,000 rpm for 10 min at 4°C, and supernatants were loaded onto 10-ml continuous 10-50% sucrose gradients (100 mM KCl, 5 mM MgCl₂, 10 mM HEPES, pH 7.4, 100 μg/mL cycloheximide, 1×protease inhibitor cocktail, 100 units/mL RNase inhibitor) and centrifuged at 35,000 rpm for 2.5 h at 4°C in an SW41 rotor (Beckman). Fractions were collected using a density gradient fractionation system (Brandel). Total RNA from each fraction was isolated using TRIzol (Invitrogen) and used for further analysis.

IHC analysis of glioblastoma specimens and survival analysis. The tissue sections from paraffin-embedded glioblastoma specimens were stained with antibodies against YB-1, CCT4, mLST8 and p-S6K1 (Millipore; T389; MABS82). The protein expression in tissue sections was evaluated using a standard scoring system (H-score) according to the staining intensity and the percentage of positive cells. The staining intensity was scored as 0, 1, 2 or 3 corresponding to negative, weak, moderate or strong staining, respectively. The score was calculated by the formula: 3 × (% strong staining) + 2 × (% moderate staining) + 1 × (% weak staining), giving a range of 0-300. Microscopic evaluation was carried out by three observers who were blinded to clinical and laboratory data. The scores were compared with overall survival, defined as the time from the date of diagnosis to death or last known date of follow-up.

Intracranial xenograft assay in nude mice. 5×10⁵ U87 and GSCWL1 cells were
intracranially injected into the left cerebral cortex of 8-week male NOD-SCID mice at the following coordinates: M/L, -2.0 mm; A/P, 0 mm; and D/V, 2.75 mm. Bioluminescent imaging was conducted to monitor tumor growth using the IVIS Spectrum CT imaging system (PerkinElmer). Tumor-bearing mice were injected with D-luciferin (PerkinElmer) before anesthesia. Radiance (photons/s/cm²/steradian) was measured using Living Image 4.5.4 software (PerkinElmer).

Study approval. All brain tumor tissues were collected from informed, consenting patients in Huashan Hospital affiliated to Fudan University (Shanghai, China) from July 2013 to August 2018 with the approval from the Institutional Research Ethics Committee. All mice were treated according to the protocols approved by the Institutional Animal Care and Use Committee of the CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences.

Statistical Analysis. For most in vitro assays, experiments were performed at least in triplicate. Data are presented as mean ± SEM, and unpaired 2-tailed Students’ t-tests or 1-way ANOVA followed by Dunnett’s test were used to calculate P values. 2-way ANOVA tests were used to evaluate in vivo tumor growth of different test groups. Survival curves were plotted using the Kaplan-Meier method and P values were determined by Cox-Mantel log-rank test. P<0.05 was considered statistically significant. Statistical analyses were performed using GraphPad Prism software (GraphPad).

Data availability. The RNA-Seq data are available at NCBI’s GEO database under the accession number GSE161523. The quantitative mass spectrometry proteomics and
protein interactome data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the iProX partner repository with the dataset identifier PXD022776.
Author contributions

JH conceived the project; JH, LY, ZW, JZW, and HZ designed experiments; JZW, HZ, PY, HL, YY, YZ, and QL performed experiments; WKW and XF performed bioinformatics analysis; KX, PW, CP, RZ, and CCLW performed proteomic analysis; JH, ZW, LY, JZW, HZ, YH, and KL interpreted and analyzed data; YS, NZ, and XW provided advice on experiments; and JH, JZW, HZ, and ZW wrote the manuscript with comments from all authors.

Acknowledgments

We thank Zhongsheng You for critical reading of the manuscript, Feng Wang for help during the initiation of the project, Chao Wang for experimental assistance, and Jeremy N. Rich for kindly providing GSCs. This work was supported by the National Natural Science Foundation of China (31770881 and 32071288 to JH; 81572473 to LY) and the National Key Research and Development Program of China (2017YFA0504400 and 2021YFA1300500 to JH).
References

11. Osuka S, and Van Meir EG. Overcoming therapeutic resistance in glioblastoma:

20. Wei WJ, et al. YB-1 binds to CAUC motifs and stimulates exon inclusion by

38. Saxton RA, and Sabatini DM. mTOR signaling in growth, metabolism, and disease.

Figures and figure legends

Figure 1. The protein level of YB-1 is substantially up-regulated in glioblastoma, which predicts a poor prognosis. (A) Western blotting analysis of YB-1 in 8 pairs of glioblastoma tissues and their adjacent tissues. (B) RT-qPCR analysis of YB-1 mRNA expression in 8 pairs of glioblastoma tissues and their adjacent tissues. Data are presented as mean ±SEM (n=3). (C) Representative image of IHC staining of YB-1 in glioblastoma tissues. Scale bar: 20 μm. (D) Kaplan-Meier survival curves of glioblastoma patients with low (scores 0-150) versus high (scores 151-300) YB-1 expression. P value was determined by Cox-Mantel log-rank test.
Figure 2. Transcriptomic and proteomic analyses of gene expression changes upon YB-1 deletion in glioblastoma cells. (A and B) GO enrichment analyses of significantly down-regulated proteins in YB-1 depleted U251 (A) and U87 (B) cells. (C and D) Scatterplot integrating proteomic (y axis) and RNA-seq (x axis) datasets from U251 (C) or U87 (D) cells. Red dotted lines represent an absolute FC=1.2 or -1.2 at mRNA levels, and grey dot lines indicate an absolute FC=1.5 or -1.5 at protein levels.
Figure 3. YB-1 activates both mTORC1 and mTORC2 signaling by stabilizing mLST8. (A and B) Western blot analysis of the molecular markers for mTORC1 and mTORC2 signaling in control- or YB-1-knockdown U251 (A) and U87 (B) cells. (C and D) Western blot analysis of mLST8 in control- or YB-1-knockdown U251 (C) and U87 (D) cells. (E and F) Western blot analysis of YB-1, mLST8 and mTOR marker in control-, YB-1-knockdown, or YB-1-knockdown complemented with mLST8 in U251 (E) and U87 (F) cells. (G) RT-qPCR analysis of mLST8 mRNA expression in control- or YB-1-knockdown U251 cells. Data are presented as mean ±SEM (n=3). (H) Western blot analysis of mLST8 in control- or YB-1-knockdown U251 cells treated with CHX for the time indicated. Data represent 3 independent experiments. (I) Quantification of the relative mLST8 protein levels for H.
Figure 4. YB-1 promotes mLST8 folding via CCT4. (A) Immunopurification of mLST8-interacting proteins from U251 cells stably expressing FLAG-tagged mLST8 followed by SDS-PAGE and visualization with silver staining. The major specific interacting proteins are indicated by red dots. (B) The components of mTOR and CCT complexes and tubulin proteins were identified by mass spectrometry as mLST8-interacting proteins with high confidence. The percentage of peptide coverage and the
number of peptide spectra matched for the protein are shown in the parentheses. (C) Immunoprecipitation of CCT components from HEK293T cells transiently transfected with a vector or FLAG-tagged mLST8 expression construct using an anti-FLAG antibody followed by immunoblotting analysis. (D) Western blot analysis of CCT components in control- or YB-1-specific knockdown U251 cells. (E) Western blot analysis of CCT4 and mLST8 in U251 cells transfected with control- or CCT4-specific siRNAs. (F) RT-qPCR analysis of mLST8 mRNA in U251 cells expressing control- or CCT4-specific shRNAs. Data are presented as mean ±SEM (n=3). (G) Western blot analysis of mLST8 in control- or CCT4-knockdown U251 cells treated with Baf A1 followed by incubation with thermolysin for the indicated time. Data represent 3 independent experiments. (H) Quantitation of G. (I and J) Western blot analysis of YB-1, CCT4, mLST8 and the markers for mTORC1 and mTORC2 signaling in control-, YB-1-knockdown, or YB-1-knockdown complemented with CCT4 in U251 (I) and U87 (J) cells.
Figure 5. YB-1 regulates the translation of CCT4 and its own mRNAs. (A) RT-qPCR analysis of CCT4 mRNA in control- or YB-1-specific knockdown U251 cells. Data are presented as mean ±SEM (n=3). (B) Western blot analysis of GFP expression in control- or YB-1-knockdown U251 cells transfected with CCT4 5’ UTR (left), 3’
UTR (right) reporters and p2xGFP. p2xGFP serves as a transfection control. (C) iCLIP cDNA counts for YB-1 binding sites in CCT4 5’ UTR. The wildtype and the substituted sequences in reporter constructs are shown below the schematic representation of CCT4 5’ UTR. (D) CLIP-RT-qPCR analysis of YB-1 binding to the CCT4 5’ UTR. Data are presented as mean ±SEM (n=4). *** P<0.001, by unpaired 2-tailed Student’s t-test. (E) Western blot analysis of GFP expression in HEK293T cells transfected with indicated plasmids. p2xGFP serves as a transfection control. (F) Western blot analysis of YB-1, CCT4, and mLST8 in U251 cells expressing 3×FLAG-tagged YB-1 protein. (G) RT-qPCR analysis of endogenous YB-1 mRNA in HEK293T cells transfected with empty vector or 3xFLAG-tagged YB-1 expression construct. Data are presented as mean ±SEM (n=3). (H) iCLIP cDNA counts for YB-1 binding sites in YB-1 5’ UTR. The wildtype and the substituted sequences in reporter constructs are shown below the schematic representation of YB-1 5’ UTR. (I) CLIP-RT-qPCR analysis of YB-1 binding to YB-1 5’ UTR of. Data are presented as mean ±SEM (n=4). *** P<0.001, by unpaired 2-tailed Student’s t-test. (J) Western blot analysis of GFP expression in HEK293T cells transfected with indicated plasmids. p2xGFP serves as a transfection control.
Figure 6. The YB-1/CCT/mLST8 axis is required for cell proliferation and self-renewal of GSCs. (A and B) Western blot analysis of YB-1, CCT4, mLST8, and mTOR markers in GSCWL1 (A) and GSC456 (B) cells expressing control shRNA, YB-1-specific shRNA or YB-1 shRNA supplemented with CCT4 or mLST8. (C and D) Cell viability analysis of GSCWL1 (C) and GSC456 (D) cells described in A and B. Data are presented as mean ±SEM (n=3). *** P<0.001, by 1-way ANOVA followed by Dunnett’s test. (E and F) Relative numbers of tumorspheres formed in GSCWL1 (E) and GSC456 (F) cells described in A and B (n=5). *** P<0.001, by 1-way ANOVA with Dunnett’s test. (G and H) In vitro extreme limiting dilution assays were performed in GSCWL1 (G) and GSC456 (H) cells described in A and B.
Figure 7. The YB-1/CCT4/mLST8 axis promotes tumor growth in vivo. (A) H&E-stained sections of tumor-bearing mouse brains intracranially injected with GSCWL1 cells expressing control shRNA, YB-1-specific shRNA, or YB-1 shRNA supplemented with CCT4 or mLST8. Scale bar, 2 mm. (B) Bioluminescent images of
tumor-bearing mouse brains described in A. Colored scale bar represents photons/s/cm²/steradian. (C) Total flux (photons/s) was detected at time indicated in mouse brains described in A. Data are presented as mean ±SEM. *** P<0.0001, by 2-way ANOVA test. (D) Western blot analysis of YB-1, CCT4, mLST8, and mTOR markers in tumors derived from nude mice intracranially implanted GSCWL1 cells described in A. (E) Kaplan-Meier survival curves of nude mice intracranially implanted GSCWL1 cells described in A. *** P<0.001, by Cox-Mantel log-rank test.
Figure 8. The YB-1/CCT4/mlST8/mTOR pathway is up-regulated in glioblastoma. (A) Western blotting analysis of CCT4, CCT5, mLST8, and GAPDH in 8 pairs of glioblastoma tumor tissues and their adjacent tissues. The normalized relative expression levels of CCT4 and mLST8 are shown below. (B) Representative images of IHC staining of YB-1, CCT4, mLST8, and phospho-S6K1 (T389) for two glioblastoma patients (patient #17-06894 with higher YB-1 expression, and patient
#17-06636 with lower YB-1 expression). Scale bar: 10 μm. (C-H) Pearson correlation analysis between indicated proteins in 75 glioblastoma patients. R and P values are determined by Pearson correlation test. (I-K) Kaplan-Meier survival curves for glioblastoma patients with high (scores 0-150) versus low (scores 151-300) expression of CCT4, mLST8, and phospho-S6K1 proteins. P values were determined by Cox-Mantel log-rank test.
Figure 9. RNA decoy oligonucleotides targeting YB-1 inhibited tumor cell growth in vivo. (A and B) MTT analysis of cell growth in U251 (A) and U87 (B) cells expressing control- or YB-1-specific shRNA with or without control or YB-1-specific (YBX1-1) decoy oligonucleotides. Data are presented as mean ±SEM (n=3). *** P<0.001, by 1-way ANOVA followed by Dunnett’s test. (C) SDS-PAGE of material pull-downed by no oligonucleotides added (mock), biotinylated scrambled, or YB-1-specific (YBX1-2) decoy oligonucleotides followed by silver staining. (D) Western blotting for YB-1, hnRNP L, hnRNP LL, hnRNP A1 and PCBP1 in the material pull-
downed by biotinylated scrambled or YB-1 RNA decoy oligonucleotides from U87 cell extract. (E-G) Western blot analysis of YB-1, CCT4, mLST8, and mTOR markers in U251 (E), U87 (F) and GSCWL1 (G) cells transfected with scrambled or YB-1 decoy oligonucleotides. (H) Effects of scrambled or YB-1 decoy oligonucleotides on cell proliferation were tested in GSCWL1 cells. Data are presented as mean ±SEM (n=3). *** P<0.001, by unpaired 2-tailed Students’ t-test. (I) In vitro extreme limiting dilution assays were performed in GSCWL1 cells transfected with scrambled or YB-1 decoy oligonucleotides. (J) H&E-stained sections of tumor-bearing mouse brains. Tumors were formed by intracranial injection of GSCWL cells transfected with scrambled or YB-1 decoy oligonucleotides (scrambled: n=8; YBX1-2: n=7). Scale bar, 2 mm. (K) Bioluminescent images of tumor-bearing mouse brains described in J. Colored scale bar represents photons/s/cm²/steradian. (L) Total flux (photons/s) was determined for the time indicated after intracranial injection of GSCWL1 cells described in J. Data are presented as mean ±SEM. *** P<0.001, by 2-way ANOVA test. (M) Kaplan-Meier survival curves of nude mice described in J. P value was determined by Cox-Mantel log-rank test. (N) Schematic illustration of the working model.