IFNs and Stats in innate immunity to microorganisms

Thomas Decker, Silvia Stockinger, Marina Karaghiosoff, Mathias Müller, and Pavel Kovarik

Supplementary references

Reviewed articles:

Medzhitov, R., and Janeway, C.A., Jr. 1997. Innate immunity: the virtues of a nonclonal system of recognition. Cell. 91:295-298.

Darnell, J.E., Jr., Kerr, I.M., and Stark, G.R. 1994. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 264:1415-1421.

Stark, G.R., Kerr, I.M., Williams, B.R., Silverman, R.H., and Schreiber, R.D. 1998. How cells respond to interferons. Annu. Rev. Biochem. 67:227-264.

Taniguchi, T., Ogasawara, K., Takaoka, A., and Tanaka, N. 2001. IRF family of transcription factors as regulators of host defense. Annu. Rev. Immunol. 19:623-655.

Biron, C.A. 2001. Interferons alpha and beta as immune regulators: a new look. Immunity. 14:661-664.

Billiau, A., Heremans, H., Vermeire, K., and Matthys, P. 1998. Immunomodulatory properties of interferon-gamma. An update. Ann. NY Acad. Sci. 856:22-32.

Jouanguy, E., et al. 1999. IL-12 and IFN-gamma in host defense against mycobacteria and salmonella in mice and men. Curr. Opin. Immunol. 11:346-351.

Rescigno, M., and Borrow, P. 2001. The host-pathogen interaction: new themes from dendritic cell biology. Cell. 106:267-270.

Original articles:

Isaacs, A., and Lindenmann, J. 1957. Virus interference. I. The interferon. Proc. R. Soc. Lond. Ser. B. 147:258-267.

Sato, M., et al. 2000. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity. 13:539-548.

Horvath, C.M., and Darnell, J.E., Jr. 1996. The antiviral state induced by alpha interferon and gamma interferon requires transcriptionally active Stat1 protein. J. Virol. 70:647-650.

Munder, M., Mallo, M., Eichmann, K., and Modolell, M. 1998. Murine macrophages secrete interferon gamma upon combined stimulation with interleukin (IL)-12 and IL-18: a novel pathway of autocrine macrophage activation. J. Exp. Med. 187:2103-2108.

Stober, D., Schirmbeck, R., and Reimann, J. 2001. IL-12/IL-18-dependent IFN-gamma release by murine dendritic cells. J. Immunol. 167:957-965.

Ramana, C.V., et al. 2001. Stat1-independent regulation of gene expression in response to IFN- gamma. Proc. Natl. Acad. Sci. USA. 98:6674-6679.

Gil, M.P., et al. 2001. Biologic consequences of Stat1-independent IFN signaling. Proc. Natl. Acad. Sci. USA. 98:6680-6685.

Matsumoto, M., et al. 1999. Activation of the transcription factor ISGF3 by interferon-gamma. Biol. Chem. 380:699-703.

Haller, O., Acklin, M., and Staeheli, P. 1986. Genetic resistance to influenza virus in wild mice. Curr. Top. Microbiol. Immunol. 127:331-337.

van den Broek, M.F., Muller, U., Huang, S., Aguet, M., and Zinkernagel, R.M. 1995. Antiviral defense in mice lacking both alpha/beta and gamma interferon receptors. J. Virol. 69:4792-4796.

Presti, R.M., Popkin, D.L., Connick, M., Paetzold, S., and Virgin, H.W., IV. 2001. Novel cell type-specific antiviral mechanism of interferon gamma action in macrophages. J. Exp. Med. 193:483-496.

Lee, S.B., and Esteban, M. 1994. The interferon-induced double-stranded RNA-activated protein kinase induces apoptosis. Virology. 199:491-496.

Balachandran, S., et al. 1998. Activation of the dsRNA-dependent protein kinase, PKR, induces apoptosis through FADD-mediated death signaling. EMBO J. 17:6888-6902.

Balachandran, S., et al. 2000. Alpha/beta interferons potentiate virus-induced apoptosis through activation of the FADD/Caspase-8 death signaling pathway. J. Virol. 74:1513-1523.

Gao, J.J., et al. 1998. Autocrine/paracrine IFN-alpha/beta mediates the lipopolysaccharide-induced activation of transcription factor Stat1alpha in mouse macrophages: pivotal role of Stat1alpha in induction of the inducible nitric oxide synthase gene. J. Immunol. 161:4803-4810.

Katayama, Y., Hirano, A., and Wong, T.C. 2000. Human receptor for measles virus (CD46) enhances nitric oxide production and restricts virus replication in mouse macrophages by modulating production of alpha/beta interferon. J. Virol. 74:1252-1257.

Chon, S.Y., Hassanain, H.H., and Gupta, S.L. 1996. Cooperative role of interferon regulatory factor 1 and p91 (STAT1) response elements in interferon-gamma-inducible expression of human indoleamine 2,3-dioxygenase gene. J. Biol. Chem. 271:17247-17252.

Murphy, T.L., Cleveland, M.G., Kulesza, P., Magram, J., and Murphy, K.M. 1995. Regulation of interleukin 12 p40 expression through an NF-kappa B half-site. Mol. Cell. Biol. 15:5258-5267.

Hayes, M.P., Wang, J., and Norcross, M.A. 1995. Regulation of interleukin-12 expression in human monocytes: selective priming by interferon-gamma of lipopolysaccharide-inducible p35 and p40 genes. Blood. 86:646-650.

Flesch, I.E., et al. 1995. Early interleukin 12 production by macrophages in response to mycobacterial infection depends on interferon gamma and tumor necrosis factor alpha. J. Exp. Med. 181:1615-1621.

Koerner, T.J., Adams, D.O., and Hamilton, T.A. 1987. Regulation of tumor necrosis factor (TNF) expression: interferon-gamma enhances the accumulation of mRNA for TNF induced by lipopolysaccharide in murine peritoneal macrophages. Cell. Immunol. 109:437-443.

Burchett, S.K., et al. 1988. Regulation of tumor necrosis factor/cachectin and IL-1 secretion in human mononuclear phagocytes. J. Immunol. 140:3473-3481.

Hayes, M.P., Freeman, S.L., and Donnelly, R.P. 1995. IFN-gamma priming of monocytes enhances LPS-induced TNF production by augmenting both transcription and MRNA stability. Cytokine. 7:427-435.

Kamijo, R., et al. 1993. Mice that lack the interferon-gamma receptor have profoundly altered responses to infection with Bacillus Calmette-Guerin and subsequent challenge with lipopolysaccharide. J. Exp. Med. 178:1435-1440.

Hess, J., Ladel, C., Miko, D., and Kaufmann, S.H. 1996. Salmonella typhimurium aroA- infection in gene-targeted immunodeficient mice: major role of CD4+ TCR-alpha beta cells and IFN-gamma in bacterial clearance independent of intracellular location. J. Immunol. 156:3321-3326.

Swihart, K., et al. 1995. Mice from a genetically resistant background lacking the interferon gamma receptor are susceptible to infection with Leishmania major but mount a polarized T helper cell 1-type CD4+ T cell response. J. Exp. Med. 181:961-971.

Wang, Z.E., Reiner, S.L., Zheng, S., Dalton, D.K., and Locksley, R.M. 1994. CD4+ effector cells default to the Th2 pathway in interferon gamma-deficient mice infected with Leishmania major. J. Exp. Med. 179:1367-1371.

Newport, M.J., et al. 1996. A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infection. N. Engl. J. Med. 335:1941-1949.

Jouanguy, E., et al. 1996. Interferon-gamma-receptor deficiency in an infant with fatal bacille Calmette-Guerin infection. N. Engl. J. Med. 335:1956-1961.

Jouanguy, E., et al. 1997. Partial interferon-gamma receptor 1 deficiency in a child with tuberculoid bacillus Calmette-Guerin infection and a sibling with clinical tuberculosis. J. Clin. Invest. 100:2658-2664.

Jouanguy, E., et al. 2000. In a novel form of IFN-gamma receptor 1 deficiency, cell surface receptors fail to bind IFN-gamma. J. Clin. Invest. 105:1429-1436.

Doffinger, R., et al. 2000. Partial interferon-gamma receptor signaling chain deficiency in a patient with bacille Calmette-Guerin and Mycobacterium abscessus infection. J. Infect. Dis. 181:379-384.

Dorman, S.E., and Holland, S.M. 1998. Mutation in the signal-transducing chain of the interferon-gamma receptor and susceptibility to mycobacterial infection. J. Clin. Invest. 101:2364-2369.

Kovarik, P., Stoiber, D., Novy, M., and Decker, T. 1998. Stat1 combines signals derived from IFN-gamma and LPS receptors during macrophage activation. EMBO J. 17:3660-3668.

Kovarik, P., et al. 1999. Stress-induced phosphorylation of STAT1 at Ser727 requires p38 mitogen-activated protein kinase whereas IFN-gamma uses a different signaling pathway. Proc. Natl. Acad. Sci. USA. 96:13956-13961.

Alexopoulou, L., Holt, A.C., Medzhitov, R., and Flavell, R.A. 2001. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 413:732-738.

Hemmi, H., et al. 2000. A Toll-like receptor recognizes bacterial DNA. Nature. 408:740-745.