Anoctamin 4 channel currents activate glucose-inhibited neurons in the mouse ventromedial hypothalamus during hypoglycemia

Longlong Tu, … , Yanlin He, Yong Xu

J Clin Invest. 2023. https://doi.org/10.1172/JCI163391.

Graphical abstract

Find the latest version:

https://jci.me/163391/pdf
Anoctamin 4 channel currents activate glucose-inhibited neurons in the mouse ventromedial hypothalamus during hypoglycemia

Longlong Tu¹, Jonathan C. Bean¹, Yang He¹, Hailan Liu¹, Meng Yu¹, Hesong Liu¹, Nan Zhang¹, Na Yin¹, Junying Han¹, Nikolas Anthony Scarcelli¹, Kristine Marie Conde¹, Mengjie Wang¹, Yongxiang Li¹, Bing Feng², Peiyu Gao², Zhao-Lin Cai³,⁴,⁵, Makoto Fukuda¹, Mingshan Xue³,⁴,⁵, Qingchun Tong⁶, Yongjie Yang¹, Lan Liao⁷, Jianming Xu⁷, Chunmei Wang¹, Yanlin He²*, Yong Xu¹,⁷

¹Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
²Brain glycemic and metabolism control department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, 70808.
³Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
⁴Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
⁵The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas 77030, USA.
⁶Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
⁷Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.

*To whom correspondence should be addressed:
Yong Xu, PhD, MD; 1100 Bates Street #8066, Houston, TX 77030, USA, Mail stop code: MCB320, E-mail: yongx@bcm.edu, Ph: (713) 798 7199, Fax: (713) 798 7187.
Yanlin He, PhD; 6400 Perkins Road, Baton Rouge, LA, 70808, USA, Email: Yanlin.He@pbrc.edu, Ph: (225) 763 2815, Fax: (225) 763 0273

Lead Contact: Yong Xu
Abstract

Although glucose is the basic fuel essential to maintain the viability and functions of all cells, some neurons, namely glucose-inhibited (GI) neurons, paradoxically increase their firing activities when glucose falls and are inhibited by high glucose. The ionic mechanisms mediating electric responses of GI neurons to glucose fluctuations remain unclear. Here we showed that currents mediated by anoctamin 4 (Ano4) channel are only detected in GI neurons in the ventromedial hypothalamic nucleus (VMH) and are functionally required for their activation in response to low glucose. Genetic disruption of the Ano4 gene in VMH neurons reduced blood glucose and impaired counterregulatory responses during hypoglycemia in mice. Activation of VMH^{Ano4} neurons increased food intake and blood glucose, while chronic inhibition of VMH^{Ano4} neurons ameliorated hyperglycemia in a type 1 diabetic mouse model. Finally, we showed that VMH^{Ano4} neurons represent a unique orexigenic VMH population and transmit a positive valence, while stimulation of non-Ano4 neurons in the VMH suppress feeding and transmit a negative valence. Together, our results indicate that the Ano4 channel and VMH^{Ano4} neurons are potential therapeutic targets for human diseases with abnormal feeding behavior or glucose imbalance.

Key words: Ano4, glucose-inhibited neurons, counterregulatory response, hypoglycemia, diabetes, food intake
Introduction

Glucose provides the most essential fuel source for the brain. Glucose levels therefore need to be tightly regulated and maintained within a narrow physiological range. Cumulative evidence suggests that the brain is of paramount importance for glucose sensing and the whole-body glucose homeostasis (1-3). There are a large number of glucose-sensing neurons in the brain (4, 5), which detect glucose fluctuations and coordinate appropriate endocrine and behavioral responses to restore euglycemia (6, 7).

The hypothalamus, particularly the ventromedial hypothalamic nucleus (VMH), has been recognized as one of the most critical brain regions for glucose sensing and whole-body glucose homeostasis (8, 9). Early studies have shown that lesions of the VMH result in obesity and blunted counterregulatory responses to insulin-induced hypoglycemia (10, 11). Local glucopenia induced by infusion of 2-deoxy-D-glucose (2-DG, a glucose metabolism blocker) into the VMH increases plasma glucagon levels, concomitant with an elevated level of circulating glucose. By contrast, infusion of glucose directly into the VMH reduces glucagon release in the presence of the systemic hypoglycemia (12, 13). Mice with genetic loss of glutamate release from VMH neurons exert a lower fasting glucose level and impaired counterregulatory response to insulin-induced hypoglycemia and glucopenia (14).

The VMH is enriched in glucose-sensing neurons, some being excited by an increase of extracellular glucose levels (GE neurons), and others being inhibited by high glucose (GI neurons) that can be activated in response to a reduction in extracellular glucose levels (4, 15). A fundamental question is which ion channels mediate the totally opposite electric responses in GE vs. GI neurons when exposed to the same glucose fluctuations. The ion channels mediating GE sensing have been extensively investigated. High glucose leads to an increase of the ATP-ADP ratio and the closure of the ATP-sensitive potassium (K_{ATP}) channels. This leads to depolarization...
of resting membrane potential and thereby calcium entry through the voltage-gated calcium channels, so as to increase neuronal activity (8, 16). Compared to this well-established ionic mechanism for the VMH GE sensing, the ion channels that mediate responses of VMH GI neurons, on the other hand, remain unknown (17).

Another open question is how GE vs. GI neurons can be neurochemically distinguished. The answer to this question would be of great value for basic and translational research targeting these populations. A vast majority of VMH neurons can be exclusively labeled by steroidogenic factor 1 (SF1) (18, 19). It has been demonstrated that optogenetic stimulation of VMHSF1 neurons increases blood glucose, whereas others reported that chemogenetic activation of VMHSF1 neurons decreases blood glucose during glucose tolerance and insulin tolerance tests (20, 21). The opposite outcomes of these early studies using the SF1 to target VMH neurons may reflect the complex heterogeneity of VMH SF1 population, which contains both GE and GI neurons, as well as those that cannot sense glucose. Recent research efforts have started to reveal various VMH markers for distinct glucose-regulatory functions. For instance, a subset of VMH GE neurons that express melanocortin 3 receptor (MC3R) can be inhibited by low glucose but excited by high glucose, and activation of these GE VMHMC3R neurons blunts glucose excursion during a glucose tolerance test (22). On the other hand, a subset of VMH neurons expressing pituitary adenylate cyclase-activating peptide (PACAP) can be activated by low glucose. Importantly, activation of VMHPACAP neurons increases blood glucose, suggesting a GI property of these VMHPACAP neurons (23). Similarly, activation of VMH neurons expressing glucokinase (GcK) (24), nitric oxide synthase 1 (NOS1) (25) and cholecystokinin B receptor (CCKBR) (26), also increases blood glucose, suggesting GcK, NOS1, and CCKBR as putative GI markers as well. However, it remains unclear whether these putative GI markers identify the same or partially overlapping VMH subpopulations. A more important question is whether the majority of VMH GI neurons can be identified by a common neurochemical marker (17).
In the present study, we first utilized published single cell RNA-Seq data from mouse and macaque VMH to reveal that anoctamin 4 (Ano4, a calcium-activated chloride channel protein) shows the highest overlapping pattern with putative VMH GI markers. We then used electrophysiology to demonstrate that Ano4-mediated currents exclusively exist in VMH GI neurons and these currents mediate activation of VMH GI neurons induced by low glucose. Using mice lacking Ano4 in the VMH, we further examined the physiological functions of Ano4 channel in the regulation of energy and glucose homeostasis. Finally, we generated a novel Ano4-P2A-Cre knock-in mouse model, and combined chemogenetic, optogenetic (both Cre-on and Cre-off), and Kir2.1-mediated chronic inhibition strategies, to reveal segregated functions of VMHAno4 neurons vs. VMHnon-Ano4 neurons.
Results

Ano4 mediates glucose sensing of VMH GI neurons

We have previously demonstrated that Ano4, a chloride channel, mediates hypoglycemia-induced activation in ERα-expressing GI neurons in the ventrolateral subdivision of the VMH (vlVMH) (27). Here we further explored the possibility that Ano4 provides a common mechanism for GI glucose sensing in the entire VMH. To this end, we first performed the secondary analysis of single cell RNA-Seq data from the mouse VMH (28). Interestingly, the distribution of Ano4 was not restricted to the vlVMH, but in the whole VMH (Figure 1A). We then analyzed the overlapping pattern of Ano4 with other putative GI markers (i.e., Gck, Adcyap1, Nos1, and Cckbr) within the mouse VMH neurons (Supplementary Figure 1). These putative GI markers only showed 16.6 - 52.8% mutual overlapping among themselves: Gck 45.1 - 50.9%, Adcyap1 44.4 - 52.8%, Nos1 19.8 - 32.7%, and Cckbr 16.6 - 19.2%, indicating that each of these markers only labels a subpopulation of VMH GI neurons. On the other hand, Ano4 is co-expressed by 55.8 - 62.0% of neurons labeled by any of these markers: Gck 59.6%, Adcyap1 55.8%, Nos1 62.0%, and Cckbr 61.59% (Figure 1B). Importantly, the single cell RNA-Seq data from the macaque VMH (28) revealed a more than 90% co-expression of ANO4 with other putative GI markers (Figure 1B). These results raised the possibility that Ano4 is a generic marker for a large portion of GI neurons in the VMH.

To further test this possibility, we used slice electrophysiology to explore a potential association between the glucose-sensing properties and Ano4-mediated currents in randomly selected neurons across the entire VMH, including the dorsomedial VMH (dmVMH), the central VMH (cVMH) and the vlVMH (Supplementary Figure 2A). As we reported before (27), the glucose-sensing properties of VMH neurons were examined under the current-clamp mode in response to a 5→1 mM extracellular glucose fluctuation protocol (see Methods). Among the tested dmVMH neurons, we found that 28.6% were GE neurons (≥2 mV hyperpolarized by 5→1 mM glucose fluctuation), 25.0% were GI neurons (≥2 mV depolarized by 5→1 mM glucose fluctuation) and
46.4% were non-glucose-sensing (NGS) neurons (<2 mV changes in resting membrane potential by 5→1 mM glucose fluctuation) (Supplementary Figure 2B-2C). Similarly, the percentages of GE/GI/NGS neurons in the cVMH were 25.9%, 33.3%, and 40.8%, and were 34.6%, 26.9% and 38.5% in the vlVMH (Supplementary Figure 2B-2C). Importantly, GI neurons in all VMH subdivisions (dmVMH, cVMH or vlVMH) exhibited Ano currents that were abolished by an Ano inhibitor CaCCinh-A01 (Figure 1C-1D, Supplementary Figure 3A-3B). On the other hand, GE and NGS neurons in all subdivisions did not exhibit such currents (Figure 1C-1D, Supplementary Figure 3A-3B). In addition, CaCCinh-A01 treatment blocked hypoglycemia-induced increases in firing frequency and membrane potential in GI neurons from all VMH subdivisions, whereas CaCCinh-A01 did not affect responses in GE neurons or NGS neurons (Figure 1E; Supplementary Figure 3C-3D). Moreover, we repeated the same electrophysiological recordings in the presence of synaptic blockers (TTX, CNQX, D-AP5 and bicuculline), and found that the antagonistic effect of CaCCinh-A01 still existed in GI neurons in all subdivisions, indicating that the effect was independent of synaptic inputs (Supplementary Figure 4A-4D). Together, these results indicate that Ano currents are exclusively present in GI neurons across the entire VMH and are required to mediate their activation in response to low glucose.

Loss of Ano4 in VMH neurons impairs glucose balance

Given the role of VMH neurons in glucose homeostasis and feeding behavior, we sought to examine the physiological functions of Ano4 in the VMH on regulation of glucose and food intake. We employed CRISPR-Cas9 approach to knock out (KO) Ano4 gene in VMH neurons. Briefly, we previously validated two sgRNAs that induce indel mutations in exon 4 and exon 11 of mouse Ano4 gene, and constructed these sgRNAs into an AAV vector followed by Cre-dependent FLEX-tdTOMATO sequence (27). Here, SF1-Cre mice received stereotaxic injections of AAV-FLEX-saCas9 and AAV-Ano4/sgRNAs-FLEX-tdTOMATO into both sides of the VMH to disrupt expression of Ano4 selectively in VMHSF1 neurons (Figure 2A, Supplementary Figure 5). For
the purpose of the control, wild-type (WT) mouse littermates received the same viruses, and SF1-Cre mice received AAV-FLEX-GFP and AAV-Ano4/sgRNAs-FLEX-tdTOMATO. Since these two control groups showed similar phenotypes (data not shown), we combined them in data analysis. Compared to male controls, KO of Ano4 did not alter body weight or food intake in male mice (Figure 2B-2C), but induced a significant reduction in blood glucose (Figure 2D). Similarly, female mice lacking Ano4 in VMH neurons showed a modest body weight reduction without significant changes in food intake, but a lower blood glucose levels than control mice (Figure 2E-2G). Moreover, KO of Ano4 did not affect energy expenditure in male or female mice (Supplementary Figure 6).

Both male and female Ano4 KO^SF1 mice exhibited similar blood glucose fluctuations during GTT and ITT compared to control mice (Supplementary Figure 7). Interestingly, KO of Ano4 significantly impaired glucose elevations in response to 2-DG-induced glucopenia in both male (Figure 2H-2I) and female mice (Figure 2J-2K). We then used multiple 2-DG treatments to mimic hypoglycemia-associated autonomic failure (HAAF) (26) in female mice (Figure 2L). A four-day treatment of 2-DG caused a HHAF phenotype in control mice (Figure 2M-2N). On day one and day four of the HAAF paradigm, Ano4 KO^SF1 mice had a consistently lower blood glucose compared to control mice after treatment with 2-DG (Figure 2M-2N). On day four, control mice had a lower blood glucose at 120 min after 2-DG administration compared to day one (Figure 2M-2N), but there was no significant difference at all time points between day one and day four in Ano4 KO^SF1 mice. These data suggest that impaired Ano4 function contributes to development of HAAF (Figure 2M-2N).

Since repeated 2-DG treatment resulted in HAAF that was very likely to disrupt glucose homeostasis in other scenarios. Therefore, male mice were subjected to hyperinsulinemic-hypoglycemic clamp study without exposure to HAAF paradigm. In a hyperinsulinemic-
hypoglycemic clamp study where the blood glucose level was clamped at a hypoglycemic level (~50 mg/dl) (Figure 2O), male Ano4 KO_{SF1} mice required a significantly higher glucose infusion rate, indicating a lower endogenous glucose production and/or increased glucose disappearance compared to control mice (Figure 2P). Consistently, the plasma glucagon and corticosterone levels at the hypoglycemic condition were significantly reduced compared to those in control mice in the hypoglycemias condition (Figure 2Q-2R). Overall, these results indicate that Ano4 in VMH neurons is required to maintain a normal counterregulatory in response to hypoglycemia.

Furthermore, slice electrophysiology was used to characterize the percentages of GE/GI/NGS neurons in SF1 control neurons and Ano4 KO_{SF1} neurons (Supplementary Figure 8A). Compared to SF1 control neurons, the percentage of GI neurons in Ano4 KO_{SF1} neurons was remarkably lower (Supplementary Figure 8B-8G). The percentage of GE neurons was comparable between SF1 control neurons and Ano4 KO_{SF1} neurons (Supplementary Figure 8B-8G). Ano current was only detected in GI neurons in response to low glucose, while loss of Ano4 impaired this current under glucose fluctuation (Supplementary Figure 8H). These data suggest that Ano4 is indispensable for glucose sensing in GI neurons.

GI sensing by VMH^{Ano4} neurons

To further explore the physiological functions of Ano4-expressing neurons, we generated an Ano4-P2A-Cre knock-in mouse line. For visualization of Cre-expressing neurons in the brain, we crossed Ano4-P2A-Cre mice with Rosa26-LSL-tdTomato reporter mice to generate Ano4-P2A-Cre/Rosa26-LSL-tdTomato mice (Supplementary Figure 9A). Ano4 neurons from these mice were therefore labeled by tdTomato, as confirmed by dual RNAscope for tdTomato and Ano4 (Supplementary Figure 9B). Dual RNAscope revealed that about 90% tdTomato+ neurons co-express Ano4, and about 91.6% Ano4+ neurons co-express tdTomato (Supplementary Figure
We found that Ano4 neurons were sparsely distributed in the cVMH and vlVMH, and few in the dmVMH (Supplementary Figure 9D).

Slice electrophysiology studies further revealed that 77.8% of tdTomato-labeled Ano4 neurons in the VMH (VMHAno4) were GI neurons, and the rest 22.2% were NGS neurons (Figure 3A-3D). Ano current was detected only in GI VMHAno4 neurons (Figure 3E). To further investigate the mechanisms by which glucose concentrations influence Ano currents, we exposed GI VMHAno4 neurons to a gradient glucose reduction (5 mM → 2.5 mM → 1 mM). We observed dose-dependent increases in firing frequency and resting membrane potential, which was associated with a gradual increase in Ano currents (Figure 3F-3H). It has been reported that AMP-activated protein kinase (AMPK) is involved in glucose sensing of GI neurons (41). We then characterized the effect of an AMPK blocker compound C (10 µM) on Ano currents in response to 5 mM → 2.5 mM → 1 mM glucose reduction. Interestingly, in the presence of compound C (10 µM), the glucose reductions failed to increase Ano current in GI VMHAno4 neurons (Figure 3I). In addition, compound C blocked increases in firing frequency and resting membrane potential in GI VMHAno4 neurons (Figure 3J-3K).

Importantly, while an intraperitoneal (i.p.) injection of glucose (2 g/kg, i.p.) induced abundant c-fos expression in the VMH, none of the Ano4 neurons expressed c-fos (Supplementary Figure 10A-10B), further confirming that Ano4 does not label GE neurons, but is likely a marker for GI neurons in the VMH. Together, these data suggest that VMHAno4 neurons represents a large portion of GI neurons in the VMH, and low glucose increases the Ano current in GI VMHAno4 neurons via the AMPK pathway.

Activation of VMHAno4 neurons increases food intake and blood glucose
To test the potential functions of VMH^{Ano4} neurons, we injected AAV8-hSyn-DIO-hM3D(Gq)-mCherry in the VMH of male Ano4-P2A-Cre mice (Figure 4A). VMH^{Ano4} neurons therefore can be activated by clozapine-N-oxide (CNO) (Supplementary Figure 11). WT littermate mice that received the same virus infection and CNO treatment were used as controls. We found that activation of VMH^{Ano4} neurons significantly increased food intake in satiated condition, and a non-significant trend was observed in fasted condition (Figure 4B-4C). Moreover, when food was not provided in the cages, activation of VMH^{Ano4} neurons significantly increased basal blood glucose (Figure 4D-4E). We further showed that chemogenetic activation of VMH^{Ano4} neurons significantly increased corticosterone and norepinephrine levels in the blood, but insulin, glucagon or epinephrine levels were not affected (Figure 4F-4J). Moreover, increases in blood glucose induced by chemogenetic activation of VMH^{Ano4} neurons were also observed under the conditions of GTT and ITT, and a very mild increase in blood glucose was observed in the scenario of 2-DG treatment (Figure 4K-4P). These results indicate that VMH^{Ano4} neurons are orexigenic and can trigger glucose elevations, both of which are consistent with features from a GI population.

Chronic inhibition of VMH^{Ano4} neurons attenuates diabetic hyperglycemia

Since activation of VMH^{Ano4} neurons increased blood glucose, we therefore asked whether inhibition of these neurons would attenuate diabetic hyperglycemia. To this end, we injected AAV-EF1a-DIO-Kir2.1-P2A-dTOMATO (29) into the VMH of male Ano4-P2A-Cre mice (Figure 4Q, Supplementary Figure 12). WT littermate mice that received the same virus infection were used as controls. Four weeks after surgery, diabetic hyperglycemia was induced by weekly injection of streptozotocin (STZ, 160 mg/kg, i.p.). In control mice, STZ caused stable hyperglycemia (>450 mg/dl), concomitant with a significant reduction in body weight (~12% maximal loss) (Figure 4R-4S). However, inhibition of Ano4 neurons significantly ameliorated STZ-induced hyperglycemia, as well as body weight loss (Figure 4R-4S). Importantly, the improved the diabetic phenotype was independent of pancreatic islet hormones as there was no significant difference in plasma
glucagon or insulin level (Figure 4T-4U). Moreover, inhibition of VMH$^{\text{Ano4}}$ did not affect plasma corticosterone, but significantly increased leptin level compared to control animals after STZ treatment (Figure 4V and 4W). These results indicate that targeting VMH$^{\text{Ano4}}$ neurons may represent a therapeutic avenue in glycemic and body weight control in diabetes.

VMH$^{\text{Ano4}}$ vs. VMH$^{\text{non-Ano4}}$ neurons differentially regulate food intake, blood glucose and valence

We injected AAV2-EF1a-DIO-hChR2 (H134R)-EFYP in the VMH and implanted optical fibers in male Ano4-P2A-Cre and WT mice (Figure 5A, Supplementary Figure 13A). Channelrhodopsin-2 (ChR2) is a nonspecific cation channel that can be activated by blue light. Optogenetic stimulation of VMH$^{\text{Ano4}}$ neurons, with blue but not yellow light, significantly increased food intake in satiated, but not in fasted conditions (Figure 5B-5C). Furthermore, when food was not provided in the cages, activation of VMH$^{\text{Ano4}}$ neurons significantly increased basal blood glucose (Figure 5D-5E), as well as during ITT (Figure 5H-5I) and 2-DG-induced glucopenia (Figure 5J-5K), but not during GTT (Figure 5F-5G). As negative controls, blue or yellow light did not alter food intake or blood glucose in all settings in WT control mice (Supplementary Figure 14).

In the real-time place preference test where optogenetic stimulation of VMH$^{\text{Ano4}}$ neurons was timely paired to one chamber of a rectangular two-chamber box, mice spent significantly more time in the stimulatory chamber, without significant changing in distance traveled or velocity (Figure 5L-5N). As controls, yellow light shone onto VMH$^{\text{Ano4}}$ neurons did not alter any place preference in the same mice (Supplementary Figure 15A-15C). These data indicate that activation of VMH$^{\text{Ano4}}$ neurons transmits a positive valence. In the open field test, optogenetic stimulation of VMH$^{\text{Ano4}}$ neurons did not affect distance traveled or velocity compared to baseline (Figure 5O-5P), as well as the time spent in the center area, a measurement of anxiety-like behavior (Figure 5Q). Yellow light shone onto VMH$^{\text{Ano4}}$ neurons did not alter locomotor activity or
anxiety-like behavior in the same mice (Supplementary Figure 16A-16C). Together, these results indicate that VMHAno4 neurons are orexigenic, increase blood glucose and transmit a positive valence.

Notably, previous studies reported that activation of VMHSF1 neurons reduces food intake (21, 30, 31), which is opposite to the orexigenic action of VMHAno4 neurons we observed. Thus, we speculated that VMHAno4 neurons represent a unique orexigenic VMH population, while the other VMH neurons that do not express Ano4 are anorexigenic. To test this possibility, we injected a Cre-off optogenetic virus, pAAV-EF1a-DO-hChR2 (H134R)-mCherry (32), into the VMH and implanted optical fiber in male Ano4-P2A-Cre mice (Figure 6A, Supplementary Figure 13B). This virus expresses ChR2 only in neurons without Cre recombinase (VMHnon-Ano4 neurons). Optogenetic stimulation of VMHnon-Ano4 neurons trended to inhibit food intake in satiated condition, and significantly suppressed feeding in fasted condition (Figure 6B-6C). Stimulation of VMHnon-Ano4 neurons induced a slight increase in blood glucose during a basal state (Figure 6D-6E), but blood glucose responses were not altered during GTT (Figure 6F-6G), ITT (Figure 6H-6I) or 2-DG tests (Figure 6J-6K).

We further examined the effects of VMHnon-Ano4 neurons on valence and anxiety-like behavior. In the real-time place preference test, mice spent significantly less time in the chamber that was paired with optogenetic stimulation of VMHnon-Ano4 neurons, associated with a significantly shorter traveled distance (Figure 6L-6M). As controls, yellow light shone onto VMHnon-Ano4 neurons did not alter place preference in the same mice (Supplementary Figure 15D-15F). These data indicate that activation of VMHnon-Ano4 neurons transmits a negative valence. In the open field test, optogenetic stimulation of VMHnon-Ano4 neurons significantly increased traveled distance and velocity (Figure 6O-6P), but did not to alter the time spent in the center area (Figure 6Q). Yellow light shone onto VMHnon-Ano4 neurons did not alter locomotor activity or anxiety-like behavior in the
same mice (Supplementary Figure 16D-16E). Together, these results indicate that VMHnon-Ano4 neurons are anorexigenic and transmit a negative valence.
Discussion

In the present study, we showed that Ano currents exist specifically in VMH GI neurons and are required to mediate their activation upon hypoglycemia. Genetic disruption of the Ano4 gene in VMH neurons reduces blood glucose and impairs counterregulatory responses to prevent severe hypoglycemia. Using a newly generated Ano4-P2A-Cre mouse line, we revealed that activation of VMH\(^{Ano4}\) neurons increases food intake and blood glucose, while chronic inhibition of VMH\(^{Ano4}\) neurons ameliorates hyperglycemia in a type 1 diabetic (T1D) model. Finally, we showed that VMH\(^{Ano4}\) neurons represent a unique orexigenic VMH population that transmits positive valence, while non-Ano4 neurons in the VMH suppress feeding and transmit negative valence.

The ATP-sensitive potassium channel (K\(_{\text{ATP}}\) channel) has been well-established as a common ionic mechanism that mediates the glucose sensing in various GE populations, including GE neurons in the VMH (2, 16, 33, 34). However, the ionic mechanisms for GI glucose sensing appear to vary depending on the brain regions (35). For example, closure of leak potassium channels is shown to mediate hypoglycemia-induced activation of GLUT2-expressing neurons in the nucleus of the solitary tract (36). Low glucose activates neurons in the lateral hypothalamus through increasing NMDA-mediated glutamatergic currents (37). The cystic fibrosis transmembrane conductance regulator, a chloride ion channel, is implicated to mediate glucose-induced inhibition of Agouti-related peptide neurons (38) and VMH neurons (39). Here we provide evidence to identify Ano4 as a common ionic mechanism for VMH GI sensing. The role of Ano4 in VMH GI neurons is first supported by single cell RNA-Seq data (from both mice and macaques) showing that Ano4 is highly overlapping with other putative molecular markers for VMH GI sub-populations. Furthermore, slice electrophysiology recordings confirmed that Ano currents are not present in GE or NGS neurons in the VMH, but exclusively exist in GI neurons located in all VMH subdivisions. Consistently, while a glucose load induces abundant c-fos expression in the VMH, none of these glucose-activated VMH neurons are Ano4-positive, further suggesting that Ano4 is
selectively expressed by GI neurons in the VMH. In the present study, we have demonstrated that 77.8% of VMHAno4 neurons (as labeled by tdTomato in Ano4-P2A-Cre/Rosa26-LSL-tdTomato mice) are GI neurons, in which Ano current is present, and the other 22.2% of tdTomato+ neurons are not responsive to glucose. Importantly, none of these VMHAno4 neurons are GE neurons. Two possibilities may account for the lack of Ano currents and GI properties in 22.2% tdTomato+ neurons. One is that these neurons were labelled by tdTomato because Ano4 was transiently expressed earlier but no longer existed at the time of the experiment; in other words, these were “Ano4 lineage" neurons, but not "current" Ano4 neurons. The second possibility is that Ano4 was present in these neurons but it did not function as a membrane chloride channel to influence the excitability of the neuron. Of note, Ano4 has been implicated to function as a phospholipid scramblase (40). Nevertheless, we showed that genetic disruption of Ano4 in VMHSF1 neurons largely reduced the percentage of GI neurons in the VMH. Together, these data indicate that Ano4 is a good maker for GI neurons in the VMH, although it may not be an exclusive GI marker.

Importantly, both pharmacological inhibition of Ano current and genetic disruption of Ano4 blunt low glucose-induced activation of VMH GI neurons. Thus, Ano4 is not only a GI marker, but is functionally required to mediate GI sensing. We further demonstrated that low glucose dose-dependently increases Ano currents in GI VMHAno4 neurons. Consistent with the known role of the AMPK pathway in mediating VMH GI sensing (41), we showed that the AMPK blocker can abolish effects of low glucose to increase Ano currents and therefore prevent activation of GI VMHAno4 neurons. We further demonstrated that genetic disruption of Ano4 in VMH neurons impairs 2-DG-induced glucose elevations, and release of counterregulatory hormones (i.e., glucagon and corticosterone) during a hyperinsulinemic-hypoglycemic clamp. Further, activation of VMHAno4 neurons promotes feeding and increases blood glucose, associated with increases in corticosterone and norepinephrine. Unlike photoactivation of VMHSF1 neurons (which likely contain more VMH sub-populations) (20), pancreatic hormones (e.g., insulin and glucagon) were
not involved in activation of VMHAno4 neurons. Notably, the hormonal responses following VMHAno4 neurons activation are similar to those upon activation of Cckbr neurons in the VMH (26). Thus, our results support a model that hypoglycemia activates VMH GI neurons via the opening of Ano4 channel, and activation of these VMH GI neurons triggers release of counterregulatory hormones (e.g. corticosterone and norepinephrine) and promotes feeding to prevent severe hypoglycemia.

We identified the Ano4 channel as a relevant target for diabetic management. People with T1D receiving intensive insulin therapy are under a great risk of hypoglycemia, which could be life-threatening (42). Moreover, recurrent hypoglycemia impairs the counterregulatory responses and produces HAAF in people with T1D (42). Recent evidence indicates that inhibition of VMH subpopulation neurons (e.g., GcK, SF1, NOS1, CCKBR) blunts counterregulatory response to hypoglycemia (20, 24-26). On the other hand, activation of these specific subpopulations mimics counterregulatory response to increase blood glucose. Interestingly, Flak and colleagues reported that silencing of VMHCCKBR neurons significantly attenuates hyperglycemia in mice rendered diabetic by STZ treatment (26). In the present study, we found that genetic disruption of Ano4 in the VMH blunts counterregulatory responses to hypoglycemia in a hyperinsulinemic-hypoglycemic clamp study, as well as 2-DG-induced glucopenia. Furthermore, impaired Ano4 functions in the VMH also contribute to the development of HAAF. More importantly, chronic inhibition of VMHAno4 neurons significantly ameliorates STZ-induced diabetic hyperglycemia. Thus, impaired functions of VMHAno4 neurons are implicated in dysregulated counterregulatory response to hypoglycemia, and hyperactivity of these same neurons may also contribute to diabetic hyperglycemia.

Notably, a recent large-scale human whole-exome sequencing study revealed that a mutation of the ANO4 gene is associated with a higher body mass index (BMI), although it is unclear whether this mutation causes gain-of-function or loss-of-function (43). In the present study, we found that
female mice lacking Ano4 in the VMH show a modest body weight loss, while the same mutation
does not affect body weight of male mice. Thus, we suggest that a higher BMI is associated with
the gain-of-function of Ano4, and this association may differ in men and women. More detailed
molecular characterizations of this BMI-associated ANO4 mutation, as well as the human genetic
analysis, are needed to further delineate how the ANO4 mutation affects human body weight
balance. Intriguingly, Stanley et al. has reported that activation of VMHGck neurons promotes
feeding and increases blood glucose (24). Of note, the mutation of the GCK gene has been
associated with maturity-onset diabetes of young and persistent hyperinsulinemic hypoglycemia
of infancy, but not with obesity (44, 45). Given the similar appetite-promoting and glucose-
elevating effects by VMHAno4 neurons, we suggest that the human ANO4 mutation may also be
associated with dysregulations of glucose balance, a possibility that warrants further investigation.

Another interesting finding is that activation of VMHAno4 neurons promotes feeding. While the
orexigenic nature of these VMHAno4 neurons is consistent with functions of GI neurons that
increase food intake to prevent severe hypoglycemia. This is somewhat surprising considering
that activation of the whole VMH population (labelled by SF1) inhibits food intake (21, 30, 31). We
therefore suggest that VMHAno4 neurons represent a unique orexigenic VMH subpopulation, while
the rest of VMH neurons are largely anorexigenic. In line with this, we show that optogenetic
stimulation of VMHnon-Ano4 neurons (using a Cre-off approach) remarkably inhibits food intake,
which is comparable to experimental stimulation of VMHSF1 neurons (20, 31). Further supporting
the functional segregation of VMHAno4 neurons vs. other VMH neurons, we observed a positive
valence triggered by VMHAno4 neurons while VMHnon-Ano4 neurons transmit an opposite negative
valence. The latter response is in line with defensive/avoidance, freezing, jumping and escaping
behaviors triggered by activation of subpopulations of VMH neurons, i.e., VMHSF1 and VMHNOS1
neurons (25, 30). Mechanisms underlying the opposite functions of these VMH subpopulations
may include distinct projections and neurotransmitter/neuropeptide signals, which require further investigation to delineate (17).

The VMH is of critical importance for glucose homeostasis and feeding behavior. Here we identified Ano4-mediated currents as a common mechanism for VMH GI sensing, and the Ano4 ion channel is physiologically required to trigger release of counterregulatory hormones and to promote feeding, which in turn prevents severe hypoglycemia. Further, VMHAno4 neurons represent a unique orexigenic VMH subpopulation, surrounded by other anorexigenic neurons in the VMH. Considering the association of the ANO4 genetic mutation with abnormal BMI in humans, we suggest that the Ano4 ion channel and VMHAno4 neurons are potential therapeutic targets for human diseases with abnormal feeding behavior and glucose imbalance.
Materials and methods

Mice

Several mouse strains were used for all experiments. SF1-Cre mice (Jackson Laboratory, #012462) and Rosa26-LSL-tdTomato allele mice (Jackson Laboratory, #007905) were obtained from the Jackson Laboratory. To examine the role of Ano4 in the VMH in energy metabolism, we generated Ano4 KO SF1 and their controls via CRISRP-Cas9 deletion. CRISRP-Cas9 deletion was used to generate mice lacking Ano4 in VMH SF1 neurons as described before (27). In brief, SF1-Cre mice (male and female, 8-12 weeks of age) received stereotaxic injections of AAV-Ano4/sgRNAs-FLEX-tdTomato and AAV-FLEX-saCas9 into both sides of the VMH to disrupt expression of Ano4 selectively in VMH SF1 neurons. We included two control groups: wild-type (WT) mouse littermates that received the same viruses, and SF1-Cre mice that received AAV-FLEX-GFP and AAV-Ano4/sgRNAs-FLEX-tdTomato. Another cohort of male SF1-Cre mice with one side of the VMH injected with AAV-Ano4/sgRNAs-FLEX-tdTomato and AAV-FLEX-saCas9 (as KO side), and the other side of the VMH injected with AAV-FLEX-GFP and AAV-Ano4/sgRNAs-FLEX-tdTomato (as control side) were prepared for electrophysiological recordings of VMH SF1 control neurons and Ano4 KO VMH SF1 neurons, as well as validation of genomic deletion of Ano4 in VMH SF1 neurons.

To generate an Ano4-P2A-Cre knock-in mouse line, we used CRISPR-Cas9 gene editing to generate the in-frame genomic insertion of a P2A-Cre sequence 3' to the final amino acid codon prior to the stop codon of Ano4. The self-cleaving P2A sequence allows for bicistronic expression of both endogenous Ano4 protein and Cre recombinase following translation of a single mRNA. The gene targeting was designed and performed by Genetically Engineered Rodent Models Core at BCM. Briefly, the sgRNA (5'- GAAAAGCACATCACAATGAG -3') and the long single-stranded donor DNA (1998 bp containing the P2A-Cre sequence flanked on the 5’ and 3’ sides with 450 bp homology arm) were synthesized by Integrated DNA Technologies (IDT). The BCM Core
microinjected Cas9 mRNA (100 ng/μl), ssDNA (100 ng/μl), and sgRNA (20 ng/μl) into the
cytoplasm of 200 pronuclear stage C57Bl6j embryos as previously described (46). Founder
animals (F0) were screened for the correct insertion of the P2A-Cre sequence by PCR
amplification of tail DNA using two primer pairs: for the 5’ homology arm: 5’-TGCAAAACACTTAGCAATCTACACAG-3’ and 5’-GTACGGTCAGTAAATTGGACATAGG-3’; for
the 3’ homology arm: 5’-TGAACCTATATCCGTAACTCGTAGTGGACATAG-3’ and 5’-
ATATAAGGCTTATATCTGACG-3’.

All the breeders have been backcrossed to C57Bl6j background for more than 12 generations. In
addition, some C57Bl6j mice were purchased from the mouse facility of Baylor College of
Medicine. To visualize Ano4-label neurons in the brain, we generated Ano4-P2A-Cre/Rosa26-
LSL-tdTomato mouse line by crossing Ano4-P2A-Cre mouse line with Rosa26-LSL-tdTomato
reporter mouse line. Ano4 neurons from these mice were therefore labeled by tdTomato.

Mice were housed in a temperature-controlled environment at 22–24 °C, using a 12-h light, 12-h
dark cycle. The mice were fed with regular chow (6.5% fat, #2920, HarlanTeklad, Madison, WI).
Water was provided ad libitum.

Bioinformatic analysis of published data
Analyses were performed in R 4.2.0 within RStudio 2022.02.2 Build 485 utilizing Seurat 4.0.4.
Count matrix, features, barcodes, and metadata were downloaded from
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE172204 and
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE172203 and were loaded into Seurat
objects. Data were processed in Seurat using the same parameters published in (28), with the
aid of custom code retrieved from https://github.com/alanrupp/affinati-elife-2021/blob/master/experiments/snRNA-seq/analysis/mouse/mouse.Rmd. Seurat objects were
filtered for cells labeled VMH_cluster using metadata. Count data were scaled and functions “RunPCA” and “RunUMAP” were executed. Cells in VMH clusters were plotted in uniform manifold approximation and projection (UMAP) space using function “DimPlot”. Count data were normalized using “SCTransform” and expression of select genes were shown using “FeaturePlot” function. The function “DotPlot” was used to show percentage of cells within each cluster that expressed select genes, as well as, the average expression of select genes for each cluster. Heatmaps were constructed manually by filtering for cells expressing combinations of select genes and counting those cells using functions from the package dplyr 1.0.9, calculating percentages, and color coding percentages rounded to the nearest 10%.

Electrophysiology

Male WT C57Bl6j, SF1-Cre and Ano4-P2A-Cre/Rosa26-LSL-tdTomato mice were used electrophysiological recordings. Mice were deeply anesthetized with isoflurane and transcardially perfused with a modified ice-cold sucrose-based cutting solution (pH 7.3) containing 10 mM NaCl, 25 mM NaHCO₃, 195 mM sucrose, 5 mM glucose, 2.5 mM KCl, 1.25 mM NaH₂PO₄, 2 mM Na-pyruvate, 0.5 Mm CaCl₂, and 7 mM MgCl₂, bubbled continuously with 95% O₂ and 5% CO₂ (47). The mice were then decapitated, and the entire brain was removed and immediately submerged in the cutting solution. Slices (250 μm) were cut with a Leica VT1000 S vibrating microtome (Leica Biosystems, IL). Three to four brain slices containing the VMH were obtained for each animal (bregma −2.06 mm to −1.46 mm; interaural 1.74–2.34 mm). The slices were recovered for 1 h at 34 °C and then maintained at room temperature in artificial cerebrospinal fluid (aCSF, pH 7.3) containing 126 mM NaCl, 2.5 mM KCl, 2.4 mM CaCl₂, 1.2 mM NaH₂PO₄, 1.2 mM MgCl₂, 5.0 mM glucose, and 21.4 mM NaHCO₃ saturated with 95% O₂ and 5% CO₂ before recording. Slices were transferred to a recording chamber and allowed to equilibrate for at least 10 min before recording. The slices were superfused at 34 °C in oxygenated aCSF at a flow rate of 1.8–
2 ml/min. Patch pipettes with resistances of 3–5 MΩ were filled with intracellular solution (pH 7.3) containing 128 mM K-gluconate, 10 mM KCl, 10 mM HEPES, 0.1 mM EGTA, 2 mM MgCl₂, 0.05 mM Na-GTP, and 0.05 mM Mg-ATP. Recordings were made using a MultiClamp 700B amplifier (Axon Instrument), sampled using Digidata 1440 A and analyzed offline with pClamp 10.3 software (Axon Instruments). Series resistance was monitored during the recording, and the values were generally <10 MΩ and were not compensated. The liquid junction potential was +12.5 mV, and was corrected after the experiment. Data were excluded if the series resistance increased dramatically during the experiment or without overshoot for action potential. Currents were amplified, filtered at 1 kHz, and digitized at 10 kHz.

Neurons in the dmVMH, cVMH, and vlVMH were randomly recorded in brain slices prepared from 10-12 weeks old male C57Bl6j mice. In some experiments, tdTomato-labeled neurons in the VMH from male Ano4-P2A-Cre/Rosa26-LSL-tdTomato mice were recorded under different concentrations. In another experiment, tdTomato positive SF1 neurons (Ano4 KO SF1) and GFP positive SF-1 neurons (Control) were used for the validation of Ano4 in VMH SF1 neurons. Current-clamp was engaged to test neural firing frequency and resting membrane potential at the baseline of 5 mM glucose aCSF and 1 mM glucose aCSF. The values for resting membrane potential and firing frequency were averaged within a 2-min bin at the 5 mM glucose or 1 mM glucose aCSF condition. The lucifer yellow (MilliporeSigma, MD) dissolved in pipette solution (1µM) was used to validate the location of recorded VMH neurons from male C57Bl6j mice. TdTomato-labeled neurons in the VMH were visualized using epifluorescence and IR-DIC imaging on an upright microscope (Eclipse FN-1, Nikon) equipped with a movable stage (MP-285, Sutter Instrument). We define GI, GE, or non-glucose sensing (NGS) neurons by calculating the resting membrane potential changes caused by 1 mM glucose treatment. If the resting membrane potential of a neuron is depolarized ≥ 2mV in amplitude by 1 mM glucose aCSF, we define it as a GI neuron. If the resting membrane potential of a neuron is hyperpolarized ≥ 2mV in amplitude
by 1 mM glucose aCSF, we define it as a GE neuron. If the resting membrane potential of a
neuron is changed < 2mV in amplitude by 1 mM glucose aCSF, we define it as a NGS neuron.
After the identification of each neuron, the same neuron will be recorded under 5 mM and 1 mM
glucose aCSF in the presence of an Ano blocker, 100 μM CaCCinh-A01 (48).

To measure Ano currents, the pipette solution contained (in mM): CsCl 130, NaH₂PO₄ 1.2,
Na₂HPO₄ 4.8, EGTA, MgCl₂ 1.0, D-glucose 5.0, and ATP 3.0 (pH adjusted to 7.2). The total Ano
current was recorded under voltage-clamp by holding the membrane potential at −20 mV in 5 mM
glucose or 1 mM glucose aCSF in the presence of 1 µM Tetrodotoxin (TTX), 100 µM 4-
Aminopyridine (4-AP) and 100 µM Tetraethylammonium chloride (TEA-Cl). At intervals, neurons
were voltage-clamped from −50 mV to +50 mV in steps of 10 mV for 1 s (49). Then the neurons
were treated with 100 μM CaCCinh-A01 (the Ano blocker) for 3 min. The Ano current was
calculated by subtracting the left current in the presence of CaCCinh-A01 from total current
without the blocker.

To test if low glucose treatment directly regulates the neuronal activity of VMH glucose-sensing
neurons, VMH neurons were pretreated with a cocktail of synaptic blockers containing 1 µM TTX
(a reversible, selective, and high-affinity inhibitor of voltage-gated sodium channels), 30 µM
CNQX (a potent non-NMDA glutamate receptor antagonist), 30 µM D-AP5 (a potent and selective
NMDA receptor antagonist), and 50 µM bicuculline (a GABA_A receptor antagonist) to block the
excitatory and inhibitory synaptic inputs in the recorded VMH neurons. Resting membrane
potential was calculated after 1 mM glucose aCSF treatment with or without 100 μM CaCCinh-
A01 (the Ano blocker). To test whether low glucose-activated VMH^Ano4 neurons can be blocker by
AMPK blocker, identified GI VMH^Ano4 neurons were pretreated with the AMPK blocker compound
C (10 μM). Ano currents, resting membrane potential and firing frequency were measured as
described above.
In some recordings, fluorescent-guided whole-cell patch-clamp recordings were performed in Kir2.1-dTomato-expressing VMH neurons in Ano4-P2A-Cre mice. The baseline of neuronal firing frequency and resting membrane potential was compared in VMH neurons expressing Kir2.1-dTomato.

RNAscope

Male Ano4-P2A-Cre/Rosa26-LSL-tdTomato mice (8-12 weeks of age) were anesthetized and perfused with 0.9% saline followed by 10% formalin. Brains were removed and post-fixed in 10% formalin for 16 hours at 4 °C and cryoprotected in 30% sucrose for 48 hours. Brains were frozen and sectioned at 14 μm using the cryostat and washed in DEPC-treated PBS for 10 minutes. Sections were mounted on charged slides, dried for 0.5 hours at room temperature and stored at −80 °C. On the day of the RNAscope assay, the slides were thawed and rinsed two times in PBS and baked in an oven for 30 minutes at 60 °C. After that, slides were post-fixed in 10% formalin for 15 minutes at 4 °C. Slides were then gradually dehydrated in ethanol (50%, 70% and 100%, 5 minutes each) and underwent target retrieval for 5 minutes at 100 °C. After being incubated in protease III (322337, Advanced Cell Diagnostics) for 30 minutes at 40 °C, slides were rinsed in distilled water and incubated in mouse RNAscope probes for Ano4 (439551-C1, Advanced Cell Diagnostics) and tdTomato (317041-C3, Advanced Cell Diagnostics) for 2 hours at 40 °C. Sections were then processed using RNAscope Fluorescent Multiplex Detection Reagents (320851, Advanced Cell Diagnostics) according to the manufacturer’s instructions. Slides were cover-slipped and analyzed using an Andor BC43 Benchtop Confocal (Oxford Instruments, UK).

Immunohistochemistry

Six male Ano4-P2A-Cre/Rosa26-LSL-tdTomato mice (8-12 weeks of age) were used to characterize saline (10 ml/kg, i.p.) or glucose (2 g/kg, i.p.)-induced c-fos in the VMH. Mice were
fasted for two hours before saline or glucose treatment. Ninety minutes after injection, mice were anesthetized with inhaled isoflurane, and quickly perfused with saline, followed by 10% formalin. After dehydration with 30% sucrose, the brains were cut into sections at 25 µm. Sections from each mouse were blocked with 3% Normal donkey serum for 2 hours, and then incubated with rabbit anti-c-Fos antibody (1:1000, 226003, Synaptic Systems) on a shaker at 4 °C overnight, followed by the donkey anti-rabbit Alexa Fluor 488 (1:500, A21206, Invitrogen) for 2 hours at room temperature. Slides were cover-slipped and analyzed using a fluorescence microscope. The numbers of c-fos and c-fos/Ano4 double positive cells in the VMH were counted. Three mice were included in each group for statistical analyses.

Food intake, body weight and energy expenditure
SF1-Cre and their littermate WT mice were singly housed 1 week before stereotaxic surgery. SF1-Cre mice received stereotaxic injections of AAV-Ano4/sgRNAs-FLEX-tdTomato and AAV-FLEX-saCas9 into both sides of the VMH to disrupt expression of Ano4 selectively in VMH SF1 neurons. Wild-type (WT) mouse littermates received the same viruses, and SF1-Cre mice received with AAV-FLEX-GFP and AAV-Ano4/sgRNAs-FLEX-tdTomato were combined as control group. These mice were provided with regular chow until the end of study. Food intake, body weight and basal blood glucose were measured every week after surgery. On the day of glucose measurement, mice were brought to procedure room around 9 am for 2 hours in the morning, during which food were removed to ensure empty stomach. Glucose was then measured after that. Quantitative magnetic resonance was used to determine body composition. Energy expenditure measurements were performed in temperature-controlled (23 °C) cabinets containing 16 TSE PhenoMaster metabolic cages. Mice were acclimatized to the metabolic cages for 3 days. Data collected from day 3-4 were used for analyses and energy expenditure was analyzed using the online CalR tool (50, 51).
Glucose tolerance test (GTT), insulin tolerance test (ITT) and 2-DG assay

For GTT, after an overnight fast, mice received i.p. injections of 1.5 g/kg D-glucose (G8270, Sigma) at 9:00 am. Blood glucose was measured from tail blood using a glucometer (OneTouch Ultra) at the serial time points as indicated in figures (0, 15, 30, 60 and 120 min). For ITT, after a 2-hour fast in the morning, mice received i.p. injections of insulin (1.5 U/kg). Blood glucose was measured at 0, 15, 30, 60 and 120 min. For 2-DG assay, mice were fasted for 2 hours in the morning, followed by 2-DG (300 mg/kg, i.p.) treatment, blood glucose was then measured at 0, 15, 30, 60 and 120 min after injections. For HAAF paradigm, mice were treated with 2-DG (300 mg/kg, i.p.) for 4 consecutive days in the morning after 2-hour fast, and glucose levels were measured on day 1 and day 4 as indicated.

Hyperinsulinemic-hypoglycemic clamp

Male Ano4 KO^{SF1} mice and their control mice were sent to the NIH-funded Baylor Mouse Metabolism & Phenotyping Core for the hyperinsulinemic-hypoglycemic clamp studies. As we described before (52), a micro-catheter was inserted into the jugular vein by survival surgery and waited for 4-5 days for complete recovery. Studies were then performed in conscious mice. Overnight-fasted conscious mice were primed with regular insulin (bolus 10 mU/kg body weight) followed by a ~2-hr constant insulin infusion (10 mU/kg/min). Using a separate pump, 25% glucose was used to maintain the blood glucose level at 50 mg/dl, as determined every 6-9 min using a glucometer (LifeScan, NJ). The glucose infusion rate (GIR) was then recorded continuously and blood samples were collected at 90 min time point. Blood samples were collected during the hypoglycemic condition and processed to obtain plasma. Plasma glucagon and corticosterone levels were measured using the mouse glucagon (10-1281-01, Mercodia) and corticosterone (ADI-900-097, Enzo Life) ELISA kits according to the manufacturer’s instructions.

Validation of Genomic Deletion of Ano4 in VMH^{SF1} Neurons
Male SF-Cre mice were prepared with one side of the VMH injected with AAV-Ano4/sgRNAs-FLEX-tdTomato and AAV-FLEX-saCas9, the other side of the VMH injected with AAV-FLEX-GFP and AAV-Ano4/sgRNAs-FLEX-tdTomato as controls. To detect if the CRISPR-Cas9 approach successfully induced the mutation of Ano4, 2-step touchdown PCR was performed with each reaction containing one single SF1 neuron that was handpicked under the microscope. The 1st primer pair across the sgRNA target region of Ano4: 5'-AGCGCAGCTCACCTTCTAAC-3' and 5'-AATCTTGCTCTGACACGCT-3' (750 bp) were used for the first step of PCR. The PCR products were then used for the second step of PCR with primer pair: 5'-GGGCCAGGCAGGTTTACAT-3' and 5'-CACACAGACCTATGACCCCC-3' (450 bp). To ensure the success of the neuron picking, two control primer pairs for an irrelevant gene (i.e., Gabra5): (1st primer pair: 5'-CCTGTAAGTAGCCTGGCAT-3' and 5'-AGATAAGAGACGTGGGGCTG-3' (744 bp); 2nd primer pair: 5'-AAGGAATCCAGTGACCAGCC-3' and 5'-TCCTAAGGAACCAGCATGGG-3' (525 bp) were also included to amplify the non-relevant region of the genome (53).

To measure the Ano4 protein expression in control SF1 neurons and Ano4 KO SF1 neurons, the VMH was dissected out as follows: after brief anesthetization with isoflurane, mice were decapitated, and the whole brain was removed. Frontal sections of the hypothalamus were prepared using a brain matrix (1 mm thick), and the VMH was microdissected under a fluorescence stereomicroscope (Nikon, stereozoom SMZ1500), frozen immediately in dry ice, and stored at −80°C. For immunoblot assay, the tissue samples were lysed with RIPA buffer (J63306, Alfa Aesar) with a protease inhibitor cocktail and phosphatase inhibitors. The lysates were subsequently sonicated with 5 seconds pulse at 20% power using a probe sonicator and incubated on ice for 30 min. Lysates were centrifuged at 18000 x g for 15 min at 4 °C, and supernatants containing protein extracts were subjected to SDS-PAGE and immunoblot assay. The proteins were electrophoresed on a 10% SDS-polyacrylamide gel, then subsequently transferred to PVDF membrane. The membranes were probed with antibodies against Ano4.
(1:200, #MBS8506049, Biocompare), and antibody against GAPDH (1:1000, 92310SF, Cell Signaling Technology). After incubation with primary antibodies overnight at 4°C, the membranes were then incubated with anti-rabbit IgG HRP-linked antibody (7074s, Cell Signaling Technology). For signal development, target bands were detected using darkroom development techniques for chemiluminescence. Bands were quantified using ImageJ software.

Designer Receptors Exclusively Activated by Designer Drugs (DREADD)

Ano4-P2A-Cre and WT littermate male mice (8-10 weeks of age) were anesthetized by isoflurane and received stereotaxic injections of pAAV8/hSyn-DIO-hM3D(Gq)-mCherry (3.2 x 10^{13} VG/ml, #44361, Addgene) in the VMH (AP: + 1.70 mm, ML: + 0.43 mm, DV: +5.62 mm). All mice were allowed to recover for four weeks after surgery. Satiated or overnight fasted mice received i.p. injection of clozapin N-oxide (CNO, 3 mg/kg; #16882, Cayman Chemical Inc.) at 9:00 am in the morning, and food was present at 9:15 am. Food intake was measured at series of time points as indicated in the figures. For glucose measurement, mice were deprived from food from 2 hours prior to the CNO injection in the morning; glucose was measured at 15, 30, 60 and 120 min after i.p. injection of CNO during which period food was absence in the cages.

In another separate studies, plasma insulin, glucagon, corticosterone, norepinephrine and epinephrine levels following CNO injection were measured using mouse insulin (90080, Crystal Chem Inc.), mouse glucagon (10-1281-01, Mercodia), corticosterone (ADI-900-097, Enzo Life), mouse norepinephrine (KA1891, ABNOVA) and mouse epinephrine (KA3837, ABNOVA) ELISA kits according to the manufacturer’s instructions.

STZ treatment

Ano4-P2A-Cre mice and WT littermate male mice (8-12 weeks of age) were anesthetized by isoflurane and received stereotaxic injections of AAV-EF1a-DIO-Kir2.1-P2A-dTomato (29). After
a 4-week recovery, mice were treated with streptozotocin, (STZ, i.p., 160 mg/kg, Millipore Sigma) every week for 2 weeks. STZ was administered immediately after being dissolved into freshly prepared sodium citrate buffer (0.1 M, PH 4.5). Body weight and blood glucose were measured every other day. Plasma insulin, leptin, glucagon, and corticosterone levels were measured using mouse insulin (90080, Crystal Chem Inc.), leptin (ADI-900-019A, Enzo Life), glucagon (10-1281-01, Mercodia), and corticosterone (ADI-900-097, Enzo Life) ELISA kits according to the manufacturer's instructions.

Optogenetic stimulation

We stereotaxically injected AAV-EF1α-DIO-hChR2(H134R)-EYFP into the VMH (200 nl, 6.2x10^{12} GC per ml) of Ano4-P2A-Cre male mice (8-12 weeks of age) to express ChR2 specifically in VMHAno4 neurons. To express ChR2 in the non-Ano4 neurons in the VMH, pAAV-EF1α-DIO-hChR2(H134R)-mCherry (4.1x10^{12} GC per ml, packaged by core facility of Baylor, #37082, Addgene) were injected into the VMH of male Ano4-P2A-Cre mice (8-12 weeks of age). Optogenetic fibers were placed 0.3-0.4 mm above the injection site. Mice were allowed at least for 4 weeks of recovery before experimental stimulation. Blue light (473 nm, 10 ms/pulse, 20 Hz; MGL-FN-589, CNI LASER) was used to experimental stimulation, while yellow light (595 nm, 10 ms/pulse, 20 Hz; MGL-FN-589, CNI LASER) was used as controls. Feeding behavior and blood glucose levels were measured similarly as described above.

Real-time place preference and open field test

The same mice used in the aforementioned optogenetic studies were used here. All tests were performed in a dedicated sound-proof behavioral facility. These mice were brought to the procedure room 2 hours before the start of each test and remained in the same room throughout the test. The conditioned place preference apparatus contained two identical conditioning chambers (chamber 1 and 2) that were connected by an opening (12.5 cm) in the center. Each
The chamber was 50 × 50 × 25 cm (length x width x height) with black pexiglass wall and white pexiglass floor. Blue light (473 nm, 10 ms/pulse, 20 Hz) was shone whenever the mouse entered chamber 2 and ceased when it entered chamber 1. Yellow light (595 nm, 10 ms/pulse, 20 Hz) was used as controls in a different trail. Each trial contained a 10-min recording.

The open-field test was performed in a clear Plexiglas open-field arena (40 cm X 40 cm X30 cm). Mice were placed into the center of the arena and allowed to explore for 5 min as baseline, followed by 5 min blue (473 nm, 10 ms/pulse, 20 Hz) or yellow light (595 nm, 10 ms/pulse, 20 Hz) stimulation.

Statistical analysis

The minimal sample size was pre-determined by the nature of experiments and previous experience. For most of the physiological readouts (body weight, food intake, etc.), 5-10 mice per group were included. The data are presented as mean ± SEM unless otherwise stated. Statistical analyses were performed using GraphPad Prism 9.0 to evaluate normal distribution and variations within and among groups. Methods of statistical analyses were chosen based on the design of each experiment and are indicated in figure legends. p < 0.05 was considered to be statistically significant.

Study approval

Care of all animals and procedures were approved by Baylor College of Medicine Institutional Animal Care and Use Committees.

Data availability

Data are available from the corresponding author upon request.
Acknowledgments

The investigators are supported by grants from the NIH (P01DK113954, R01DK115761, R01DK117281, R01DK125480 and R01DK120858 to YX; K01DK119471 to CW; R01 DK114279, R01DK120858, R01DK109934, R21NS108091 to QT; R01DK104901, R01DK12665 to MF; R01DK129548 to YH; R01MH117089 to MX; P01DK113954-AMC and R01CA193455 to JX), USDA/CRIS (51000-064-01S to YX; 3092-51000-064-02S to MF), DOD W81XWH-19-1-0429 to QT, McKnight Foundation to MX, and American Heart Association Postdoctoral Fellowship (2020AHA000POST000204188 to LT; 20POST35120600 to YH).

Author contributions

LT was involved in experimental design and most procedures, data acquisition, and analyses and writing the manuscript. JCB performed the bioinformatics analysis. Yanlin He and Yang He conducted all electrophysiological experiments and data analysis. Hesong Liu, MY, Hailan Liu, NZ, NY, JH, NAS, KC, MW, BF, PG, and YL contributed to the generation of study mice and data analysis. MF, MX, QT, YY, JX, CW, and Yanlin He participated in the designs of experiments and discussions of results. Yanlin He and XY are the guarantors of this work and, as such, had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Disclosure summary: The authors have nothing to disclose.
Reference

34. Verberne AJM, Sabetghadam A, and Korim WS. Neural pathways that control the glucose counterregulatory response. *Frontiers in neuroscience.* 2014;8:38-.

Figure 1. Ano4 mediates glucose sensing of VMH GI neurons.

A. Clusters classified as VMH neurons mapped in Uniform Manifold Approximation and Projection (UMAP) space, and Ano4 expression in VMH neurons mapped in same UMAP space.

B. Heatmaps for mouse and macaque, where numbers in table-cells represent the number of neurons that co-express the gene from the row, and colors represent the percentage of neurons co-expressing the gene from the row out of the total number of neurons expressing the gene from the column.

C. Typical traces of Ano currents in the dmVMH neurons in the absence or the presence of an Ano inhibitor CaCCinh-A01.

D. Ano current was detected in GI neurons in the dmVMH, but not in GE or NGS neurons (n=6 for GE, n=5 for GI, and n=6 for NGS).

E. Firing frequency and resting membrane potential of GI, GE and NGS neurons in the dmVMH, under glucose exposure from 5 → 1 mM in the absence or the presence of an Ano inhibitor CaCCinh-A01 (n=8 for GE, n=6 for GI, and n=10 for NGS). Data are expressed as mean ± standard errors of the mean. Significant differences between 5 mM glucose and 1 mM glucose are shown as ***p < 0.001 and ****p < 0.0001 (paired t-test for E). N.S. represents non-significant.
Figure 2. Knockout of Ano4 in VMH^{SF1} neurons induces hypoglycemia and blunts counterregulatory response.

A. Schematic representation of CRISPR-mediated knockout of Ano4 in both sides of VMH^{SF1} neurons in SF1-Cre mice.

B-D. Body weight, food intake and blood glucose in male mice (n=10 for Control, and n=7 for Ano4 KO^{SF1}). E-G. Body weight, food intake and blood glucose in female mice (n=10 for Control, and n=7 for Ano4 KO^{SF1}).

H-K. Blood glucose levels and respective area under curve after treatment with 2-DG (300 mg/kg, i.p.) or saline (10 ml/kg, i.p.) in male mice (H-I, n=10 for Control, and n=7 for Ano4 KO^{SF1}) and female mice (J-K, n=7 for Control, and n=6 for Ano4 KO^{SF1}).

L-N. Response to repeated treatment with 2-DG (300 mg/kg, i.p.) with glucose measurement on day one and day four in female mice (n=7 for Control, and n=6 for Ano4 KO^{SF1}).

O-R. Blood glucose levels (O) and glucose infusion rate (P) throughout the recording of hyperinsulinemic-hypoglycemic clamp in male mice (n=5 for Control and Ano4 KO^{SF1}). Blood glucagon and corticosterone levels at the fixed hypoglycemic status (Q-R, n=5 for Control and Ano4 KO^{SF1}).

Data are expressed as mean ± standard errors of the mean. Significant differences between control and Ano4 KO^{SF1} groups are shown as *p < 0.05, **p < 0.01 and ***p < 0.01 (Student's t-test for D, G, Q and R; Two-way analysis of variance (ANOVA) followed by Bonferroni tests for E, H, I, J, K, M, N and P).
Figure 3. Electrical responses of VMHAno4 neurons to glucose fluctuation.

A. Experimental illustration of a recorded VMHAno4 neuron.

B-D. Firing frequency, resting membrane potential and percentages of GI and NGS neurons in VMHAno4 neurons under glucose exposure from 5 → 1 mM (n=0 for GE, n=21 for GI, and n=6 for NGS).

E. Ano current detected in GI VMHAno4 neurons, and was minimal in NGS VMHAno4 neurons (n=6 for GI and NGS).

F-G. Firing frequency, resting membrane potential of VMHAno4 neurons under glucose exposure from 5 mM → 2.5 mM → 1 mM (n=13).

H. Ano current detected in VMHAno4 neurons under different glucose fluctuations from 5 mM → 2.5 mM → 1 mM (n=5).

I. Ano current detected in VMHAno4 neurons under different glucose fluctuation was blocked by Compound C (n=5).

J-K. Firing frequency and resting membrane potential of VMHAno4 neurons in response to low glucose in the presence of AMPK blocker Compound C (10 µM) (n=11).

Data are expressed as mean ± standard errors of the mean. Significant differences between 5 mM glucose and 1 mM glucose are shown as ****p < 0.0001 (Paired t-test for B, C, F, G, J and K; Two-way ANOVA followed by Bonferroni tests for E and H). N.S. represents non-significant.
Figure 4. Effects of VMH^{Ano4} neurons on feeding and glycemic control.

A. Schematic diagram of injection of AAV8-hSyn-DIO-hM3D(Gq)-mCherry into the VMH in Ano4-P2A-Cre mice (male, 8-10 weeks of age).

B-C. Food intake in both satiated and fasted condition following activation of VMH^{Ano4} neurons via CNO injection (n=8 for WT, and n=9 for Ano4-P2A-Cre).

D-E. Activation of VMH^{Ano4} neurons elicits hyperglycemia (n=8 for WT, and n=9 for Ano4-P2A-Cre).

F-J. Circulating concentrations of insulin, glucagon, corticosterone, norepinephrine, and epinephrine levels after activation of VMH^{Ano4} neurons (n=8 for WT, and n=9 for Ano4-P2A-Cre).

K-L. Glucose levels during glucose tolerance test (GTT) after CNO injection (n=8 for WT, and n=9 for Ano4-P2A-Cre).

M-N. Glucose levels during Insulin tolerance test (ITT) after CNO injection (n=8 for WT, and n=9 for Ano4-P2A-Cre).

O-P. Glucose levels during 2-DG-induced glucopenia after CNO injection (n=8 for WT, and n=9 for Ano4-P2A-Cre).

Q. Schematic diagram of injection of AAV-EF1a-DIO-Kir2.1-P2A-dTOMATO into the VMH in Ano4-P2A-Cre mice.

R-S. Weekly blood glucose and body weight in STZ-treated mice (n=7 for control, and n=10 for Kir2.1).

T-W. Blood glucagon, insulin, corticosterone and leptin levels two weeks after STZ treatment (n=7 for control, and n=10 for Kir2.1).

Data are expressed as mean ± standard errors of the mean. Significant differences between Control and Ano4-P2A-Cre groups are shown as *p < 0.05, **p < 0.01 and ***p < 0.001 (Student’s t-test for E, H, I, L, N and W, and Two-way analysis of variance (ANOVA) followed by Bonferroni tests for B, C, D, K, M, O, R, and S).
Figure 5. Optogenetic stimulation of VMH^{Ano4} neurons promotes food intake, induces hyperglycemia and transmits a positive valance.

A. Schematic representation of injection of AAV2-EF1a-DIO-hChR2 (H134R)-EFYP into the VMH and implantation of optical fiber in Ano4-P2A-Cre mice (male, 8-12 weeks of age).

B-C. Effects of optogenetic stimulation of VMH^{Ano4} neurons on food intake in satiated (B) and fasted condition (C) (n=12).

D-K. Effects of optogenetic stimulation of VMH^{Ano4} neurons on blood glucose in a basal state (D-E), in glucose tolerance test (F-G), in insulin sensitivity test (H-I) or during glucopenia induced by 2-DG (J-K) (n=12).

L-N. Time spent, and distance travelled and velocity in each respective chamber for Ano4-P2A-Cre mice with injection of AAV2-EF1a-DIO-hChR2 (H134R)-EFYP into the VMH during real-time place preference test (n=12).

O-Q. Distance travelled, velocity and time spent in the center for Ano4-P2A-Cre mice with injection of AAV2-EF1a-DIO-hChR2 (H134R)-EFYP into the VMH during open field test. BS refers to baseline (n=12).

Data are expressed as mean ± standard errors of the mean. Significant differences between groups are shown as *p < 0.05 and **p < 0.01 (Two-way ANOVA followed by Bonferroni tests for D, H and J, paired t-test for B, E, I and K, and Student’s t-test for L). Red arrows indicate where glucose (F), insulin (H) or 2-DG (J) was injected.
Figure 6. Optogenetic stimulation of VMHnon-Ano4 neurons suppresses food intake and induces a negative valance.

A. Schematic representation of injection of pAAV-EF1a-DO-hChR2 (H134R)-mCherry into the VMH and implantation of optical fiber in Ano4-P2A-Cre mice (male, 8-12 weeks of age).

B-C. Effects of optogenetic stimulation of VMHnon-Ano4 neurons on food intake in satiated (B) and fasted (C) condition mice (n=9).

D-K. Effects of optogenetic activation of VMHnon-Ano4 neurons on blood glucose level in a basal state (D-E), in glucose tolerance test (F-G), in insulin sensitivity test (H-I) or 2-DG-induced glucopenia (J-K) (n=9).

L-N. Time spent, and distance travelled and velocity in each respective chamber for Ano4-P2A-Cre mice with injection of pAAV-EF1a-DO-hChR2 (H134R)-mCherry into the VMH during real-time place preference test (n=9).

O-Q. Distance travelled, velocity and time spent in the center for Ano4-P2A-Cre mice with injection of pAAV-EF1a-DO-hChR2 (H134R)-mCherry into the VMH during open field test. BS refers to baseline (n=9).

Data are expressed as mean ± standard errors of the mean. Significant differences between groups are shown as *p < 0.05, **p < 0.01 and ***p < 0.001 (paired t-test for B, C, E, O and P, and Student’s t-test for L and M). Red arrows indicate where glucose (F), insulin (H) or 2-DG (J) was injected.