Mitochondrial dysfunction reactivates α-fetoprotein expression that drives copper-dependent immunosuppression in mitochondrial disease models

Kimberly A. Jett¹, Zakery N. Baker¹, Amzad Hossain¹, Aren Boulet¹, Paul A. Cobine², Sagnika Ghosh³, Philip Ng⁴, Orhan Yilmaz¹, Kris Barreto⁵, John DeCoteau⁵, Karen Mochoruk⁵, George N. Ioannou⁶,⁷,⁸, Christopher Savard⁶,⁷,⁸, Sai Yuan⁹, Osama H.M.H. Abdalla¹⁰,¹¹, Christopher Lowden¹⁰,¹¹, Byung-Eun Kim⁹, Hai-Ying Mary Cheng¹⁰,¹¹, Brendan J. Battersby¹², Vishal M. Gohil³ and Scot C. Leary¹,¹,¹³,¹⁴,*

Supplemental Figures
Figure S1. A) The Sco1^{hep} thymus exhibits progressive thinning of the cortex from P27 to P47, with disruption of the cortico-medullary boundary, accumulation of tingible body macrophages (denoted with a *) and increased vascularity (denoted with a >). Scale bar, 100µm. B) LacZ staining in the liver (4X), spleen (4X), heart (4X) and lung (2X) upon intracardiac (IC) or intraperitoneal (IP) administration of vehicle or helper-dependent adenovirus. C&D) Restoration of Sco1 expression in the Sco1^{hep} liver normalizes C) metal ion levels (t-test, n=3, Cu and Fe, p<0.01; Zn, p<0.05) and D) CTR1 abundance. Control refers to wild-type littermates.
Figure S2. Change in body weight (g) over time in A) $Coa5^{hep}$ (*Control*, n=23-64; $Coa5^{hep}$, n=6-31) and B) $Cox10^{hep}$ (*Control*, n=11-31; $Cox10^{hep}$, n=5-16) mice. C) $Coa5^{hep}$ livers have a severe COX (t-test, n=5) and copper deficiency relative to livers from *Control* littermates. D) Plasma copper, iron and zinc levels in $Coa5^{hep}$ (t-test, n=4) and $Cox10^{hep}$ (t-test, n=8) plasma relative to age-matched, littermate *Controls.*
Figure S3. A) Body and organ weight are unaffected in *Control* mice injected with *Sco1*_{hep} plasma relative to those injected with *Control* plasma (t-test, n=6-7). B) Metal content (t-test, n=3) and C) OXPHOS subunit abundance are unaltered in livers from mice fed a high fat (HF) diet compared to those fed normal chow. *Control* and *Sco1*_{hep} liver extracts were included for comparative purposes and tubulin served as an internal loading control. D) Lower magnification showing a greater number of PBMCs, with black boxes depicting the region of interest shown in Figure 3B.
Figure S4. A) Individual box plots of significantly up- or downregulated plasma proteins in hep compared to Control mice. Red and blue circles denote data from the Sco1 and Cox10 models, respectively (open circles, Control animals; closed circles, hep animals). HF denotes plasma from mice fed a high fat diet. B) Afp mRNA levels are significantly higher in the Sco1hep liver (ANOVA; p < 0.02) but not the heart, when compared to Control tissues from age-matched littermates (n=4, all tissues and genotypes). Transcript levels were normalized to Gapdh mRNA abundance. C) PBMC viability is similarly reduced upon treatment with Sco1hep plasma or recombinant AFP (rAFP, 1µg).
Figure S5.

A) *Afp* mRNA levels are significantly higher in the *Ctrl* heart (ANOVA; *p* < 0.005) but not the liver, when compared to *Control* tissues from age-matched littermates (heart, *n*=6; liver, *n*=10 for both genotypes). Transcript levels were normalized to *Gapdh* mRNA abundance. **B)** The *Ctrl* heart has elevated levels of AFP and the ISR marker phospho-eIF2α. Equal amounts of *Control* and hep liver extracts from the *Sco1* and *Cox10* lines were included in these analyses for comparative purposes. N.B. original data for actin, total and phospho-eIF2α livers from both hep models are shown in Figure 2E. **C)** The viability of PBMCs isolated from *Control* mice is reduced when co-cultured with AFP produced by baculovirus (bac AFP, the rAFP used in Figure S4C of this study) but not with AFP isolated from *E. coli*. *Control* and *Sco1* hep plasma were included in these analyses as negative and positive controls, respectively.
Figure S6. Representative flow plots of peripheral PBMCs show that $Sco1^{hep}$ mice show have a higher percentage of cells positive for the cell surface expression of A) the apoptotic marker Annexin V and B) the activation marker CD44.