circular RNA cia-MAF drives self-renewal and metastasis of liver tumor-initiating cells via transcription factor MAFF

Zhenzhen Chen, …, Zusen Fan, Pingping Zhu

J Clin Invest. 2021. https://doi.org/10.1172/JCI148020.

Graphical abstract

![Graphical abstract of the research](image_url)
circular RNA cia-MAF drives self-renewal and metastasis of liver tumor-initiating cells via transcription factor MAFF

Zhenzhen Chen\(^1\), Tiankun Lu\(^2\), Lan Huang\(^3\), Zhiwei Wang\(^1\), Zhongyi Yan\(^4\), Yubo Guan\(^1\), Wenjing Hu\(^1\), Zusen Fan\(^2,5\), Pingping Zhu\(^1,6\)

1. School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China.
2. University of Chinese Academy of Sciences, Beijing 100049, China.
3. Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, 1st Jianshe East Road, Zhengzhou, Henan 450052, China
4. School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
5. CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
6. State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
7. These authors contributed equally to this work

Corresponding authors: Zhenzhen Chen (Zhengzhou 450001, China, chenzz2015@zzu.edu.cn, 86-15838370103), Zusen Fan (Beijing 100101, fanz@moon.ibp.ac.cn, 86-13718706999) and Pingping Zhu (Zhengzhou 450001, zhup@zzu.edu.cn, 86-18800184573)

Conflict of interest: The authors have declared that no conflict of interest exists.

Running title: cia-MAF drives self-renewal and metastasis of liver tumor-initiating cells

Keywords:
Liver cancer; Tumor initiating cell; circular RNA; Transcription factor; Copy number alternation
Background

Liver tumor-initiating cells (TICs) are involved in liver tumorigenesis, metastasis, drug resistance and relapse, but the regulatory mechanisms of liver TICs are largely unknown. Here, we have identified a functional circular RNA, termed circRNA activating MAFF (cia-MAF), that is robustly expressed in liver cancer and liver TICs. cia-MAF knockout primary cells and cia-maf knockout liver tumors harbor decreased ratios of TICs, and display impaired liver tumorigenesis, self-renewal and metastatic capacities. In contrast, cia-MAF overexpression drives liver TIC propagation, self-renewal and metastasis. Mechanistically, cia-MAF binds to the MAFF promoter, recruits the TIP60 complex to the MAFF promoter, and finally promotes MAFF expression. Loss of cia-MAF function attenuates the combination between the TIP60 complex and the MAFF promoter. MAFF is highly expressed in liver tumors and liver TICs, and its antisense oligo (ASO) has therapeutic potential in treating liver cancer without MAFA/MAFG gene copy number alterations (CNAs). This study reveal an additional layer for liver TIC regulation as well as circRNA function, and also provide an additional target for eliminating liver TICs, especially for liver tumor without MAFA/MAFG gene CNAs.
Introduction

Liver cancer, the incidence of which is increasing continuously, is the third leading cause of cancer-related deaths. About 90% liver cancers are hepatocellular carcinoma (HCC) (1). Despite surgical resection, radiotherapy, chemotherapy and liver transplantation, the prognosis of HCC patients is very poor, mainly because of the significant heterogeneity of HCC (2). Recent studies have shown that tumor heterogeneity is due to the hierarchical organization of tumor cells within the tumor bulk, which is generated from a small subset of cells, termed tumor-initiating cells (TICs) or cancer stem cells (CSCs) (2). Unlike non-TICs, TICs harbor the abilities to self-renew, differentiate, and generate new tumors. Moreover, TICs are resistant to conventional therapies, including radiotherapy and chemotherapy (3). Accumulating studies demonstrate that TICs are also resistant to immunotherapy, including CAR-T and immune checkpoint therapies (4, 5). Several liver TIC markers have been identified, including CD44, CD13, CD133 and EPCAM (6). Some up to date technologies, including single-cell RNA sequencing and CRISPR-Cas9 based genome editing, have facilitated the characterization and functional investigation of TICs (7, 8). However, the mechanisms involved in liver TIC self-renewal remain elusive.

Like normal stem cells, TICs rely on stemness signaling pathways to maintain their self-renewal and differentiation capacities, and these pathways are precisely regulated. Accumulating evidences demonstrate that the alterations in stemness pathways, including Wnt/β-catenin, Notch and Hedgehog pathways, lead to tumorigenesis and tumor progression (9). On the one hand, hyper-activation of these pathways in normal stem cells leads to their expansion and abnormal differentiation, resulting in tissue-specific tumorigenesis. On the other hand, abnormal activation of these pathways in differentiated tumor cells triggers their dedifferentiation process (10). Thus, these pathways need to be precisely regulated by multiple modulators, including transcription factors, chromatin remodeling factors and regulatory RNAs (11). Recently several niche factors have been identified as TIC regulators as well (12, 13). We previously identified several long non-coding RNAs that regulate the self-renewal of liver TICs via Wnt/β-catenin, Hedgehog and Hippo/Yap1 pathways, in intracellular or niche-dependent manners (14-16).
Transcription factors (TFs) are sequence-specific DNA-binding factors and play central roles in cell fate determination. TFs bind to promoter region of target genes to promote or inhibit their expression. The MAF family transcription factors (TFs) are basic leucine zipper TFs, which contain a highly conserved homology region and a basic region. The MAF TFs regulate gene expression and differentiation in a wide variety of tissues and are also involved in human diseases, including tumorigenesis (17, 18). There are five MAF TFs in human cells: MAFA, MAFB, MAFF, MAFG, and MAFK. Recent studies have revealed that MAFF promotes tumor invasion and metastasis as a hypoxia gene, but its role in liver TICs remains unknown (19). In this study, we have revealed that MAFF is required for liver TIC self-renewal and that MAFF antisense oligo (ASO) has therapeutic effects on liver cancer without MAFA/MAFG gene copy number alterations (CNAs).

Circular RNAs (circRNAs), formed by covalent conjugation of 5’ and 3’ ends through backsplicing, emerge as critical modulators in various biological processes recently (20). circRNAs are generated from their parent pre-mRNAs, and grouped into exon circRNAs, intron circRNAs, and exon-intron circRNAs (21). Recent studies have revealed the key roles of circRNAs in many physiological and pathological processes, including neuropsychiatric disorders, tumorigenesis and immunological regulation (22-24). Several circRNAs, including ciRS-7/CDR1as, circHIPK3, and Sry circRNA, act as microRNA (miRNA) sponges (25, 26). Interestingly, fusion circRNA derived from cancer-associated chromosomal translocations are involved in tumorigenesis and therapy-resistance (27). We previously identified circPan3 and circKcnt2 as regulators of intestinal stem cell self-renewal and colitis progression (28, 29). However, it is unclear whether and how circRNAs regulate liver TIC self-renewal. In this study, we identified that a circRNA termed circRNA activating MAFF (cia-MAF) was highly expressed in liver cancer and liver TICs, and we evaluated its biological roles using primary samples and cia-maf knockout mice. We found that cia-MAF binds to the MAFF promoter and recruits TIP60 complex, a chromatin remodeling complex required for MAFF transcription, and ultimately drives the self-renewal of liver TICs.

Results
High expression of cia-MAF in liver cancer and TICs

Liver TICs drive liver tumorigenesis, metastasis and drug resistance, and their self-renewal needs to be precisely regulated. To identify functional circRNAs in liver TICs, we re-analyzed our circRNA dataset (GSE78520), and selected the top 10 circRNAs with the highest expression in TICs (Supplemental Figure 1A). These transcripts were resistant to RNase R and actinomycin D treatment, confirming that they are circRNAs (Supplemental Figure 1B). Among these 10 circRNAs, we focused on cia-MAF as a functional circRNA involved in liver TIC self-renewal (Supplemental Figure 1C, D). Moreover, cia-MAF was highly conserved among various species (Supplemental Table 1A-D).

cia-MAF was highly expressed in liver cancer, and its expression levels were correlated with the clinical severity (Figure 1A), as well as tumor relapse (Figure 1B), patient prognosis (Figure 1C), and the expression of TIC marker CD44 (Figure 1D, E). Another tissue microarray also confirmed that cia-MAF was highly expressed in liver cancer and its expression was related to clinical prognosis (Supplemental Figure 2A, B). We then examined the expression landscape of cia-MAF in liver TICs, and found that it was highly expressed in liver TICs and spheres (Figure 1F, G, and Supplemental Figure 2C-E). These data confirm that cia-MAF is highly expressed in liver cancer and liver TICs.

In mice, the expression levels of cia-maf (cia-MAF homologous transcript in mice, hereafter termed as cia-maf) were increased along with DEN/CCl4-induced tumorigenesis (Supplemental Figure 2F, G). Forty-eight clones derived from single tumor cells had divergent expression levels of cia-maf and CD44, and CD44high clones showed increased cia-maf expression (Supplemental Figure 2H, I). The robust expression of cia-maf in CD44high clones was confirmed by fluorescence in situ hybridization (Figure 1H). Then sphere formation assay was performed and five sphere clones were derived from single cells, and cia-maf expression was increased in spheres (Supplemental Figure 2J, K). Overall, these results demonstrate that cia-MAF is robustly expressed in liver TICs enriched from primary samples and DEN/CCl4-induced mouse tumors.

cia-MAF promotes liver TIC self-renewal

To explore the role of cia-MAF in liver TIC self-renewal, we generated cia-MAF
knockout cells using a CRISPR/Cas9 approach (Supplemental Figure 3A-C). cia-MAF knockout remarkably abolished cia-MAF expression but not linear mRNA expression (Figure 2A and Supplemental Figure 3D, E). The cia-MAF knockout cells harbored fewer TICs (Figure 2B and Supplemental Figure 3F). Moreover, sphere formation and tumor invasion capacities were attenuated in cia-MAF knockout cells (Figure 2C and Supplemental Figure 3G). cia-MAF knockout also inhibited tumor propagation and tumor initiating capacities (Figure 2D, E, and Supplemental Table 2A). Interestingly, cia-MAF knockout moderately inhibited the propagation and transwell capacities of non-TICs, probably because of the low expression of cia-MAF in non-TICs (Supplemental Figure 3H-J). Moreover, cia-MAF antisense oligo (ASO) enhanced the anti-tumor efficiency of 5-fluorouracil by eliminating TICs (Figure 2F). These data demonstrate the essential role of cia-MAF in human liver TIC self-renewal.

We then evaluated the role of cia-maf in mouse liver TICs. In clones with high cia-maf expression, cia-maf knockdown inhibited tumor initiation (Supplemental Figure 4A, B) and sphere formation (Supplemental Figure 4C, D). These data reveal the critical roles of cia-maf in mouse liver TIC self-renewal. Then cia-maf knockout mice were generated using a CRISPR/Cas9 approach (Supplemental Figure 4E-H). cia-maf knockout mice showed no cia-maf expression but the expression of linear mRNA was comparable to their littermate WT mice (Supplemental Figure 4I-L). DEN/CCl4-induced liver tumorigenesis was reduced in cia-maf knockout mice, with decreased numbers of liver progenitor cells, proliferating cells and TICs, whereas apoptotic cells, F4/80+ cells and fibrosis were comparable between cia-maf knockout and control mice (Figure 3A-D and Supplemental Figure 4M-O). Moreover, cia-maf knockout TICs exhibited impaired sphere formation capacity, and CD44 expression was decreased in these spheres (Figure 3E, F). Interestingly, cia-maf was also required for liver tumorigenesis in HrasG12V plus shp53 hydrodynamic injection model (Figure 3G and Supplemental Figure 4P). Taking advantage of tumor transplantation, we proved that cia-maf is an intrinsic factor in the regulation of liver tumor propagation (Supplemental Figure 4Q).

Next, we established cia-MAF-overexpressing cells, which contained increased ratios of liver TICs (Figure 4A, B). cia-MAF overexpression enhanced the sphere formation
(Figure 4C), tumor invasion (Figure 4D), and tumor initiation capacities (Figure 4E, and Supplemental Table 2B). cia-maf overexpression rescued the self-renewal and tumor initiation capacities of liver tumor cells with low cia-maf expression (Figure 4F-H). Overall, these results confirm that cia-MAF promotes the self-renewal of liver TICs.

cia-MAF drives TIC self-renewal by targeting MAFF

To explore the molecular mechanism of cia-maf in liver TIC regulation, we performed RNA sequencing using cia-maf KO TICs and validated the RNA-seq data with real-time PCR (Supplemental Figure 5A). Transcription-associated genes were enriched among the differently expressed genes in cia-maf knockout TICs, thus we focused on the function of cia-maf in transcriptional regulation (Supplemental Figure 5B). Among the top 10 down-regulated transcription factors in cia-maf KO cells, MAFF showed the most important role in sphere formation (Figure 5A, B, and Supplemental Figure 5C, D). Of note, MAFF and cia-MAF were co-expressed in clinical HCC samples (Supplemental Figure 5E). These data indicated that MAFF served as a functional target gene of cia-MAF in liver TIC self-renewal. Therefore, we generated MAFF knockout cells using a CRISPR/Cas9 approach (Figure 5C). These cells contained a decreased ratio of liver TICs, and displayed impaired self-renewal and invasion capacities (Figure 5D, E, and Supplemental Figure 5F). Interestingly, MAFF bound to CD44 promotor (Supplemental Figure 5G), and CD44 expression levels were decreased in cia-MAF knockout and MAFF knockout cells (Supplemental Figure 5H). These data demonstrate that cia-MAF targets MAFF, which is required for liver TIC self-renewal and CD44 expression.

To explore the role of MAFF in cia-MAF function, cia-MAF was silenced or overexpressed in MAFF knockout cells. The effects of cia-MAF in liver TIC self-renewal and metastasis were abolished in MAFF knockout cells, highlighting the essential role of MAFF in cia-MAF function (Supplemental Figure 6A, B). Rescue of MAFF expression in cia-MAF knockout cells restored their self-renewal and metastatic capacities, whereas rescue of CD44 expression partially restored TIC functions, indicating that cia-MAF mainly exerted its role through MAFF, and cia-MAF/MAFF worked via CD44-dependent and CD44-independent manners (Supplemental Figure 6C). We also rescued the top 10 transcription factors whose expression levels are decreased in cia-MAF knockout cells,
and found that only MAFF was involved in cia-MAF's function (Supplemental Figure 6D). These results indicate that cia-MAF functions mainly through MAFF.

Maff knockout liver cancer cells, which were generated using a CRISPR/Cas9 approach, were characterized by reduced expression of TIC markers and proliferation marker Ki67 (Figure 6A-C). Moreover, impaired self-renewal and tumor initiation capacities were observed in *Maff* knockout cells (Figure 6D, E). CD44 expression was also impaired in *Maff* knockout spheres (Figure 6F). Overall, these findings indicate that cia-MAF promotes self-renewal of human and mice liver TICs via a MAFF-dependent manner.

cia-MAF interacts with the TIP60 complex

To explore the molecular mechanisms by which cia-MAF regulates MAFF expression, we performed an RNA pulldown assay using cia-MAF, and mass spectrum analysis identified TIP60, RUVBL2 and P400 as cia-MAF partners in the tumor spheres, and their interaction was confirmed by Western blot (Figure 7A, B). Tagged RNA affinity purification (TRAP) assay and RNA immunoprecipitation validated the combination between cia-MAF and the TIP60 complex (Figure 7C, and Supplemental Figure 7A, B). Furthermore, split GFP assay and fluorescence in situ hybridization confirmed that cia-MAF was co-localized with P400, the core component of the TIP60 complex (Figure 7D, E, and Supplemental Figure 7C). These data demonstrate that cia-MAF interacts with the TIP60 complex.

TRAP assay using truncated cia-MAFs lacking individual exons revealed that the first exon of cia-MAF is required for the interaction between cia-MAF and P400 (Supplemental Figure 7D, E). Considering the critical role of stem-loops in the RNA interactome (30, 31), we performed loop mutation analyses and found that HR#3 was essential for the interaction between cia-MAF and P400 (Supplemental Figure 7F, G). Moreover, the regulatory functions of truncated cia-MAF and HR#3-mutant cia-MAF in liver TIC self-renewal and invasion were impaired, suggesting that the interaction with TIP60 complex is critical for the function of cia-MAF (Figure 7F and Supplemental Figure 7H).

We also assessed the function of the TIP60 complex in liver TICs. We observed significant reductions of TIC ratio and self-renewal ability in TIP60-inhibited cells, demonstrating the essential role of TIP60 in liver TICs (Figure 7G, H). Unlike in control
cells, the effects of cia-MAF overexpression on liver TIC ratio, sphere formation, and invasion were impaired upon TIP60 blockade, confirming the critical role of TIP60 in the function of cia-MAF (Supplemental Figure 7I). Altogether, cia-MAF interacts with the TIP60 complex to drive liver TIC self-renewal.

cia-MAF recruits TIP60 to the MAFF promoter and initiates its expression

We then analyzed the mechanisms by which cia-MAF/TIP60 regulate MAFF expression. Interestingly, TIP60 and cia-MAF bind to the same region of the MAFF promoter (Supplemental Figure 8A). Thus, we evaluated the potential role of cia-MAF in the interaction between TIP60 complex and the MAFF promoter. The enrichment of the TIP60 complex onto the MAFF promoter was attenuated in cia-MAF knockout cells, but was enhanced upon cia-MAF overexpression (Figure 8A and Supplemental Figure 8B, C). The requirement of cia-MAF in the association of MAFF promoter and TIP60 complex was confirmed by fluorescence in situ hybridization (Figure 8B and Supplemental Figure 8D). CRISPR affinity purification in situ of regulatory elements (CAPTURE) assay (32) confirmed that the interaction between TIP60 complex and MAFF promoter was impaired in cia-MAF knockout cells but was enhanced in cia-MAF overexpressing cells (Figure 8C-E, and Supplemental Figure 8E).

Considering the critical role of TIP60/P400 complex in histone acetylation, we examined H3K9ac, H3K14ac and H4K12ac levels in MAFF promoter, and found impaired histone acetylation in cia-MAF knockout cells (Supplemental Figure 8F). Moreover, the cia-MAF knockout cells also contained decreased levels of H3K4me3, providing further evidence that cia-MAF is required for the activation of the MAFF promoter (Supplemental Figure 8G). An RNA polymerase II ChIP assay also confirmed that cia-MAF activated the MAFF promoter (Supplemental Figure 8H). Taken together, cia-MAF activates the MAFF promoter via recruiting TIP60 complex.

To further validate the role of cia-MAF in MAFF promoter activation, we generated MAFF promoter (MAFF-P) knockout cells, which lost the cia-MAF binding region (Supplemental Figure 8I). Of note, the regulatory function of cia-MAF on MAFF expression was impaired in MAFF-P knockout cells (Figure 8F). Furthermore, cia-MAF overexpression had negligible effects on liver TIC ratio, self-renewal and invasion.
capacities of \textit{MAFF-P} knockout cells (Figure 8G, H, and Supplemental Figure 8J). These results confirm that cia-MAF functions through \textit{MAFF} promoter and MAFF transcription. Altogether, cia-MAF recruits TIP60 complex to the \textit{MAFF} promoter and drives MAFF expression.

\textbf{MAFF drives liver TIC self-renewal and can be targeted in HCC samples without MAFA/MAFG gene CNA}

We next analyzed MAFF expression in HCC samples. First, online-available data demonstrated increased expression of MAFF in HCC, especially in patients with metastasis, relapse, and severe clinical features (Supplemental Figure 9A). MAFF expression was also related with the prognosis of HCC patients (Supplemental Figure 9B, C). The increased expression of MAFF in liver cancer and liver TICs was confirmed by Western blot and immunofluorescence staining (Figure 9A, B).

We then used MAFF ASO for HCC therapy. MAFF ASO showed remarkable effects on sphere formation in some HCC samples, but not in others (Figure 9C, D). Considering the potential roles of other MAF TFs in MAFF inhibited cells, and the high frequency of \textit{MAFA/MAFG} gene CNAs in HCC (33), we raised a hypothesis that the divergent functions of MAFF ASO may originate from the abnormal expression landscape of MAF TFs due to \textit{MAFA/MAFG} gene CNAs. Thus, we analyzed the CNAs of \textit{MAFA} and \textit{MAFG} loci in 72 HCC samples, and detected \textit{MAFA/MAFG} CNAs in 17 samples (Supplemental Figure 9D, E). Interestingly, \textit{MAFA/MAFG} gene CNAs changed the expression landscape of MAF TFs, because MAFF expression was the greatest in samples without CNAs whereas MAFG expression was the greatest in samples with CNAs (Supplemental Figure 9F). In patients with \textit{MAFA/MAFG} gene CNAs, MAFG probably still functions via a MAFF-like manner upon MAFF-ASO treatment. To clarify this, we constructed a MAFF-reporter system with 4×MAFF driven GFP expression, and established MAFF reporter cells (Supplemental Figure 9G). As expected, MAFF and MAFG both promoted MAFF-driven GFP expression (Supplemental Figure 9H). We also generated MAFF-reporter system in primary cells with/without \textit{MAFA/MAFG} gene CNAs. In \textit{MAFA/MAFG} non-CNA cells, MAFF ASO treatment significantly attenuated MAFF-driven GFP expression, while in \textit{MAFA/MAFG} CNA cells, the effect of MAFF ASO was limited (Supplemental Figure 9I).
These results confirmed the efficiency of MAFF ASO in MAFA/MAFG non-CNA cells, and indicated that the limited efficiency of MAFF ASO was partially due to MAFG, which shared the similar DNA-binding sequence with MAFF (Supplemental Figure 9J).

Indeed, the HCC cells that were responsive to the ASO treatment harbored no MAFA/MAFG gene CNAs, whereas all non-responsive cells harbored MAFA/MAFG gene CNAs, which is consistent with our hypothesis. In addition to suppressing TIC self-renewal and invasion, MAFF ASO also blocked tumor propagation, prolonged the survival time, impaired TIC maintenance, and decreased CD44 expression in the responsive cells (Figure 9E-G). Altogether, these findings demonstrate that MAFF ASO has powerful effects on suppressing tumor propagation and TIC activity in liver cancer cells without MAFA/MAFG gene CNAs.

Discussion

The molecular mechanisms of liver TIC regulation are elusive, which largely limits the clinical application of TICs. Previously we have identified several modulators of liver TICs, including transcription factor Zic2, long noncoding RNA IncBRM and Inc-β-catm (15, 34, 35). In this study, we identified cia-MAF, a robustly expressed circRNA in liver cancer and liver TICs, that regulates liver TIC maintenance and activity. We showed that cia-MAF binds to the MAFF promoter and recruits the TIP60 chromatin remodeling complex to initiate MAFF transcription. MAFF ASO is an effective strategy to eliminate TICs, especially for HCC patients without MAFA/MAFG gene CNAs (Supplemental Figure 10). Our work has revealed an additional regulatory mechanism involved in liver TIC self-renewal and circRNA function.

It has been reported that circRNAs regulate gene expression at transcriptional and post-transcriptional stages through several mechanisms. For example, some circRNAs act as molecular sponges that bind to and block miRNAs (25, 26). Other circRNAs regulate the expression of their parental genes (36, 37), or encode peptides and exert their effects via peptide-dependent manner (38, 39). Our recent study revealed that circPan3 was highly expressed in intestinal stem cells and blocked the Ksrp-dependent degradation of Il13ra1 mRNA, which promoted the stability of Il13ra1 mRNA and
ultimately maintained the interaction of immune cells and stem cells (29). In this study, cia-MAF modulates the activity of the MAFF promoter by binding to the TIP60 chromatin remodeling complex and recruiting it to MAFF promoter. This mechanism indicates that circRNAs also act as molecular scaffolds to regulate gene transcription. Moreover, we confirmed that the regulatory effects of cia-MAF are conserved in mice and human samples. It is generally believed that the conservation of gene function across species indicates the gene’s importance. The conserved functions of cia-MAF suggest that it plays an essential role in liver tumorigenesis and TIC function. Moreover, a transcript generally functions via a network, while cia-MAF exerts its role mainly through MAFF. cia-MAF regulates the expression of quite a few genes and transcription factors, but mainly functions through MAFF, which is because of these possible reasons: (1) The “true” target genes are probably not so many as they appear. Some differently-expressed genes (DEGs) may not be targeted by cia-MAF itself, but by cia-MAF interacting proteins or a few “true” target genes; (2) Many genes are not involved in liver TIC self-renewal and metastasis, thus they are not “functional” target genes in our TIC research; (3) Some genes may function in TIC sphere-formation, but their redundant genes weaken their real functions and thus are excluded; (4) We screened functional target genes in primary cells, and other possible targets may exist in other liver cancer cells because of heterogeneity between different patients; (5) Last but not least, MAFF is only a target gene of cia-MAFF in liver TICs, cia-MAFF probably targets other genes in another physiological or pathological process, which needs to be further investigated.

Several liver TIC markers, including CD44, CD13, CD133 and EPCAM, have been identified, and some markers are also involved in the self-renewal of liver TICs. CD13 inhibition suppresses the self-renewal and tumor initiation capacities of liver TICs (40). CD133 suppression impairs the stemness properties and enhances chemoradiosensitivity of liver TICs (41). CD44 induces the nuclear-translocation of Mdm2 to terminate the genomic surveillance response by p53, thus promotes liver tumor initiation (42). Here we found that CD44 is a target gene of MAFF in liver TICs, and cia-MAFF/MAFF functions via both CD44-dependant and CD44-independent manners.

Tumorigenesis involves reprogramming alongside chromatin remodeling. Many
components of the chromatin remodeling complexes are abnormally regulated during tumorigenesis (43). We previously reported that EZH2, a core component of the PRC2 complex, is highly expressed in liver TICs and promotes Wnt/β-catenin activation and TIC self-renewal via β-catenin methylation (34). Brg1 and Brm, two exclusive core components of the SWI/SNF complex, undergo a BRG1-BRM switch during liver tumorigenesis (15). As an important chromatin remodeling complex, TIP60 is involved in histone acetylation, DNA repair, and regulation of apoptosis (44). However, its role in TICs remains unclear. Here, we found that TIP60 inhibitors significantly suppressed the self-renewal and metastatic capacities of liver TICs, demonstrating the important roles of TIP60 in liver TICs. Furthermore, the TIP60 complex was recruited by cia-MAF to the MAFF promoter, where it enhanced chromatin accessibility. Thus, our work has revealed an additional function of the TIP60 complex and an additional regulatory layer for circRNAs.

Gene knockout is widely used to study gene function, and studies using knockout mice over the last 20 years have confirmed the roles of oncogenic and tumor suppressor genes such as PTEN, P53, and ARID1A in liver tumorigenesis (45). In recent years, the number of knockout mice and knockout cells has increased rapidly due to the use of CRISPR/Cas9-based approaches (46). We previously generated IncHand2 knockout mice, in which liver tumorigenesis and TIC self-renewal were impaired (47). In the present study, we focused on circRNAs, which are difficult to knockout. Knocking out circRNAs themselves is not feasible because of the exons of linear parental gene. Based on the necessity of the pairing of intron complementary regions in circular RNA formation, we constructed circRNA knockout cells. We generated cia-MAF knockout cells by deleting the reverse complementary sequences, which were identified via minigene assay. We believe that this method will become a standard scheme for circRNA knockout, especially for circRNAs composed of exons.

Compared with normal cells, tumor cells harbor more unstable chromosomes with frequent mutations and gene CNA, two common chromosome aberrations detected in tumors (48, 49). CNA plays a key role in tumorigenesis and progression, and is closely related to gene expression level (50-52). Hyperactivated oncogenic genes in liver
tumorigenesis, such as \textit{c-MYC}, \textit{FGFR}, \textit{BCL2L1}, \textit{DLC1}, \textit{PRKC1}, and \textit{SOX2}, are often copy-number gained, whereas genes with decreased expression, including \textit{ARID1A} and \textit{RPS6KA3}, are associated with copy number deletion (50). Here, we showed that \textit{MAFA} and \textit{MAFG} are frequently copy-number gained in HCC patients, and that \textit{MAFG} is highly expressed in samples with CNAs. Of note, the MAFF ASO inhibited liver TIC self-renewal and liver tumorigenesis in cells without \textit{MAFA/MAFG} gene CNAs, but not in cells with \textit{MAFA/MAFG} gene CNAs. MAFF and MAFG bind to similar DNA sequence, and thus MAFF ASO showed limited function in samples with MAFA/MAFG CNA, in which MAFG is highly expressed. These cellular and molecular heterogeneities greatly complicate tumor therapy, which underscores the need for precision medicine and personalized therapy. Based on the different responses to MAFF ASO treatment between \textit{MAFA/MAFG} CNA and non-CNA HCC samples, our study provides an example of precision medicine that exploits the broad heterogeneities of liver cancer.

\textbf{Conclusion}

The molecular mechanisms involved in the regulation of liver TICs remain elusive. Here, we identified a circular RNA, termed cia-MAF, which is required for liver TIC self-renewal. We found that cia-MAF drives liver TIC self-renewal via its target gene MAFF. cia-MAF binds to and activates the \textit{MAFF} promoter by recruiting the TIP60 complex to the promoter. Moreover, administration of MAFF ASO elicited antitumor effects against primary liver cancer cells lacking \textit{MAFA/MAFG} gene CNAs. These findings suggest the cia-MAF–MAFF axis is a therapeutic target for precision medicine and personalized therapy.
Methods

Reagents and Antibodies

Anti-CD133 (catalog no. 130-090-853) and PE conjugated anti-CD133 antibodies were purchased from Miltenyi Biotec. PE-conjugated anti-human CD44 antibody (catalog no. 550989) was obtained from BD Biosciences. APC-conjugated anti-CD44 antibody (cat. 17-0441-81) was purchased from eBioscience. Anti-TIP60 antibody (catalog no. GTX112198) was purchased from GeneTex. Anti-RUVBL2 (catalog no. 10195-1-AP), anti-MAFF (catalog no. 12771-1-AP) and anti-CD44 (catalog no. 15675-1-AP) antibodies were obtained from Proteintech. Anti-digoxin (catalog no. ab51949) and anti-Ki67 (catalog no. ab15580) antibody was obtained from Abcam. Anti-β-actin (catalog no. RM2001) antibody was purchased from Beijing Ray antibody Biotech. Alexa-594-, Alexa-488- and Alexa-647-conjugated anti-rabbit and anti-mouse secondary antibodies were purchased from Invitrogen. HRP-conjugated secondary antibodies were purchased from Sungene Biotech. Biotin labeled RNA mix (catalog no. 11685597910) was obtained from Roche. Chemiluminescent nucleic acid detection module (catalog no. 89880) was purchased from Thermo Scientific. ChIP assay kit (catalog no. 17-295) was purchased from Miltenyi Biotec. Supplements N2 and B27 were purchased from Life Technologies.

CRISPR/Cas9 knockout

For cia-maf knockout, the essential role of intronic complementary sequences (upstream, chr5: 147443486-147443724; downstream, chr5: 147509043-147509284) in cia-maf formation was confirmed, and the downstream complementary region was targeted by sgRNAs with the following sequences: 5'-TCTGTGTTGACAAAGAGGGC-3' and 5'-TGGGAAAGACCCTTACACGG-3'. Approximate 250 zygotes in C57BL/6 background were injected with these two sgRNAs and CRISPR/Cas9, and subsequently transferred to the uterus of pseudo-pregnant ICR females, from which viable founder mice were obtained. F0 mice were genotyped by PCR primers with the following sequences: 5'-TCTGTGTTGACAAAGAGGGC-3' and 5'-TGGGAAAGACCCTTACACGG-3'. All genotypes were verified by DNA sequencing. WT allele had a PCR length of about 2727 bp and deficient allele had a PCR length of about 343 bp. F0 mice were crossed to generate cia-maf deficient mice. Littermate WT mice were used as controls for cia-maf KO
experiments, and heterozygous mice were used for cia-maf KO and littermate breeding.

Knockout cells were generated through standard approach, with minor modifications (53). Generally, sgRNAs were designed and cloned into LentiCRISPRv2 (Puro, catalogue no. 52961). LentiCRISPRv2, pVSVG (catalogue no. 8454) and psPAX2 (catalogue no. 12260) were used to generate CRISPR/Cas9 lentivirus, which were used to infect liver cancer cells for gene knockout. For cia-MAF KO#1, sgRNAs 5'-CTGAAATGTTGAGTAAATCA-3' and 5'-TGTTAAAGATCAAGCTCCAAG-3' were used for knockout, and PCR primers 5'-CAAGTGCTGGTTATTTATAGA-3' and 5'-AGTACTAAAGTTCTCAAATAA-3' were used for detection. WT allele had PCR products of about 822 bp in length and deficient allele had PCR products of about 273 bp in length. For cia-MAF KO#2, sgRNAs 5'-TAGACTCAATTCATTAAGAG-3' and 5'-AGTTCTGATTCATTAGGTAT-3' were used for knockout, and PCR primers 5'-GAAGTTGTACAGTAAAGAAA-3' and 5'-CTAAGGTGGATTATCCT-3' were used for detection. WT allele had PCR products of about 723 bp in length and deficient allele had PCR products of about 291 bp in length.

Primary liver cancer cells and TIC isolation

Primary HCC cells were obtained from hepatocellular carcinoma patients, and fresh liver cancer tissues were washed three times and kept in DMEM/F12 medium supplemented with 1000 U/ml penicillin and 1000 U/ml streptomycin, and transferred to lab on ice quickly. Then the samples were washed with precooled sterile PBS containing 100 U/ml penicillin and 100 U/ml streptomycin, cut into small fragments, and digested with HBSS containing 0.03% pronase, 0.05% type IV collagenase, and 0.01% deoxyribonuclease for 30 min at 37 °C, during which the samples were shanked every 10 minutes. Then samples were filtered through 100 μm nylon filter and centrifuged for 2 min at 50 x g in 4 °C, finally HCC primary cells were in precipitation.

TICs are enriched from CD44 FACS sorting or sphere formation. For TIC enrichment, liver cancer cells were stained with CD44 antibody, and CD44⁺ liver TICs were enriched by FACS. For sphere formation, 5000 primary cells were seeded into sphere formation medium and cultured in Ultra Low Attachment six-well plate (Corning Incorporated Life Sciences, Acton, MA, USA, lot no. 19019043).
Tumor initiating assay

For tumor initiation assay, 10, 1×10^2, 1×10^3, 1×10^4, and 1×10^5 cia-MAF knockout, overexpression and control cells were subcutaneously injected 6-week-old BALB/c nude mice as described (54), followed by 3 months' tumor initiation, and the ratios of tumor-free mice were calculated. Seven mice were used for each sample.

Sphere formation

For sphere formation, 5,000 primary cells were seeded into Ultra Low Attachment 6-well plates, and cultured in Dulbecco’s modified Eagle’s medium/F12 (Life Technologies) supplemented with N2, B27, 20 ng/ml EGF and 20 ng/ml bFGF (Millipore), and sphere initiating ratio = (sphere number) /5,000×100%.

Transwell assay

1×10^5 cia-MAF knockout, cia-MAF overexpressing or control cells were seeded into a top chamber with matrigel-coated membrane (ThermoFisher Scientific) and incubated with medium without FBS, and then FBS containing medium is added into lower chamber as a chemoattractant. After 36 hours’ incubation at 37°C, cells that did not penetrate the membrane were scraped off with a cell scraper, and the cells on the lower surface of chamber membrane were fixed with methanol, stained with crystal violet, and images were taken with Nikon Eclipse Ti2-U microscope.

MAFF ASO treatment

For transfection of MAFF ASO in vitro, 5×10^4 primary cells were transfected with MAFF ASO (50 nM) or control ASO with RNAiMax according to the manual. MAFF ASO sequence was designed and synthesized by Guangzhou RiboBio Co., Ltd. (Guangzhou, China). For in vivo transfection, we began to perform intratumoral injections of scrambled or in vivo-optimized MAFF ASO (5 nmol per injection, RiboBio, Guangzhou, China) every 3 days after xenograft volume reach about 400 mm^3, and tumor volume was also measured every 3 days.

Hydrodynamic injection

HrasG12V, shp53, luciferase and SB transposases were hydrodynamically injected into cia-maf knockout and control mice (55). HrasG12V was cloned from
pbabe-c-mycT58A+HRasG12V plasmid (Addgene 11130) to pT2-shP53 (Addgene 124261). 15 μg luciferase and SB transposases expressing plasmid (Addgene 20207) and 15 μg HRasG12V-shP52 plasmid was suspended in 1.6 ml of Ringer’s solution and was then injected into the tail veins of 6-week-old cia-maf KO and littermate mice in less than 7 sec, and tumor formation was detected through luciferase signals.

Copy number detection by real-time PCR

Chromatin DNA were extracted from 72 clinical samples, and the content of MAFA, MAFG, ACTB and GAPDH DNA fragments (crossing exon-intron junctions) were analyzed by real-time PCR. Relative levels of MAFA and MAFG DNA (relative to ACTB and GAPDH) were analyzed individually. The samples can be divided into at least two groups, copy-number gained and non-gained groups. The average value of non-gained group was normalized as “2”, and copy numbers of all samples were normalized accordingly.

DNase chromatin accessibility assay

For chromatin accessibility assay, cell nuclei were isolated from spheres, cia-MAF knockout spheres or control spheres, and then cell nuclei were digested with 1U/ml DNase I for 5 min at 37°C. After stopping the digestion, total DNA was extracted and measured by real-time PCR.

CRISPR affinity purification in situ of regulatory elements

CRISPR affinity purification in situ of regulatory elements (CAPTURE) assay was performed as described (32). Briefly, pEF1a-BirA-V5-neo (addgene no. 100548), pEF1a-FB-dCas9-puro (addgene no. 100547) and sgRNA targeting MAFF promoter were overexpressed in liver cancer cells for intracellular dCas9 biotinylation. After purification with Streptavidin, enrichment of cia-MAF at MAFF-P locus was detected through real-time PCR. MAFF-P knockout and control cells were also used for CAPTURE assay, and the enrichment of cia-MAF in MAFF promoter was examined by real-time PCR.

Tagged RNA affinity purification

Tagged RNA affinity purification (TRAP) assay was performed as described (56). cia-MAF conjugated with MS2 sequence and MS2 coat protein (MCP, cloned from Addgene no. 75384) conjugated GST plasmids were overexpressed in liver cancer cells.
cia-MAF binding proteins were enriched through GST pulldown assay, and detected by Western blot.

Immunohistochemistry

Immunohistochemistry assay was performed as described (57). Paraffin sections of liver cancer clinical samples, DEN/CCl4 mouse tumor tissues, and liver tumor tissue microarray, were treated with xylene and gradient ethanol, and then treated by 3% H2O2 for 15min to block endogenous peroxidase. Samples were then incubated with boiling antigen retrieval buffer for 30 min, and incubated with CD44, CD34, Ki67 and MAFF antibodies overnight at 4°C. After staining with HRP conjugated second antibodies, the samples were detected by DAB (3,3'-Diaminobenzidine tetrahydrochloride). The sections were then counterstained with hematoxylin for nuclear staining and dehydration in gradient alcohols and xylene. For CD44 and CD34 staining, citrate/sodium citrate buffer was used for antigen retrieval; for Ki67 and MAFF staining, Tris/EDTA buffer was used for antigen retrieval.

Nucleocytoplasmic separation

Spheres derived from primary HCC samples were treated with 0.5 ml resuspension buffer (10 mM HEPES, 1.5 mM MgCl2, 10 mM KCl, 0.2% N-octylglucoside, Protease inhibitor cocktail, RNase inhibitor, pH 7.9) for 10 min. The cytoplasmic fraction was in supernatant after homogenization and centrifugation (400 g × 15 min). The pellet was re-suspended in 0.2 ml PBS, 0.2 ml nuclear isolation buffer (40 mM Tris-HCl, 20 mM MgCl2, 4% Triton X-100, 1.28 M sucrose, pH 7.5) and 0.2 ml RNase-free H2O, followed by 20 min's incubation on ice to clean out the residual cytoplasmic faction. RNA was extracted from nuclear and cytoplasmic fractions using RNA extraction kit. In our experiment, 1 mg nuclear RNA and 1 mg cytoplasmic RNA were used, with the same final volume of nuclear and cytoplasmic cDNA (50 μl). Real-time PCR was performed using 1 μl nuclear cDNA or 1 μl cytoplasmic cDNA, with the same primers and ABI QuantStudio 5. The relative cia-MAF contents were calculated with the following formulae: nuclear ratio=2^{-ΔCt(nuclear)}/(2^{-ΔCt(nuclear)}+2^{-ΔCt(cytoplasmic)}); cytoplasmic ratio=2^{-ΔCt(cytoplasmic)}/(2^{-ΔCt(nuclear)}+2^{-ΔCt(cytoplasmic)}). All primers for real-time PCR were listed in Supplemental Table 3.
In situ hybridization

Digoxigenin-conjugated cia-MAF probes were designed according to protocols of Biosearch Technologies (https://www.biosearchtech.com/). The tumor tissue microarray was treated sequentially by xylene-xylene-100% ethanol -100% ethanol-90% ethanol-75% ethanol, incubated in 3% H₂O₂ for 15 min, and then hybridized with cia-MAF probes under non-denatured condition. All experiments were performed according to the protocol provided by Biosearch Technologies, and the sections were visualized with DAB, counterstained with hematoxylin, dehydrated and mounted. Finally, samples were observed with confocal microscope.

Western blot

Liver cancer cells, TICs and spheres are lysed with RIPA buffer (50 mM Tris-HCl [pH 7.4], 150 mM NaCl, 0.5% sodium deoxycholate, 0.1% SDS, 5 mM EDTA, 2 mM PMSF, 20 mg/ml aprotinin, 20 mg/ml leupeptin, 10 mg/ml pepstatin A, 150 mM benzamidine, and 1% Nonidet P-40) for 45 min on ice, centrifugalized, and the supernatants were collected for protein quantification with ELISA. Samples containing 20 μg proteins were loaded to 12% SDS-PAGE for electrophoresis, and then transferred to the nitrate cellulose membrane. After incubation with probed with corresponding primary antibodies and secondary antibodies, the protein levels were detected by ultra-sensitive enhanced chemiluminescent (ECL) substrate.

Chromatin immunoprecipitation

ChIP assays were performed according to the standard protocol (Uptate Biotechnology, Inc.). Spheres derived from primary or mouse liver cancer were digested with Trypsin/EDTA and treated with 1% formaldehyde for 10 minutes at 37°C, and then crushed with SDS lysis buffer for 10 minutes on ice, followed by ultrasonic to get 200-500bp DNA fragments (Bioruptor). The supernatants containing chromatin components were used for antibody binding. The samples were precleared with salmon sperm DNA/protein agarose beads for 1h, and then incubated with the P400, TIP60, RUVBL2, H3K4me3 and RNA polymerase II antibodies for ChIP assay. Then enrichments were analyzed by quantitative real-time PCR, and IgG enrichment served as controls. The enrichment of MAFF promoter was detected by real-time PCR.
Chromatin Isolation by RNA purification

For Chromatin Isolation by RNA purification (ChIRP) assay, spheres, *cia-MAF* knockout spheres and control spheres were cross-linked with 1% glutaraldehyde and lysed with lysis buffer, followed by sonication to get 200-500 bp DNA fragments (Bioruptor). Biotin labelled *cia-MAF* and control probes were added into cell lysates for 4 hours’ incubation at 37°C with shaking, and then digoxin antibody and Protein A/G were used for the enrichment of chromatin components. The enrichment of MAFF promoter was detected by real-time PCR.

RNA immunoprecipitation

WT, *cia-maf* KO and human spheres were lysed in RNase-free RIPA buffer (150 mM NaCl, 0.5% sodium deoxycholate, 0.1% SDS, 1% NP-40, 1 mM EDTA and 50 mM Tris, pH 8.0, supplemented with protease-inhibitor cocktail and RNase inhibitor), and then treated with ultrasonication. Samples were centrifuged and supernatants were collected for preclear with Protein A/G. P400 antibody was incubated with Protein A/G, and then added to sphere lysates for 4 hours’ incubation. Total RNA in eluate was extracted and *cia-MAF* enrichment was evaluated through real-time PCR. All primers for real-time PCR were listed in Supplemental Table 3.

Data viability

circRNA sequencing data of liver tumors and non-tumors have been deposited in the Gene Expression Omnibus (GEO) under accession code GSE78520. All raw data supporting the findings of this study are available from the corresponding author.

Statistics

Statistical analysis of the results was performed with Microsoft Excel 2010 and statistical graphing were done using GraphPad Prism, version 8.01 (GraphPad Software), using a one-tailed Student’s t test for comparison between 2 groups and 1-way ANOVA with Tukey’s post hoc test for comparison between multiple groups. All data represent the mean ± SEM; *P* values of less than 0.05 were considered to indicate a significant difference between groups. *P* < 0.05; **P** < 0.01; ***P* < 0.001. The statistical methods and details relevant to each experiment are described in the figure legends.

Study approval
All mice were housed in the animal facility at School of Life Sciences, Zhengzhou University. This study was approved by the ethics committee of Zhengzhou University (ZZUIRB2020-54 and ZZUIRB2020-55).

Author contributions:

Z.C. designed and performed TIC experiments, analyzed data and wrote the paper; T.L. performed RNA experiments and helped with mouse genotyping and harvesting. L.H and Z. F provided HCC samples and analyzed data; Z.W., Z.Y., Y.G. and W.H. performed experiments and analyzed data, P.Z. initiated the study, designed experiments, analyzed data and wrote the paper. Z.C., T.L., Z. F and P.Z. edited the manuscript.

Acknowledgments

This work was supported by Ministry of Science and Technology of China (2020YFA0803501), National Natural Science Foundation of China (31922024, 81872411, 31771638, 81921003, 31930036, and 92042302), Program for Innovative Talents of Science and Technology in Henan Province (18HASTIT042), Young Talent Support Project from Chinese Association of Science and Technology (YESS20170042), Science Foundation for Excellent Young Scholars in Henan (202300410358), Young Talent Support Project from Henan province (2018HYTP002). We thank the supporting grants from Zhengzhou University to Pingping Zhu, and the technical support from Modern Analysis and Computer Center of Zhengzhou University. We also thank Stallard Scientific Editing Company for their proofreading our manuscript.

References

Figure 1. cia-MAF is highly expressed in liver cancer and TICs. (A) In situ hybridization of cia-MAF in HCC tissue microarray containing 90 peri-tumor, 58 stage 1, 29 stage 2, and 3 stage 3 tumor tissues. Typical images were in the left panels and calculated intensities were in the right panel. Scale bars, 30 μm. The details of HCC tissue microarray were listed in Supplemental Table 4. (B) Violin plot showing cia-MAF intensities in HCC samples with (+) or without (-) relapse. Individual samples, medium levels, minimum, maximum, and quarter levels were shown. (C) Kaplan–Meier survival analysis of cia-MAFhigh and cia-MAFlow samples, which were grouped according to the average cia-MAF expression level. (D) Percentage distribution of CD44+ TICs in cia-MAFlow (left) and cia-MAFhigh (right) samples. (E) Co-expression of cia-MAF and liver TIC marker CD44 in 90 liver cancer tissues. (F) Northern blot of cia-MAF in CD44+ TICs (C) and CD44- non-TICs (N). 18 rRNA served as a loading control. Typical images were in the left panel and signal intensities were quantified with Image J (right). (G) Fluorescence in situ hybridization of cia-MAF in spheres and non-spheres, which were derived from primary HCC cells. Scale bars, 20 μm. (H) Fluorescence in situ hybridization of cia-Maf in clone #2 and clone #6, which were derived from YFP+ mouse liver cancer cells. Scale bars, 20 μm. *P < 0.05; **P < 0.05; ***P < 0.001. Significance was determined by one-tailed Student’s t test (A, B, F), log-rank test (C) and chi-square test (D). For all representative images, n=3 independent experiments were performed with similar results.
Figure 2. *cia-MAF* knockout impairs liver TIC self-renewal. (A) Realtime PCR (left) and Northern blot (right) analyses for *cia-MAF* knockout efficiency. circ KO, *cia-MAF* knockout. (B) CD44 FACS for TIC detection, using *cia-MAF* knockout and control cells. *n*=3 independent detection. (C) Sphere formation of *cia-MAF* knockout cells, with typical images in the left panels and sphere formation ratios in the right panel. Scale bars, 500 μm. (D) Tumor propagation of WT and *cia-MAF* knockout cells, which were subcutaneously injected into BALB/c nude mice. Tumor volumes were measured every three days. (E) 3 months' tumor initiation assay using gradient numbers of *cia-MAF* knockout and control cells. *n*=7 mice for each group and the ratios of tumor formation mice were shown. (F) Propagation of patient-derived xenografts after the indicated treatments, which were performed when xenograft volume reach about 400 mm³. In all panels, data are shown as mean ± s.d. *P* < 0.05; **P** < 0.01; ***P** < 0.001, by 1-way ANOVA. For all representative images, *n*=3 independent experiments were performed with similar results.
Figure 3. cia-maf knockout mice harbors impaired liver tumorigenesis and self-renewal capacities. (A) Schematic diagram of DEN/CCl4 liver tumorigenesis. WT and cia-maf KO mice were used. (B) Tumor numbers of WT and cia-maf KO mice at 32 weeks. \(n=14 \) mice were detected for each group. Data are shown as mean ± s.d. **\(P < 0.01 \), by one-tailed Student’s t test. (C) Typical images of CPS1, TBX3, GS1, TUNEL, F4/80 and Sirus Red staining in WT and cia-maf KO peri-tumor liver tissues, which were performed using DEN/CCl4 induced livers. Scale bars, 50 μm. (D) Typical images of CD34, CD44, Ki67, Ccnd2, TUNEL, F4/80 and Sirus Red staining in WT and cia-maf KO tumors. All samples were derived from DEN/CCl4 treated mice. Scale bars, 20 μm. (E) Sphere formation assay of WT and cia-maf KO TICs, which was sorted from WT and cia-maf KO tumors. Scale bars, 500 μm. (F) Fluorescence in situ hybridization for cia-maf expression and immunofluorescence for CD44 expression in WT and cia-maf KO spheres. Scale bars, 10 μm. (G) HrasG12V and shP53 plasmid, along with luciferase and SB transposase plasmid, were injected into cia-maf KO and littermate mice, and tumor propagation was measured via luciferase signals. For C, D, \(n=10 \) images were taken with similar results; For E, F, \(n=3 \) independent experiments were performed with similar results; For G, \(n=10 \) mice were used per group.
Figure 4. cia-MAF overexpression drives liver TIC self-renewal. (A) Real-time PCR analysis for cia-MAF overexpression. oeVec, overexpressing empty vector; oecia-MAF, overexpressing cia-MAF. (B) CD44 FACS for TIC detection using cia-MAF overexpressing and control cells. (C) Sphere formation assay of oeVec and oecia-MAF cells, with typical images in the left panels and sphere formation ratios in the right panel. n=5000 primary cells were used. Scale bars, 500 μm. (D) Transwell assay of oeVec and oecia-MAF cells, with typical images in the upper panels and invasive cell numbers in the lower panel. Scale bars, 70 μm. (E) Tumor initiation assay of gradient numbers of oeVec and oecia-MAF cells. n=7 mice were subcutaneously injected with gradient cells for 3 months’ tumor initiation. (F) Northern blot to confirm cia-maf overexpression in clones with low cia-maf expression. 18S rRNA served as a loading control. (G, H) Sphere formation (G) and tumor initiation (H) capacities of cia-mafstitute clones, cia-maflow clones and cia-maf overexpressing clones. 100 single cells were used for each clone. In all panels, data are shown as mean ± s.d. *P < 0.05; **P < 0.01; ***P < 0.001, by one-tailed Student’s t-test. For A-F, n=3 independent experiments were performed with similar results; For G, H, n=5 clones were examined for each group.
Figure 5. cia-MAF targets MAFF to initiate TIC self-renewal. (A) Heatmap of transcription factor (TF) expression levels in WT and cia-maf KO liver TICs, and the top 10 TFs with decreased expression in cia-maf KO liver TICs were listed in the right panel. For WT and cia-maf KO liver TICs, liver TICs from n=5 mice were pooled together for RNA-seq. WT littermates were used as controls. (B) Sphere formation of primary cells in which the indicated TFs were silenced individually. Scale bars, 500 μm. (C) Western blot to detect knockout efficiency using MAFF knockout and control cells. β-actin was a loading control. (D) CD44 FACS for liver TICs in MAFF knockout and control cells. Typical images were shown in the left panel and TIC ratios were shown in the right panel. (E) Sphere formation of MAFF knockout cells. Representative sphere photos were in the left panel and sphere formation ratios were in the right panel. 5000 cells were used per group. Scale bars, 500 μm. In all panels, data are shown as mean ± s.d. *P < 0.05; **P < 0.01; ***P < 0.001, by 1-way ANOVA. For B-E, n=3 independent experiments were performed with similar results.
Figure 6

A. Timeline showing the experimental protocol with DEN, CCl4, AAV, sgMaff, and HCC.

B. Graphs showing intensity ratios for Maff, CD44, CD133, Ki67, and β-actin.

C. Immunohistochemical images for CD34, CD44, and Ki67 with sgCtrl and sgMaff conditions.

D. Flowchart illustrating the FACS process for tumor and GFP+ HCC cell formation.

E. Bar charts comparing sphere number and tumor mice between sgCtrl and sgMaff conditions.

F. Fluorescent images showing CD44, Maff, CD44, and DAPI staining for sgCtrl and sgMaff conditions.
Figure 6. Maff is required for liver tumorigenesis and liver TIC self-renewal. (A) Schematic diagram of CRISPR/Cas9 in vivo knockout in liver cancer cells using AAV method. DEN and CCl4 were used to induce liver tumorigenesis. (B) Western blot to detect the expression levels of Maff and TIC markers in GFP+ cells, which were isolated from sgCtrl and sgMaff liver tumors at 32 week. **P < 0.01, by one-tailed Student's t-test. (C) CD34, CD44 and Ki67 immunohistochemistry in Maff knockout and control liver tumors. Scale bars, 20 μm. (D) CRISPR/Cas9 based construction of Maff knockout liver cancer cells, followed by sphere formation and tumor initiation. (E) Sphere formation (left) and tumor initiation (right) of Maff knockout and control cells. 100 single cells and six mice were used for each group in tumor initiation assay. Data are shown as mean ± s.d. *P < 0.05; **P < 0.001, by one-tailed Student's t-test. (F) CD44 immunofluorescence in Maff knockout and control spheres. Scale bars, 10 μm. For all representative images, n=3 independent experiments were performed with similar results.
Figure 7. cia-MAF interacts with TIP60 complex. (A) Silver staining of eluate sample from RNA pulldown assay, for which Biotin labeled cia-MAF probes and sphere cell lysate were used. (B) Western blot for the interaction between cia-MAF and P400, TIP60 and RUVBL2. (C) Western blot to detect the enrichment of TIP60 complex in eluate from TRAP assay, for which cia-MAF-MS2 and MCP-GST binding system was used. (D) Split GFP assay to detect the combination of cia-MAF and P400. The GFP signal was shown in bottom right. Scale bars, 10 μm. (E) Co-localization of cia-MAF and P400 in spheres. cia-MAF and P400 were visualized by fluorescence in situ hybridization and immunofluorescence, respectively. The gray values of P400 (red) and cia-MAF (green) signals along the white arrow (left) were in right. Scale bars, 10 μm. (F) Sphere formation (upper) and transwell (lower) assays of primary cells, in which WT cia-MAF, truncate cia-MAF or mutant cia-MAF were overexpressed. Scale bars, 500 μm for the upper panels and 70 μm for the lower panels. (G, H) CD44 FACS (G) and sphere formation (H) of liver cancer cells treated with TH1834 or CB-6644, two inhibitors of TIP60 complex. Scale bars, 500 μm. For all representative images, n=3 independent experiments were performed with similar results.
Figure 8. cia-MAF recruits TIP60 complex to MAFF promoter. (A) Real-time PCR to detect the enrichment of MAFF promoter in eluate from ChIP assay, for which P400, TIP60 and RUVBL2 antibodies and cia-MAF knockout spheres were used. *n* = 3 independent experiments. (B) Co-localization of MAFF promoter and TIP60 components (P400, TIP60 and RUVBL2) in cia-MAF knockout and control cells. *n* = 6 independent experiments. (C, D) Western blot to detect P400 in eluate from CRISPR affinity purification in situ of regulatory elements (CAPTURE) assay, for which cia-maf KO sphere (C) or cia-MAF KO spheres (D) were used. For C, WT littermates were used as controls. (E) Western blot for P400 in eluate from CAPTURE assay using cia-MAF overexpressing and control spheres. (F) Western blot for MAFF detection upon cia-MAF overexpression, which were performed in MAFF promoter knockout cells. (G, H) CD44 FACS and sphere formation upon cia-MAF overexpression, which were generated in WT and MAFF-P-KO cells. *n* = 3 independent experiments. In all panels, data are shown as mean ± s.d. *P* < 0.05; **P* < 0.01; ***P* < 0.001; ns, not significant. Significance was determined by 1-way ANOVA (A, B, D) or one-tailed Student’s t test (E, F, H). For D-F, typical images were in the left panel and signal intensities were quantified with Image J (right). For all representative images, *n* = 3 independent experiments were performed with similar results.
Figure 9. MAFF serves as a target for liver tumors without MAFA/MAFG CNA. (A) Western blot for MAFF expression in liver tumor (T) and peri-tumor (P) samples. Typical images were shown in the left panel and signal intensities were in the right panel. (B) Immunofluorescence of CD44 and MAFF in CD44+TICs and CD44- non-TICs. Scale bars, 10 μm. (C, D) Sphere formation (C) and transwell (D) detection of HCC primary cells, which were treated with MAFF ASO one week before detection. MAFF ASO responders (#1, #3, #4, #6, #8, #9 and #10) were labeled red. Scale bars, C, 500 μm; D, 70 μm. (E) Tumor volume and survival analyses of MAFF ASO treated primary cells. Patient-derived xenografts were treated with ASO when xenograft volume reach about 400 mm³ (upper panel), and Kaplan–Meier survival analysis of n=7 mice were shown (lower panel). (F, G) CD44 FACS detection (F) and immunohistochemistry (G) using MAFF ASO treated and control xenografts. Scale bars, 50 μm. In all panels, data are shown as mean ± s.d. *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant. Significance was determined by 1-way ANOVA (E, upper panel), log-rank test (E, lower panel) or one-tailed Student’s t test (A, C, D, F). For all representative images, n=3 independent experiments were performed with similar results.