Supplementary figures Mechanical stress-induced transmembrane signaling and integrated phenotypes of failing heart. The activation profiles of various signaling cascades and time-dependent changes in phenotypic features of heart failure are illustrated based on our previous studies (43) and unpublished observations. The lower panel shows the expression profiles of selected genes from publications in both human and animal studies (44-50). Figure 2 New therapeutic targets of heart failure in regulatory pathways of excitation-contraction coupling. Excitation-contraction coupling and its regulation by Gs-activating G protein-coupling receptor (GPCR) and A-kinase signaling. A series of genes have been subjected to target validation analysis via transgenic and somatic gene transfer studies with a variety of viral vector systems and protocols. 1. b2-adrenergic receptor (b2AR). b2AR transgenic (b2AR-TG) mice display a hypertrophic cardiomyopathy phenotype and do not rescue the phenotype of failing muscle-specific LIM-only protein knockout (MLPKO) mice (51). b2AR-TG mice fail to rescue the HCM phenotype of R403QaMHC-TG mice(52). Percutaneous or intramuscular Adeno/b2AR delivery results in enhanced contractility in normal rabbit or cardiomyopathic hamsters (53, 54). 2. bARK inhibitor (bARKct). bARKct-TG mice partially rescue cardiomyopathic phenotypes of MLPKO mice and R403QaMHC-TG mice (51-52). Adeno/bARKct improves contractility and delays heart failure development in post-myocardial infarction rabbits(55-56). 3. Adenylyl cyclase type VI (AC-typeVI). AC-typeVI-TG mice rescue heart failure in Gq-TG mice (57). Percutaneous Adeno/AC-typeVI delivery enhances cardiac contractility in normal pigs (58). 4. Phosphodiesterase. Several human clinical trials have confirmed that phosphodiesterase’s pharmacological inhibition improves cardiac function, although at the risk of decreased long-term survival; current clinical use is primarily confined to end-stage heart failure awaiting transplantation. 5. SERCA2: SERCA2-TG mice are hyperkinetic, whereas heterozygous null animals are hypokinetic (59-61). Adeno/SERCA2 gene delivery improves cardiac contractility and prognosis of postaortic banded rats (63, 63). SERCA1: SERCA1-TG mice are hyperkinetic (64). Adeno/SERCA1 has been used to support intramuscular delivery of Kv2.1 in normal guinea pig hearts (65). 6. Phospholamban (PLN). PLN-TG mice are hypokinetic, whereas knockout mice are hyperkinetic (66, 67). Adeno and AAV/mutant PLN suppress cardiomyopathic hamster heart failure development. 7. FKBP12.6: In vitro Adeno/FKBP12.6-transfected cardiomyocyte increases contractility (68). Parvalbumin: Adeno/parvalbumin intramuscular delivery enhances normal rat cardiac relaxation (69). GRK, GPCR kinase; ICa,L, L-type calcium channel (dihydropyridine receptor); RyR, ryanodine receptor; JP-2, junctophilin-2. Supplementary tables Supplementary references 1. Kamisago, M., et al. 2000. Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N. Engl. J. Med. 343:1688-1696. 2. Olson, T.M., Michels, V.V., Thibodeau, S.N., Tai, Y.S., and Keating, M.T. 1998. Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science. 280:750-752. 3. Gerull, B., et al. 2002. Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat. Genet. 30:201-204. 4. Xu, X., et al. 2002. Cardiomyopathy in zebrafish due to mutation in an alternatively spliced exon of titin. Nat. Genet. 30:205-209. 5. Arber, S., et al. 1997. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell. 88:393-403. 6. Pashmforoush, M., et al. 2001. Adult mice deficient in actinin-associated LIM-domain protein reveal a developmental pathway for right ventricular cardiomyopathy. Nat. Med. 7:591-597. 7. Zhou, Q., et al. 2001. Ablation of Cypher, a PDZ-LIM domain Z-line protein, causes a severe form of congenital myopathy. J. Cell Biol. 155:605-612. Towbin, J.A., et al. 1993. X-linked dilated cardiomyopathy. Molecular genetic evidence of linkage to the Duchenne muscular dystrophy (dystrophin) gene at the Xp21 locus. Circulation. 87:1854-1865. Muntoni, F., et al. 1993. Brief report: deletion of the dystrophin muscle-promoter region associated with X-linked dilated cardiomyopathy. N. Engl. J. Med. 329:921-925. 10. Melacini, P., et al. 1996. Myocardial involvement is very frequent among patients affected with subclinical Becker’s muscular dystrophy. Circulation. 94:3168-3175. 11. Grady, R.M., et al. 1997. Skeletal and cardiac myopathies in mice lacking utrophin and dystrophin: a model for Duchenne muscular dystrophy. Cell. 90:729-738. 12. Hack, A.A., et al. 1998. Gamma-sarcoglycan deficiency leads to muscle membrane defects and apoptosis independent of dystrophin. J. Cell Biol. 142:1279-1287. 13. Tsubata, S., et al. 2000. Mutations in the human delta-sarcoglycan gene in familial and sporadic dilated cardiomyopathy. J. Clin. Invest. 106:655-662. 14. Coral-Vazquez, R., et al. 1999. Disruption of the sarcoglycan-sarcospan complex in vascular smooth muscle: a novel mechanism for cardiomyopathy and muscular dystrophy. Cell. 98:465-474. 15. Okazaki, Y., et al. 1996. A genetic linkage map of the Syrian hamster and localization of cardiomyopathy locus on chromosome 9qa2.1-b1 using RLGS spot-mapping. Nat. Genet. 13:87-90. 16. Nigro, V., et al. 1997. Identification of the Syrian hamster cardiomyopathy gene. Hum. Mol. Genet. 6:601-607. 17. Sakamoto, A., et al. 1997. Both hypertrophic and dilated cardiomyopathies are caused by mutation of the same gene, delta-sarcoglycan, in hamster: an animal model of disrupted dystrophin-associated glycoprotein complex. Proc. Natl. Acad. Sci. USA. 94:13873-13878. 18. Ichida, F., et al. 2001. Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome. Circulation. 103:1256-1263. 19. Grady, R.M., et al. 1999. Role for alpha-dystrobrevin in the pathogenesis of dystrophin-dependent muscular dystrophies. Nat. Cell Biol. 1:215-220. 20. Maeda, M., Holder, E., Lowes, B., Valent, S., and Bies, R.D. 1997. Dilated cardiomyopathy associated with deficiency of the cytoskeletal protein metavinculin. Circulation. 95:17-20. 21. Olson, T.M., et al. 2002. Metavinculin mutations alter actin interaction in dilated cardiomyopathy. Circulation. 105:431-437. 22. Goldfarb, L.G., et al. 1998. Missense mutations in desmin associated with familial cardiac and skeletal myopathy. Nat. Genet. 19:402-403. 23. Li, D., Tapscoft, et al. 1999. Desmin mutation responsible for idiopathic dilated cardiomyopathy. Circulation. 100:461-464. 24. Milner, D.J., Weitzer, G., Tran, D., Bradley, A., and Capetanaki, Y. 1996. Disruption of muscle architecture and myocardial degeneration in mice lacking desmin. J. Cell Biol. 134:1255-1270. 25. Fatkin, D., et al. 1999. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N. Engl. J. Med. 341:1715-1724. 26. Nguyen-Tran, V.T., et al. 2000. A novel genetic pathway for sudden cardiac death via defects in the transition between ventricular and conduction system cell lineages. Cell. 102:671-682. 27. Schott, J.J., et al. 1998. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science. 281:108-111. 28. Benson, D.W., et al. 1999. Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J. Clin. Invest. 104:1567-1573. 29. Kasahara, H., et al. 2001. Progressive atrioventricular conduction defects and heart failure in mice expressing a mutant Csx/Nkx2.5 homeoprotein. J. Clin. Invest. 108:189-201. DOI:10.1172/JCI200112694. 30. Bruneau, B.G., et al. 2001. A murine model of Holt-Oram syndrome defines roles of the T-box transcription factor Tbx5 in cardiogenesis and disease. Cell. 106:709-721. 31. Gollob, M.H., et al. 2001. Identification of a gene responsible for familial Wolff-Parkinson-White syndrome. N. Engl. J. Med. 344:1823-1831. 32. Blair, E., et al. 2001. Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum. Mol. Gene.10:1215-1220. 33. Arad, M., et al. 2002. Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J. Clin. Invest. 109:357-362. DOI:10.1172/JCI200214571. 34. Gutstein, D.E., et al. 2001. Conduction slowing and sudden arrhythmic death in mice with cardiac- restricted inactivation of connexin43. Circ. Res. 88:333-339. 35. Wang, Q., et al. 1996. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat. Genet. 12:17-23. 36. Curran, M.E., et al. 1995. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell. 80:795-803. 37. Sanguinetti, M.C., et al. 1996. Coassembly of K(V)LQT1 and minK (IsK) proteins to form cardiac I(Ks) potassium channel. Nature. 384:80-83. 38. Splawski, I., Tristani-Firouzi, M., Lehmann, M.H., Sanguinetti, M.C., and Keating, M.T. 1997. Mutations in the hminK gene cause long QT syndrome and suppress IKs function. Nat. Genet. 17:338-340. 39. Abbott, G.W., et al. 1999. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell. 97:175-187. 40. Wang, Q., et al. 1995. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell. 80:805-811. 41. Priori, S.G., et al. 2001. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation. 103:196-200. 42. Kuo, H.C., et al. 2001. A defect in the Kv channel-interacting protein 2 (KChIP2) gene leads to a complete loss of I(to) and confers susceptibility to ventricular tachycardia. Cell. 107:801-813. 43. Yasukawa, H., et al. 2001. Suppressor of cytokine signaling-3 is a biomechanical stress-inducible gene that suppresses gp130-mediated cardiac myocyte hypertrophy and survival pathways. J. Clin. Invest. 108:1459-1467. DOI:10.1172/JCI200113939. 44. Hunter, J.J., Grace, A., and Chien, K.R. 1999. Molecular and cellular biology of cardiac hypertrophy and failure. In Molecular basis of cardiovascular disease. K.R. Chien, editor. W.B. Saunders Co. Philadelphia, Pennsylvania, USA. 211-250. 45. Hwang, D.M., et al. 1997. A genome-based resource for molecular cardiovascular medicine: toward a compendium of cardiovascular genes. Circulation. 96:4146-4203. 46. Yang, J., et al. 2000. Decreased SLIM1 expression and increased gelsolin expression in failing human hearts measured by high-density oligonucleotide arrays. Circulation. 102:3046-3052. 47. Friddle, C.J., Koga, T., Rubin, E.M., and Bristow, J. 2000. Expression profiling reveals distinct sets of genes altered during induction and regression of cardiac hypertrophy. Proc. Natl. Acad. Sci. USA. 97:6745-6750. 48. Redfern, C.H., et al. 2000. Conditional expression of a Gi-coupled receptor causes ventricular conduction delay and a lethal cardiomyopathy. Proc. Natl. Acad. Sci. USA. 97:4826-4831. 49. Lim, D.S., Roberts, R., and Marian, A.J. 2001. Expression profiling of cardiac genes in human hypertrophic cardiomyopathy: insight into the pathogenesis of phenotypes. J. Am. Coll. Cardiol. 38:1175-1180. 50. Johnatty, S.E., Dyck, J.R., Michael, L.H., Olson, E.N., and Abdellatif, M. 2000. Identification of genes regulated during mechanical load-induced cardiac hypertrophy. J. Mol. Cell. Cardiol. 32:805-815. 51. Rockman, H.A., et al. 1998. Expression of a beta-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice. Proc. Natl. Acad. Sci. USA. 95:7000-7005. 52. Freeman, K., et al. 2001. Alterations in cardiac adrenergic signaling and calcium cycling differentially affect the progression of cardiomyopathy. J. Clin. Invest. 107:967-974. 53. Shah, A.S., et al. 2000. Intracoronary adenovirus-mediated delivery and overexpression of the beta(2)-adrenergic receptor in the heart: prospects for molecular ventricular assistance. Circulation. 101:408-414. 54. Tomiyasu, K., et al. 2000. Direct intra-cardiomuscular transfer of beta2-adrenergic receptor gene augments cardiac output in cardiomyopathic hamsters. Gene Ther. 7:2087-2093. 55. White, D.C., et al. 2000. Preservation of myocardial beta-adrenergic receptor signaling delays the development of heart failure after myocardial infarction. Proc. Natl. Acad. Sci. USA. 97:5428-5433. 56. Shah, A.S., et al. 2001. In vivo ventricular gene delivery of a beta-adrenergic receptor kinase inhibitor to the failing heart reverses cardiac dysfunction. Circulation. 103:1311-1316. 57. Roth, D.M., et al. 1999. Cardiac-directed adenylyl cyclase expression improves heart function in murine cardiomyopathy. Circulation. 99:3099-3102. 58. Lai, N.C., et al. 2000. Intracoronary delivery of adenovirus encoding adenylyl cyclase VI increases left ventricular function and cAMP-generating capacity. Circulation. 102:2396-2401. 59. He, H., et al. 1997. Overexpression of the rat sarcoplasmic reticulum Ca2+ ATPase gene in the heart of transgenic mice accelerates calcium transients and cardiac relaxation. J. Clin. Invest. 100:380-389. 60. Baker, D.L., et al. 1998. Targeted overexpression of the sarcoplasmic reticulum Ca2+-ATPase increases cardiac contractility in transgenic mouse hearts. Circ. Res. 83:1205-1214. 61. Periasamy, M., et al. 1999. Impaired cardiac performance in heterozygous mice with a null mutation in the sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2 (SERCA2) gene. J. Biol. Chem. 274:2556-2562. 62. Miyamoto, M.I., et al. 2000. Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc. Natl. Acad. Sci. USA. 97:793-798. 63. del Monte, F., et al. 2001. Improvement in survival and cardiac metabolism after gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase in a rat model of heart failure. Circulation. 104:1424-1429. 64. Loukianov, E., et al. 1998. Enhanced myocardial contractility and increased Ca2+ transport function in transgenic hearts expressing the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+-ATPase. Circ. Res. 83:889-897. 65. Ennis, I.L., Li, R.A., Murphy, A.M., Marbán, E., and Nuss, H.B. 2002. Dual gene therapy with SERCA1 and Kir2.1 abbreviates excitation without suppressing contractility. J. Clin. Invest. 109:393-400. DOI:10.1172/JCI200213359. 66. Luo, W., et al. 1994. Targeted ablation of the phospholamban gene is associated with markedly enhanced myocardial contractility and loss of beta-agonist stimulation. Circ. Res. 75:401-409. 67. Kadambi, V.J., et al. 1996. Cardiac-specific overexpression of phospholamban alters calcium kinetics and resultant cardiomyocyte mechanics in transgenic mice. J. Clin. Invest. 97:533-539. 68. Prestle, J., et al. 2001. Overexpression of FK506-binding protein FKBP12.6 in cardiomyocytes reduces ryanodine receptor-mediated Ca(2+) leak from the sarcoplasmic reticulum and increases contractility. Circ. Res. 88:188-194. 69. Szatkowski, M.L., et al. 2001. In vivo acceleration of heart relaxation performance by parvalbumin gene delivery. J. Clin. Invest. 107:191-198.
Mixed signals in heart failure: cancer rules
Masahiko Hoshijima and Kenneth R. Chien