Inflammatory cytokines TNF-α and IL-17 enhance the efficacy of cystic fibrosis transmembrane conductance regulator modulators

Tayyab Rehman, … , Pradeep K. Singh, Michael J. Welsh

J Clin Invest. 2021;131(16):e150398. https://doi.org/10.1172/JCI150398.

Graphical abstract

Find the latest version:

https://jci.me/150398/pdf
Inflammatory cytokines TNF-α and IL-17 enhance the efficacy of cystic fibrosis transmembrane conductance regulator modulators

Tayyab Rehman,1 Philip H. Karp,1,2 Ping Tan,1 Brian J. Goodell,1 Alejandro A. Pezzulo,1 Andrew L. Thurman,1 Ian M. Thornell,1 Samantha L. Durfey,1 Michael E. Duffey,4 David A. Stoltz,1,5 Edward F. McKone,6 Pradeep K. Singh,3 and Michael J. Welsh1,2,5

1Department of Internal Medicine and Pappajohn Biomedical Institute, Roy J. and Lucille A. Carver College of Medicine and 2Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa, USA. 3Departments of Medicine and Microbiology, University of Washington, Seattle, Washington, USA. 4Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA. 5Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA. 6National Referral Centre for Adult Cystic Fibrosis, St. Vincent’s University Hospital and University College Dublin School of Medicine, Dublin, Ireland.

Introduction

Cystic fibrosis (CF) is the most common life-shortening inherited disorder among White individuals (1). CF is caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR), an apical membrane anion channel in human airway epithelia (2). The physiologically relevant CFTR-permeable anions are Cl– and HCO3– (3, 4). Cl– secretion drives transepithelial water movement and regulates the volume of the airway surface liquid (ASL). HCO3– secretion, on the other hand, controls the acid-base balance of the ASL. Loss of CFTR-mediated HCO3– secretion leaves H+ secretion unbalanced and lowers the pH of the ASL (pHASL), impairing at least two respiratory host defenses (5–9). The abnormally decreased pHASL alters the biophysical properties of mucus and thus disrupts mucociliary transport. The acidic pHASL also impairs antimicrobial factor activity against inhaled pathogens. These host defense defects manifest clinically as chronic progressive airway disease with frequent exacerbations and reduced survival (10). The abnormal acidification of the ASL thus links the molecular defect in CF with the clinical disease phenotype (11–13).

In vivo studies in humans and pigs have shown that CF pHASL is abnormally acidic soon after birth (5, 14, 15). This abnormality is expected given the loss of CFTR-mediated HCO3– secretion. However, a few months after birth, pHASL in individuals with CF increases to match the pHASL in non-CF individuals (14–16). This latter observation is puzzling because CFTR activity does not return with time. We considered that inflammation might increase CF pHASL with time. CF airways lack inflammation in the newborn period but quickly develop inflammation within weeks to months after birth (17–19). Previous reports suggest that inflammatory cytokines increase HCO3– secretion in CF airways. Thus, they explain earlier observations that ASL pH increases after birth and indicate that, for similar levels of inflammation, the pH of CF ASL is abnormally acidic. These results also suggest that a non-cell-autonomous mechanism, airway inflammation, is an important determinant of the response to CFTR modulators.

Without cystic fibrosis transmembrane conductance regulator–mediated (CFTR-mediated) HCO3– secretion, airway epithelia of newborns with cystic fibrosis (CF) produce an abnormally acidic airway surface liquid (ASL), and the decreased pH impairs respiratory host defenses. However, within a few months of birth, ASL pH increases to match that in non-CF airways. Although the physiological basis for the increase is unknown, this time course matches the development of inflammation in CF airways. To learn whether inflammation alters CF ASL pH, we treated CF epithelia with TNF-α and IL-17 (TNF-α+IL-17), 2 inflammatory cytokines that are elevated in CF airways. TNF-α+IL-17 markedly increased ASL pH by upregulating pendrin, an apical Cl–/HCO3– exchanger. Moreover, when CF epithelia were exposed to TNF-α+IL-17, clinically approved CFTR modulators further alkalinized ASL pH. These results are consistent with earlier observations that ASL pH increases after birth and indicate that, for similar levels of inflammation, the pH of CF ASL is abnormally acidic. These results also suggest that a non-cell-autonomous mechanism, airway inflammation, is an important determinant of the response to CFTR modulators.

References...

Conflict of Interest: The authors have declared that no conflict of interest exists.
Copyright: © 2021, American Society for Clinical Investigation.
Submitted: April 12, 2021; Accepted: June 22, 2021; Published: August 16, 2021.
predicted that, even in the absence of CFTR, an increase in pendrin would increase CF pH$_{ASL}$.

The second considered hypothesis is that restoring CFTR function in inflamed CF epithelia will further increase pH$_{ASL}$. This hypothesis is in part based on the notion that directly comparing pH$_{ASL}$ in inflamed CF epithelia to pH$_{ASL}$ in noninflamed, non-CF epithelia may not be appropriate; that is, two variables are involved: the presence or absence of CFTR and the presence or absence of inflammation. Finding that pH$_{ASL}$ further alkalinizes when CFTR activity increases would be consistent with the observation that both CFTR and non-CFTR HCO$_3^-$ secretion mechanisms, perhaps pendrin, contribute to the increased pH$_{ASL}$. The availability of FDA-approved drugs that modify CFTR function (CFTR modulators) allows us to test this hypothesis. CFTR modulators include ivacaftor, which increases CFTR open-state probability and can be used to increase function of CFTR-G551D and CFTR-R117H, and a triple drug combination that includes eluxacafort and tezacaftor, which enhance CFTR-ΔF508 processing, and ivacaftor to increase the open-state probability of the channels that reach the cell surface (31, 32).

Results

TNF-α+IL-17 alkalinize CF ASL. Because TNF-α+IL-17 altered ion transport in non-CF epithelia (30), we investigated their effect on pH$_{ASL}$ in CF. We used the pH-sensitive indicator SNARF-1 conjugated to 70 kD dextran and measured pH ASL under physiologic conditions (25 mM HCO$_3^-$/5% CO$_2$ and 37°C). Consistent with our earlier observations (30), applying TNF-α (10 ng/ml) and IL-17 (20 ng/ml) for 48 hours increased pH$_{ASL}$ in non-CF epithelia (Figure 1A). As previously reported (11), pH$_{ASL}$ was lower in CF epithelia. However, TNF-α+IL-17 increased CF pH$_{ASL}$, albeit to a lower level than in non-CF epithelia. Substituting HEPES for HCO$_3^-$/CO$_2$ prevented CF ASL alkalinization (Figure 1B). These results indicate that CF pH$_{ASL}$ is relatively acidic under basal conditions but alkalinizes with TNF-α+IL-17 by increasing HCO$_3^-$ secretion. They also suggest that for similar exposures to TNF-α+IL-17, CF ASL remains abnormally acidic.

Combined TNF-α+IL-17 increase CF pH$_{ASL}$ in a time-dependent, durable, and reversible manner. We focused on the response to TNF-α+IL-17 because both cytokines are elevated in CF airways (26, 28). Individually, TNF-α and IL-17 applied for 24 hours increased CF pH$_{ASL}$, albeit modestly compared with the combination TNF-α+IL-17 (Figure 2A). This result is consistent with previous reports of TNF-α and IL-17 synergy (26). We also tested the effect of acute versus chronic TNF-α+IL-17. With acute treatment, CF pH$_{ASL}$ did not change at 4 hours, but markedly increased at 24 hours (Figure 2B). With chronic TNF-α+IL-17, pH$_{ASL}$ peaked by day 2 and persisted up to day 7 (Figure 2C). Because cytokines can produce lasting
The results are displayed as a volcano plot (Figure 3A). At baseline, few transcripts differed between the CF and non-CF epithelia (Supplemental Table 1; supplemental material available online with this article; https://doi.org/10.1172/JCI150398DS1). Of note, airway-relevant acid-base transporters (e.g., CFTR, ATP12A) were not differentially expressed genes.

To assess CFTR dependence of inflammatory pathways, we compared responses to TNF-α+IL-17. In both CF and non-CF epithelia, TNF-α+IL-17 had a robust effect and altered the expression of hundreds of genes (Figure 3, B and C). After testing for the interaction between genotypes and treatment effects, the CF response was highly similar to the non-CF response (Figure 3D). The vast majority of transcripts clustered close to the line of identity, indicating relatively small or no differences attributable to genotypes. Three transcripts met criteria for differential response in CF versus non-CF: CYP1A1, LINC00330, and MMP1. However, previous literature does not specify a role for these transcripts in acid-base homeostasis. Overall, these results suggest that CF and non-CF responses to TNF-α+IL-17 are highly similar when measured at transcriptional level.

Calcium-activated Cl− channels are not involved in CF ASL alkalinization. The TNF-α+IL-17–induced response required HCO3−, and CF epithelia lack a functional CFTR. Previous reports indicate that calcium-activated Cl− channels (CaCCs) also conduct HCO3− (35, 36). CaCCs include anoctamins (ANO1 and ANO2), bestrophins (BEST1–BEST4), and chloride channel accessory proteins (CLCA1–CLCA4; ref. 37). In RNA-Seq studies, CaCC-related genes showed no clear change with TNF-α+IL-17 (Figure 4A). To test for electrogenic anion secretion mediated by CaCCs, we mounted epithelia in Ussing chambers with symmetric Krebs-HCO3− solution and recorded short-circuit current (Isc; Figure 4, B and C). We inhibited ENaC with amiloride and noted similar ΔIsc in vehicle and TNF-α+IL-17–treated epithelia. Next, we added uridine triphosphate to activate CaCCs, followed by 4,4′-diisothiocyanato-2,2′-stilbenedisulfonic acid (DIDS) to inhibit CaCCs. We observed modest responses to these agents; however, ΔIsc was not altered in epithelia treated with TNF-α+IL-17. To further assess the role of CaCCs in the pHASL response, we applied DIDS to the apical side and measured pHASL 2 hours later. Apical DIDS did not alter pHASL in either control or TNF-α+IL-17–treated epithelia (Figure 4D). We concluded that CaCCs were not the source of TNF-α+IL-17–mediated CF ASL alkalinization.

changes, for example, epigenetic modifications or changes in cell types, we asked whether TNF-α+IL-17–induced alkalinization was reversible. We exposed CF epithelia to TNF-α+IL-17 for 7 days, stopped treatment, and measured pHASL 7 days later. Withdrawal of cytokines allowed pHASL to return to control levels, whereas continued exposure maintained alkalinization up to 14 days. These results indicate that TNF-α and IL-17 synergistically increase pHASL, and this response is time-dependent, long-lasting, and reversible.

TNF-α+IL-17 induce profound yet highly similar transcriptomic changes in CF and non-CF epithelia. Some previous reports have proposed that CFTR loss may alter the responses evoked by inflammatory stimuli (33, 34). To further evaluate this possibility, we compared the TNF-α+IL-17–induced response between CF and non-CF epithelia. We performed RNA-Seq and studied differential gene expression, defined as log fold change equal to or greater than 2 and a false discovery rate of less than 0.05. The
defect can be modulated with a triple combination of drugs (elexacaftor, tezacaftor, and ivacaftor; ref. 41). Because airway inflammation is ubiquitous in individuals with CF who take modulators, we studied pH_{ASL} in CFTR-ΔF508 epithelia exposed to the triple combination and TNF-α+IL-17. In TNF-α+IL-17–treated epithelia with an already elevated pH_{ASL}, the triple combination further increased pH_{ASL} (Figure 6A).

The CFTR-ΔF508 allele is detected in individuals with CF as either homozygous (ΔF508/ΔF508) or compound heterozygous (ΔF508/other) genotypes. In clinical studies, both groups derived similar improvements (increased lung function, reduced pulmonary exacerbations, and reduced sweat [Cl−]) with the triple combination (41). We predicted that this might be reflected in pH_{ASL} responses. With the triple combination, pH_{ASL} did not vary between ΔF508/ΔF508 and ΔF508/other epithelia (Figure 6B).

We performed several studies to understand how TNF-α+IL-17 increase the pH_{ASL} response to CFTR modulators. CFTR mediates transepithelial electroneutral HCO₃⁻ secretion, which can be assayed in Ussing chambers by measuring responses to interventions that increase or inhibit CFTR activity. We mounted epithelia in Ussing chambers with symmetric Krebs-HCO₃⁻ solution and recorded I_{SC} and transepithelial conductance (G_{t}). We inhibited ENaCs with amiloride and CaCCs with DIDS, thereby primarily isolating changes in I_{SC} and G_{t} to CFTR. We added forskolin to activate CFTR, followed by CFTR_{inh}-172 to inhibit CFTR, and analyzed ΔI_{SC} and ΔG_{t} as measures of CFTR activity (Figure 7, A–C). Without modulators, TNF-α+IL-17 modestly increased ΔI_{SC}-CFTR but not ΔG_{t}-CFTR. The triple combination significantly increased ΔI_{SC}-CFTR and ΔG_{t}-CFTR in vehicle-treated controls as well as TNF-α+IL-17–treated epithelia. Remarkably, both measures of CFTR activity were 4 times larger in the presence of TNF-α+IL-17. These results suggested that TNF-α+IL-17 increased the amount of CFTR or its activity. Consistent with an increase in CFTR expression, TNF-α+IL-17 increased CFTR mRNA by 3.5-fold (Figure 7D) and CFTR protein by 2-fold (Figure 7, E and F).

Overall, these results indicated that TNF-α+IL-17 increased the CF epithelial response to CFTR modulators by increasing CFTR amount, biosynthesis, and function.

TNF-α+IL-17 increase CFTR activity in G551D CF epithelia. AF508 is a class II mutation that produces a trafficking defect. As a result, very little to no functional CFTR reaches the apical membrane (1). In contrast, a class III mutation (e.g., G551D) produces a gating defect and results in a channel with reduced open state probability. We asked whether TNF-α+IL-17 enhanced CFTR-G551D activity. This is relevant because (a) G551D is the third-most common disease-causing mutation and it produces severe airway disease (42); (b) ivacaftor restores anion secretion and has been in clinical use for several years (43, 44); (c) patients with G551D have substantial airway inflammation, even after long-term ivacaftor use (45–47); (d) as opposed to correctors (elexacaftor, tezacaftor, and ivacaftor; ref. 41). Therefore, we hypothesized that TNF-α+IL-17 would enhance CFTR-G551D activity.

To study the role of pendrin, we performed siRNA-mediated knockdown (Figure 5, D and E). Though no effect was observed under control conditions, pendrin knockdown reduced the already elevated pH_{ASL} in TNF-α+IL-17–treated epithelia. These data suggest that pendrin alkalines CF ASL and might be particularly relevant to inflamed CF airways.

A triple combination of CFTR modulators further increases pH_{ASL} in TNF-α+IL-17–treated CF epithelia. CFTR-ΔF508 is the most common disease-causing CFTR mutation (1). It results in deletion of a single phenylalanine at position 508 and produces a misfolded protein that is prematurely degraded. This
open-circuit conditions at the air-liquid interface. Applied for 1 hour, the combination of forskolin and ivacaftor further alkalinized ASL in TNF-α+IL-17-treated epithelia (Figure 8D). These results indicate that TNF-α+IL-17 enhancement of modulator efficacy is not specific to a particular class of mutations or modulators.

However, there were some differences in the response to TNF-α+IL-17 in CFTR-G551D and CFTR-ΔF508 epithelia. In the CFTR-ΔF508 epithelia, TNF-α+IL-17 did not alter basal Cl− and HCO3− current after amiloride, but the response to forskolin, the response to ivacaftor, and the total Cl− and HCO3− current were increased consistent with increased CFTR production and acute activation by forskolin and ivacaftor. In CFTR-ΔF508 epithelia, TNF-α+IL-17 increased basal Cl− and HCO3− current after amiloride and total Cl− and HCO3− current, but the response to forskolin was small. These results suggest that, in addition to increasing CFTR production, these inflammatory cytokines may have complex effects on CFTR biology. This is consistent with previous studies reporting that airway inflammation increased CFTR-ΔF508 biosynthesis and function (50, 51). Enhancing CFTR-ΔF508 biosynthesis requires time, and it is possible that the 48-hour treatment with the triple combination might also have contributed to differences between CFTR-G551D and CFTR-ΔF508 epithelia studied in Ussing chambers.

Airway inflammatory markers correlate with ivacaftor-induced lung function improvements. Our in vitro studies indicated that CFTR modulators may have enhanced efficacy in inflamed CF airways. However, in vivo response may differ due to additional factors, including infection, airway remodeling, and drug biodistribution. As an indirect test of the effect of modulators in inflamed airways, we asked if markers of airway inflammation would correlate with modulator-induced early lung function improvements. We analyzed data from an earlier clinical trial of a cohort of individuals with at least 1 G551D or R117H allele, i.e., mutations amenable to ivacaftor potentiation (15, 45, 52, 53). Just before beginning ivacaftor, all individuals had inflammatory markers, IL-1β, IL-8, and neutrophil elastase, measured in sputum. Lung function was assessed at baseline and at day 2 after starting ivacaftor, a time when the effect of any modulator-induced changes in infection and inflammation would be minimal. Supplemental Table 2 shows baseline clinical characteristics of the study participants. We found a positive correlation between individual markers, IL-1, IL-8, and neutrophil elastase, measured in sputum, and lung function improvement, measured as % ΔppFEV1/ ppFEV1 where ppFEV1 is the percentage predicted forced expiratory volume in 1 second (Figure 9A). As for individual markers, we noted significant positive correlations for
on CF pH ASL. These cytokines induce HCO$_3^-$ secretion in cultured CF airway epithelia. Likewise, in neonates tested before the results of genetic tests were known, and, thus, presumably before substantial airway inflammation, pH$_{ASL}$ was abnormally acidic in CF (14). Studies in newborn CF pigs also revealed an abnormally acidic pH$_{ASL}$ (5). However, inflammatory cytokines modified pH$_{ASL}$ in cultured CF airway epithelia: TNF-α+IL-17 increased pH$_{ASL}$ by increasing pendrin-mediated HCO$_3^-$ secretion. Concordantly, in vivo studies of CF in 3-month-old babies, older children, and adults showed that pH$_{ASL}$ had increased so that it no longer differed from that in non-CF controls. These results predicted that if CFTR activity were introduced to inflamed CF epithelia, their pH$_{ASL}$ would further increase. The use of CFTR modulators allowed us to test that prediction, and CFTR modulators increased pH$_{ASL}$ even further in CF epithelia treated with TNF-α+IL-17. These results help explain earlier observations and suggest that for similar levels of inflammation CF pH$_{ASL}$ is abnormally low.

Enhancement of CFTR modulator efficacy by 2 cytokines known to be elevated in CF airways suggests that inflammation might have a profound effect in vivo. This prediction is supported by results that showed a significant positive correlation between baseline inflammatory markers and ivacaftor-induced improvements in lung function. Previous work has sought to uncover predictors of response to modulators and therapeutic outcomes (31, 55). In several studies, population-level effects are obvious but are difficult to reconcile with individual-level variability (55–58). Specifically, why some patients derive greater benefit from modulators than others is not known. We speculate that airway inflammation might be a key determinant. To advance personalized CFTR modulation, it may be relevant to study the airway inflammatory milieu and its interactions with approved modulators.

This study has limitations. First, we studied the response to 2 cytokines relevant to CF-like inflammation. However, inflammation is a complex, heterogeneous process (59), and other mediators may modify HCO$_3^-$ secretion and modulator responses differently. For instance, TGF-β may reduce CFTR expression (61, 62). Both inflammation and infection persist despite long-term modulator therapy, and both represent suitable targets to improve CF outcomes. Third, we studied acute improvements in lung function with ivacaftor, as most of the improvement is early and is followed by stabilization of lung function. With chronic treatment, airway inflammatory markers either remain stable (46, 47) or decline but remain abnormally elevated (45). Future studies may define long-term relationships between airway inflammation and the response to modulators.

This study has several implications for in vitro and in vivo studies. First, sweat [Cl⁻] is routinely employed as a CFTR biomarker in translational studies and clinical care. In previ-
The inflammatory milieu in CF airways regulates pH ASL and increases the response to CFTR modulators.

Methods

Cell culture. Primary cultures of differentiated airway epithelia were obtained without passage from multiple human donors as previously reported (65). Briefly, donor tracheae and/or proximal bronchi were enzymatically digested. Epithelial cells were isolated and seeded onto collagen-coated inserts (Costar, 3470 and 3413; Falcon 353180). Epithelia were differentiated at the air-liquid interface for 3 weeks or more prior to assay. To assess cytokine-induced responses, epithelia were treated on the basolateral side with 10 ng/ml TNF-α (R&D Systems), 20 ng/ml IL-17 (R&D Systems), or both.

Pharmacologic reagents. Elexacaftor was purchased from MedChemExpress, and tezacaftor and ivacaftor were purchased from Selleckchem. GlyH-101 was a gift from the Cystic Fibrosis Foundation Therapeutics Lab and Robert Bridges (Rosalind Franklin University, Chicago, Illinois, USA). Other reagents were purchased from MilliporeSigma.

pH_{ASL} measurement. The protocol for pH_{ASL} measurements has previously been reported (11). Briefly, we used a ratiometric pH indicator, SNARF-1, conjugated to 70 kD dextran (Thermo Fisher Scientific). SNARF-1 is a single-excitation (514 nm), dual-emission airway-specific CFTR biomarkers, and pH_{ASL} is an emerging candidate.

Second, the airway inflammation that persists after initiation of CFTR modulators is a potential therapeutic target, and several agents are under evaluation (63). Our results suggest that inflammatory pathways may intersect with CFTR biogenesis pathways. Suppressing inflammation nonspecifically might thus involve a trade-off with modulator efficacy. Some studies have suggested that ivacaftor may reduce the efficacy of correctors when used in combination (48, 49). Whether this is also the case in the presence of inflammation is not known. This study underscores the need to assess interactions between candidate antiinflammatory therapies and CFTR corrector/potentiator combination regimens.

Third, in vitro models are routinely employed to assess CFTR modulators (64). As inflammation is ubiquitous in vivo and modifies the response to modulators, prediction of response based on in vitro assays (theratyping) may be optimized by incorporating assessments of airway inflammatory phenotype and its effect on modulator efficacy. In summary, the inflammatory milieu in CF airways regulates pH_{ASL} and increases the response to CFTR modulators.
isolation was verified using a NanoDrop 2000 spectrophotometer. Genomic DNA was removed through DNase I (QIAGEN) treatment. Quality of RNA was determined using the RNeasy Lipid Tissue Mini Kit (QIAGEN).

The pH solution contained 118.9 mM NaCl, 1.85 mM KCl, 1.2 mM MgCl₂, 100 μM HEPES, 12.5 mM HCO₃⁻, 2.4 mM KH₂PO₄, 0.6 mM NaH₂PO₄, 0.45% glucose, 2.5 mM CaCl₂, 5 mM dextrose, and 100 μM K₂HPO₄, at 37°C and adjusted to pH 7.4 in the absence of CO₂. A humidified environment at 37°C, 5% CO₂ was added to the atmosphere whenever the basolateral side was immersed in a CO₂-containing buffer solution but removed when a HCO₃⁻-transporting pH gradient was maintained across CF epithelia as reported previously (66). siRNAs were obtained from Integrated DNA Technologies (negative control, IDT DS NC 1; pendrin: IDT hs.Ri.SLC26A4.13.2) and transfected into dissociated primary airway epithelial cells using Lipofectamine RNAiMax (Invitrogen). Epithelia were seeded onto collagen-coated inserts (Costar, 3470) and differentiated at the air-liquid interface. pHᵢₑₓ was measured at day 6 or 7 after seeding. The efficiency of gene knockdown was assessed with RT-PCR.

RNA-Seq protocol and analysis. RNA-Seq was performed in collaboration with the University of Iowa Genomics Division using the manufacturer’s recommended protocols. Briefly, 500 ng DNase I–treated total RNA was enriched for polyA-containing transcripts using beads coated with oligo(dT) primers. The enriched RNA pool was fragmented, converted to cDNA, and ligated to sequencing adaptors using the TruSeq stranded mRNA sample preparation kit (Illumina, RS-122-2101). The molar concentrations of the indexed libraries were measured using the 2100 Bioanalyzer (Agilent) and combined equally into pools for sequencing. The concentrations of the pools were measured with the Illumina Library Quantification Kit (KAPA Biosystems) and sequenced on the Illumina HiSeq 4000 genome sequencer using 75 bp paired-end SBS chemistry. Pseudoalignment of raw sequencing reads and quantification of transcript-level expression were obtained using Kallisto version 0.45.0 and human transcriptome reference GRCh38. p12 (67). Gene counts were imported into R, and differential expression analysis was performed using DESeq2 version 1.22.2 (68). Further, gene expression modeling in DESeq2 accounted for the experimental design, acknowledging and correcting for paired control and treated samples for each donor. Changes in HCO₃⁻ transporters were visualized as heatmaps generated using the Clustvis tool (https://biit.cs.ut.ee/clustvis/) (69). RNA-Seq data are available in the NCBI’s GEO database (GEO GSE 176121).

Immunocytochemistry. Airway epithelia were washed 3 times with PBS, fixed with 4% paraformaldehyde for 15 minutes, and permeabilized with 0.3% Triton-X for 20 minutes. To minimize nonspecific staining, epithelia were treated with SuperBlock (Thermo Fisher Scientific) containing 0.5% normal goat serum for 1 hour at room temperature. Primary antibodies were diluted in SuperBlock and added apically for 3 hours at 37°C. Epithelia were washed and incubated for (Thermo Fisher Scientific), and samples with a 260/280 ratio ≥ 1.8 were carried forward. RNA was reverse transcribed with SuperScript VILO MasterMix (Invitrogen). cDNA thus obtained was amplified using gene-specific primers and Fast SYBR Green Master Mix (Applied Biosystems) on the QuantStudio 6 Flex Real-Time PCR System (Applied Biosystems). The gene-specific primer pairs used were as follows: SLC26A4 (pendrin), 5‘-CTCCCCAAAATACCGAGTCAA-3’ and 5‘-CCATATCGCGAGGAACTGC-3’; CFTR, 5‘-CACGAGGCCATTTTTGGG-3’ and 5‘-AGGAGGGATCCACACGAA-3’; β-actin, 5‘-AGAAGAGGTCAGTCGCTGAC-3’ and 5‘-AGCACCTGGTTGGCGTACAG-3’; and SFRS9, 5‘-TGGGTAACAAGGATGACCC-3’ and 5‘-CCCTGCTTCTTGGATGAGTGGAGTC-3’. All reactions were performed in triplicates, and gene expression was quantitated using -ΔΔCT method.

siRNA knockdown. Gene knockdown in primary airway epithelia was achieved as reported previously (66). siRNAs were obtained from Integrated DNA Technologies (negative control, IDT DS NC 1; pendrin: IDT hs.Ri.SLC26A4.13.2) and transfected into dissociated primary airway epithelial cells using Lipofectamine RNAiMax (Invitrogen). Epithelia were seeded onto collagen-coated inserts (Costar, 3470) and differentiated at the air-liquid interface. pHᵢₑₓ was measured at day 6 or 7 after seeding. The efficiency of gene knockdown was assessed with RT-PCR.

Electrophysiologic studies. Airway epithelia were mounted in modified Ussing chambers (Physiologic Instruments) and bathed in symmetric Krebs-HCO₃⁻ buffer solution containing continuous recording of Iₑₓ and Gₑₓ (n = 4). (D) pHᵢₑₓ in G551D CF epithelia, stimulated for 2 hours with forskolin 10 μM and ivacaftor 100 μM forskolin and 100 μM 3-isobutyl-2-methylxanthine, and 100 μM amiloride, 50 μM uridine triphosphate, 100 μM 4,4′-DIDS, 10 μM forskolin and 100 μM 3-isobutyl-2-methylxanthine, and 100 μM GlyH-101 or 100 μM GlyH-172.

Real-time PCR. Total RNA was isolated from airway epithelia using the RNeasy Lipid Tissue Mini Kit (QIAGEN). Genomic DNA was removed through DNase I (QIAGEN) treatment. Quality of RNA isolation was verified using a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific), and samples with a 260:280 ratio ≥ 1.8 were carried forward. RNA was reverse transcribed with SuperScript VILO MasterMix (Invitrogen). cDNA thus obtained was amplified using gene-specific primers and Fast SYBR Green Master Mix (Applied Biosystems) on the QuantStudio 6 Flex Real-Time PCR System (Applied Biosystems). The gene-specific primer pairs used were as follows: SLC26A4 (pendrin), 5‘-CTCCCCAAAATACCGAGTCAA-3’ and 5‘-CCATATCGCGAGGAACTGC-3’; CFTR, 5‘-CACGAGGCCATTTTTGGG-3’ and 5‘-AGGAGGGATCCACACGAA-3’; β-actin, 5‘-AGAAGAGGTCAGTCGCTGAC-3’ and 5‘-AGCACCTGGTTGGCGTACAG-3’; and SFRS9, 5‘-TGGGTAACAAGGATGACCC-3’ and 5‘-CCCTGCTTCTTGGATGAGTGGAGTC-3’. All reactions were performed in triplicates, and gene expression was quantitated using -ΔΔCT method.

siRNA knockdown. Gene knockdown in primary airway epithelia was achieved as reported previously (66). siRNAs were obtained from Integrated DNA Technologies (negative control, IDT DS NC 1; pendrin: IDT hs.Ri.SLC26A4.13.2) and transfected into dissociated primary airway epithelial cells using Lipofectamine RNAiMax (Invitrogen). Epithelia were seeded onto collagen-coated inserts (Costar, 3470) and differentiated at the air-liquid interface. pHᵢₑₓ was measured at day 6 or 7 after seeding. The efficiency of gene knockdown was assessed with RT-PCR.
45 minutes with appropriate secondary antibodies diluted in PBS. Pendrin was detected using mouse anti-SLC26A4 (1:200; Abnova) and goat anti-mouse secondary antibody conjugated to Alexa Flour 633 (1:300; Thermo Fisher Scientific). Actin cytoskeleton was stained with Alexa Fluor 633 phalloidin (1:300; Thermo Fisher Scientific).

Figure 9. Airway inflammation correlates with ivacaftor-induced lung function improvements. Induced sputum samples were obtained from individuals with CF with a CFTR G551D or a CFTR R117H mutation immediately before starting ivacaftor. Sputum inflammatory markers IL-1β, IL-8, and neutrophil elastase (NE) were measured using ELISA. Lung function was evaluated immediately before and 2 days after starting ivacaftor. Data are from previously reported studies (15, 45, 53). (A–D) Relationship between baseline airway inflammation and changes in lung function, measured as %Δ(ΔppFEV1/ppFEV1), where ppFEV1 is the percentage predicted forced expiratory volume in 1 second (23). (E) Changes in IL-8 and IL1B gene expression in human CF airway epithelia treated with TNF-α+IL17 for 48 hours (n = 5 different donors). (F) Relationship between baseline airway inflammation and changes in sweat [Cl–] concentration 2 days after starting ivacaftor (n = 22). Statistical significance was tested using Pearson’s r test for A–D and F and paired Student’s t test for E. Bars in E indicate mean ± SEM. *P < 0.05, ****P < 0.0001.

Studies on human subjects were performed with approval of the University of Iowa Institutional Review Board.

Author contributions

TR, DAS, EFM, PKS, and MJW conceived and designed studies. PHK and PT prepared epithelia for experiments. TR performed experiments, and BJG contributed to Western blots. TR, AAP, ALT, SLD, and MJW analyzed data. IMT and MED provided insightful discussions about study design and results. TR and MJW wrote the manuscript. All authors approved the manuscript.

Acknowledgments

We thank the University of Iowa In Vitro Models and Cell Culture Core and the Genomics Division of the Iowa Institute of Human Genetics for technical assistance. This work was supported in part by the NIH (HL140261, HL136813, HL091842, and HL051670), the Cystic Fibrosis Foundation Therapeutics Lab (CFTR Antibody Distribution Program, Cystic Fibrosis Foundation Research Development Program (CFF RDP)
52. Hirsit KB, et al. Ivacaftor-induced proteomic changes suggest monocyte defects may contribute to the pathogenesis of cystic fibrosis. Am J

J Clin Invest. 2021;131(16):e150398 https://doi.org/10.1172/JCI150398

