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Abstract 1 
Systemic autoimmune and autoinflammatory diseases are characterized by genetic and cellular heterogeneity. 2 

While current single-cell genomics methods provide insights into known disease subtypes, these analysis 3 

methods do not readily reveal novel cell-type perturbation programs shared amongst distinct patient subsets. 4 

Here, we performed single-cell RNA-Seq of PBMCs of systemic juvenile idiopathic arthritis (SJIA) patients with 5 

diverse clinical manifestations, including macrophage activation syndrome (MAS) and lung disease (LD). We 6 

introduced two new computational frameworks called UDON and SATAY-UDON which define new patient 7 

subtypes based on their underlying disrupted cellular programs as well as associated biomarkers or clinical 8 

features. Among twelve independently identified subtypes, this analysis uncovered a novel complement and 9 

interferon activation program identified in SJIA-LD monocytes. Extending these analyses to adult and pediatric 10 

lupus patients found      new but also shared disease programs with SJIA, including interferon and complement 11 

activation. Finally, supervised comparison of these programs in a compiled single-cell pan-immune atlas of over 12 

1,000 healthy donors found      a handful of normal healthy donors with evidence of early inflammatory activation 13 

in subsets of monocytes and platelets, nominating new possible biomarkers for early disease detection.  Thus, 14 

integrative pan-immune single-cell analysis resolved      new conserved gene programs underlying inflammatory 15 

disease pathogenesis and associated complications. 16 

 17 
 18 
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Introduction  1 

 2 

 3 

Diseases of the immune system associated with systemic autoimmunity and autoinflammation can result in 4 

significant health burdens, which in many disorders include a high-risk for life-threatening complications. 5 

Inflammatory diseases are believed to evolve from complex underlying etiologies, including both genetic and 6 

environmental, and include common disorders such as type I diabetes to relatively rare but serious disorders 7 

such as Systemic juvenile idiopathic arthritis (SJIA). The immunopathogenesis of SJIA is multifaceted, with 8 

features of myeloid activation, autoimmunity, classical autoinflammation, and interferonopathy linked to disease 9 

heterogeneity and complications (1)..Recently, single-cell RNA-Sequencing (scRNA-Seq) has elucidated       10 

underlying gene expression and genetic associations, through independent population-level and focused 11 

diseased cohort analyses in disorders such as systemic lupus erythematosus (SLE) (2). Such analyses have led 12 

to important insights into gene expression impacts in myeloid and lymphoid cell populations that are associated 13 

with common genetic variation, when considering nearly a thousand healthy donors (3).  14 

While single-cell genomics provides the opportunity to understand cellular, molecular and genetic 15 

associations among patients and controls, existing approaches are focused on harmonization of cells across 16 

patients without considering novel patient subsets associated with distinct gene regulatory programs (4). Such 17 

analyses are crucial in systemic inflammatory disorders such as SJIA and SLE, in which patients are 18 

characterized by diverse disease states associated with different inflammatory signaling and immune-cell 19 

specific impacts, that often remain largely unknown. Indeed, given the large incidence of autoimmune disease 20 

within the population (~7%), it is likely that many presumably healthy patients have underlying autoimmune 21 

dysfunction that has not yet manifested in diagnosed disease. Hence, new integrative analysis and strategies 22 

that leverage large cohorts of      controls and patient samples from distinct inflammatory disorders are required 23 

to begin understanding the novel common and unique autoimmune cellular programs and their functional 24 

relationship to patient phenotypes.  25 

To address these challenges, we developed a new computational framework designed to exploit 26 

differences in the gene expression programs of individual patients versus presumed healthy controls, at the level 27 

of individual cell-type. This workflow, Unsupervised Discovery Of Novel disease programs or UDON, is designed 28 

to discover both known and new disease subtypes associated with coherent gene-expression differences unique 29 

to a subset of patients. These subtypes comprise both patient samples and cell-types, associated with distinct 30 

gene expression modules. By discerning such patient-cell type subsets, we can readily identify clinical (e.g., 31 

histologic) or laboratory (e.g., biomarker) covariates for each cell-type that are associated with different UDON 32 

clusters (SATAY-UDON). First, to assess the ability of this approach to resolve new disease subsets, we 33 

performed the first in-depth scRNA-Seq of a comprehensive patient cohort of SJIA with clinically diverse 34 

etiologies (active disease, inactive disease, SJIA-associated lung disease (SJIA-LD), SJIA-macrophage 35 
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activation syndrome (MAS)) and matched pediatric healthy controls. In addition to resolving entirely new cellular 1 

and molecular subtypes of SJIA, these analyses identify peripheral biomarkers that predict distinct inflammatory 2 

responses including multiple divergent myeloid      phenotypes.      W     e find a novel complement and interferon 3 

(IFN) activation program enriched in SJIA-LD monocytes and confirmed from the serum of independent patients. 4 

To broadly assess systemic inflammatory disease subtypes, we      performed a comprehensive pan-immune 5 

single-cell survey of de novo subtypes in over 1,000 autoimmune disease (SLE) and healthy donors, to identify 6 

both SJIA-     specific as well as broadly conserved transcriptional programs. These data provide critical new 7 

insights into SJIA pathogenesis     ,      the broader transcriptional landscape present in systemic inflammatory 8 

diseases, and the conserved inflammatory programs      in subsets of      healthy donors. 9 

 10 

 11 
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Results  1 

 2 

Peripheral blood mononuclear cell populations defined in children with SJIA, SJIA-MAS, and SJIA-LD 3 

While adult and pediatric forms of SLE have been extensively characterized through scRNA-Seq (2), other 4 

severe systemic inflammatory disorders such as SJIA have not. To define the immune landscape of SJIA, we 5 

performed scRNA-Seq analysis on PBMCs from a cohort of patients across disease activity and      complications. 6 

Clinical disease course and treatment response in SJIA is highly variable; in addition, some children experience 7 

potentially fatal episodes of macrophage activation syndrome (SJIA-MAS). SJIA-MAS represents a systemic 8 

cytokine storm syndrome considered a form of secondary hemophagocytic lymphohistiocytosis characterized by 9 

decreased cytolytic function, excessive activation of hemophagocytic macrophages, and expansion of T cells (5, 10 

6). Chronic lung disease (SJIA-LD) is an increasingly recognized pulmonary complication encompassing varying 11 

levels of pulmonary alveolar proteinosis (PAP), pulmonary artery hypertension, and fibrosis. 80% of SJIA-LD 12 

patients also have a history of MAS, suggesting these complications are pathogenically linked (7, 8). Samples 13 

were obtained from 20 children with SJIA (5 inactive SJIA, 7 active SJIA, 7 SJIA-LD (6 individual patients, one 14 

patient sampled twice indicated as “A” and “B”) and 2 SJIA-MAS), as well as 5 pediatric healthy controls (Figure 15 

1A). All active SJIA and SJIA-MAS patients, and 4/7 SJIA-LD samples, had clinical features of active disease at 16 

time of sampling. Treatments included biologic therapy and/or steroids for most patients; some patients with 17 

active SJIA were newly diagnosed and sampled prior to initiation of therapy (Figure 1B, Supplementary Table 18 

1). Laboratory parameters including serum ferritin, IL-18, CXCL9 and S100 proteins were frequently elevated 19 

particularly in active SJIA, SJIA-MAS and SJIA-LD patient samples, while most parameters were normal in 20 

inactive SJIA patients (Supplementary Table 2, Figure 1B). 21 

We integrated all patient and healthy donor PBMCs (n=234,128 cells), considering possible donor and disease 22 

differences,      to produce a compendium of 30 candidate cell populations (Figure 1C, Methods). These 23 

populations were annotated using a      well-curated PBMC reference dataset using      Azimuth (9) and manual 24 

annotation (Methods, Supplementary Tables 3-4). These included all major blood constituents, including B 25 

cells, T cells, Monocytes, DCs (dendritic cells), NK (Natural killer) cells, Erythrocytes, Platelets, in addition to 26 

sub-cell-     types with distinct      marker genes      (Figure 1D). No donor-specific cell populations were observed, 27 

except certain      erythrocyte populations were highly enriched for one patient with MAS, which is a common 28 

observation in highly active SJIA-MAS and HLH patients (Supplementary Figure 1) (10). 29 

Comparing      cell-     type frequencies among patients and controls in this integrated compendium nominates 30 

somewhat consistent differences among these clinically defined patient subsets (Figure 1E, Supplementary 31 

Figure 1).  We find that active SJIA and SJIA-LD patients have by trend increased NK cells, while Platelets and 32 
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Platelet Megakaryocyte were lesser      in controls and inactive SJIA patients. Additionally, there was a 1 

significantly      lower proportion of MAIT cells      in all patients as compared to controls, while Erythrocytes and 2 

double negative T cells (dNTs)      increased by trend in the SJIA-MAS patients (Figure 1E, Supplementary 3 

Figure 1-2). Significantly lower proportions ( > 5%, t-test p-value< 0.05) of CD4 Naive and CD8 TEM cells were 4 

observed in SJIA-LD as well as active and inactive SJIA, respectively, as compared to controls (Supplementary 5 

Table 3). 6 

SJIA-MAS patients are distinguished from other SJIA patients by a highly expressed interferon      gene 7 

signature 8 

Distinctive, but often overlapping transcriptional signatures have been identified in SJIA, including interleukin 9 

(IL)-1, IL-18 and Toll-like receptors (TLRs), and      inflammasome signaling (11–14), while its complications 10 

SJIA-MAS and SJIA-LD have been linked to both type I and type II interferon pathway activation (7, 15, 16).  In 11 

order to define dysregulated gene expression signatures in SJIA, we first identified differentially expressed genes 12 

(DEGs) comparing all patients for each clinical subtype versus controls using the software cellHarmony (17). 13 

Here, rather than compare individual cells, we pooled all cells from each patient cell-population into cell-type 14 

pseudobulks for disease versus healthy control comparisons, to increase rigor. cellHarmony found that the 15 

transcriptional landscape of SJIA-LD and SJIA-MAS was more dysregulated than clinically inactive or active 16 

SJIA patients.      SJIA-MAS MAIT cells were the most dysregulated cell-     type with 614 upregulated DEGs 17 

(Supplementary Figure 3). Comparing      all active SJIA, SJIA-MAS, and SJIA-LD patients into a combined 18 

disease group versus only the healthy controls, we observed 467 commonly deregulated genes, including 18 19 

genes, associated with myeloid populations, previously described as significantly up- or downregulated in a 20 

PBMCs bulk gene expression study      (13) (Figure 2A).  21 

     We assessed cellHarmony-derived signatures using gene set enrichment to identify the unique and shared 22 

gene programs among these different clinical subsets. Pairwise comparison of all 306 SJIA regulated 23 

cellHarmony gene-sets (up- and down-regulated), identified 22 overlapping gene clusters of modules (M) shared 24 

in at least 3 signatures, typically associated with different SJIA subtypes in the same or related cell-types (Figure 25 

2B, Methods). The largest module represented shared down-regulated genes in diverse lymphoid cell 26 

populations, principally associated with SJIA-LD but including SJIA-MAS and a     ctive SJIA (M22). The other 27 

two largest modules represent up-regulated genes shared among lymphoid cell populations in SJIA-LD (M1) or 28 

SJIA-MAS (M2), which showed weak but significant association with each other. Other commonly dysregulated 29 

cell-type gene programs were found in Monocytic (M3, M4, M14, M21), Plasmablast (M6, M13), B-cell (M7, M10, 30 

M16, M19), T/NK cell (M15, M18, M20), platelets (M17), erythroid (M12) and HSCP (M5, M11). Gene-network 31 

analysis of these sets highlighted important commonalities and differences. Specifically, STAT1 and MYC were 32 

predicted as key transcriptional regulators in SJIA-LD lymphoid populations (M1), while STAT1 and IRF1 were 33 
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the dominant predicted regulators      in SJIA-MAS (M2), suggesting both commonalities and differences in the 1 

IFN signature in these patient types (Figure 2C and Supplementary Figure 4). While much smaller, the down-2 

regulated lymphoid (M16) and B-cell differentiation (M22) modules were also denoted by different predicted core 3 

regulators (CTCF and RBL2 vs. JUN and JUND, respectively) (Supplementary Figure 4). Comparison of 4 

dysregulated Gene Ontology terms showed M2 (SJIA-MAS) resulted in the broadest group of transcripts 5 

corresponding to diverse processes, while the other sets tended to show more specific modulation of processes 6 

involved in epigenetic regulation, focal adhesion, proliferation, inflammatory signaling, TNF and mTOR signaling, 7 

among others (Figure 2D). Hence, these data indicate both shared and unique      gene networks, that 8 

differentially impinge upon broad chromatin regulators and inflammatory signaling pathways. 9 

The above findings and previous studies suggest that IFNs play a key role in the disease pathogenesis of SJIA-10 

MAS and SJIA-LD.      T     o further determine IFN responses across PBMC, we performed visualization of  11 

previously defined IFN modules from whole blood, which finds substantial variation in the cellular source for 12 

different IFN mediated genes (Figure 2E) (2, 7, 16, 18, 19). Specifically, we observe a shared CD4 IFN+-cell 13 

specific induction of IFN genes in active SJIA, SJIA-LD, and SJIA-MAS associated with a subset of IFN-targets 14 

(most pronounced in module 1.2, which is predominantly driven by IFNβ, a type I IFN) and expanding pan-IFN 15 

response most strongly in SJIA-MAS spanning the majority of myeloid, lymphoid and B-cell populations 16 

(particularly in the IFNγ driven modules 3.4 and 5.12) (Figure 2E, Supplementary Figure 5). Such impacts were 17 

not observed in control and inactive SJIA patients, which had few upregulated IFN related genes.  18 

Transcriptional activation in monocytes and changes in lymphocyte cell frequency separate ongoing 19 

disease from inactive SJIA and controls 20 

Monocytes are considered as      central pathogenic drivers of SJIA and targeting of monocyte-derived pro-21 

inflammatory cytokines is considered first line therapy. We identified four distinct monocytic      populations in 22 

our patient compendium, CD14+ (classical), CD16+ (non-classical), intermediate, and an unclassified population 23 

(monocyte undefined) (Figure 3A-B, Supplementary Tables 3-4). These populations had varying frequency 24 

among      individual patients, although 6/7 SJIA-LD samples show less      intermediate monocytes (Figure 3C). 25 

These intermediate monocytes presented a mix of CD14 and CD16 monocyte features, with fewer discriminating 26 

features. We questioned      how previously described alternations in SJIA monocytes mapped across these 27 

cellular subpopulations. Supervised comparison to a prior blood monocyte gene signature from SJIA patients 28 

with high serum ferritin (20) found three distinct gene modules, segregated by these myeloid populations     29 

(Figure 3D). Cluster 1 genes were enriched in IL-8 signaling markers, with the highest expression in CD16+ 30 

monocytes in SJIA-MAS (Figure 3E). Cluster 2 was characterized by preferential expression in CD14+ 31 

monocytes in active disease groups           (Figure 3D), with      enrichment for IL-1 signaling, endogenous TLR 32 

signaling, and IFN signaling (Figure 3E). Cluster 3 was most dominant in the undefined monocyte population, 33 
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enriched in centrosome and mitosis and included MTOR, IL5RA, and IL11RA (Figure 3D-E). Hence, we find      1 

monocytic subsets that are preferentially enriched, but not restricted to distinct SJIA clinical phenotypes, and      2 

associated with multiple signaling and proliferative processes.  3 

We next examined the relative abundance and activation state of lymphocyte populations in SJIA. Here, we find 4 

profound differences in the distribution of T cell populations      identified across SJIA patients (Figure 3F, 5 

Supplementary Figure 6). Considering all disease groups (active SJIA, SJIA-LD and SJIA-MAS) relative to 6 

inactive SJIA and controls, we find a broad decrease in CD4 Naïve, CD4 TCM, CD8 Mixed cells and MAIT cells 7 

(Figure 3 G-H). Recent data suggest      the cytokine environment in SJIA may alter T cell polarization      and 8 

represent a new possible avenue of therapy (21). Analysis of T cell polarization marker genes for Th1, Th2 and 9 

Th17 finds slightly higher expression of both Th1 (CCL4, IFNG, TBX21) and Th2 (CCR3, CCR6) markers in 10 

active SJIA, SJIA-LD, and MAS (Supplementary Figure 7), suggesting a shift from more naïve to more active 11 

T cell populations in SJIA. While there is some patient-level variation, we observed no significant differences in 12 

relative abundance of the other main cell-     types      (B cells, NK cells, Platelets and Erythrocytes, DCs and 13 

HSCPs) (Supplementary Figures 8-11). 14 

Unsupervised discovery with UDON finds complement activation in the monocytes of SJIA-LD and a 15 

subset of active SJIA patients 16 

The above findings, including IFN pathway activation, monocyte activation and changes in the T cell 17 

compartment, provide important insights into the broad pathogenesis of SJIA. However, given the significant 18 

patient-level clinical heterogeneity in SJIA (Figure 1B), we reasoned that clinical disease groups such as 19 

“active”, “inactive”, and “MAS” may be largely arbitrary, with respect to the underlying biology. To address this      20 

limitation, we developed an unsupervised strategy to uncover de novo shared transcriptional programs and 21 

patient subtypes that extends to      cell-type level     . Rather than focus on the individual cells, our approach, 22 

called UDON, specifically considers transcriptomic differences for each patient cell-     type specific pseudobulk, 23 

compared to the combination of controls for that cell-type (Figure 4A). This approach collapses gene expression 24 

for all cells in a cell-population into a single vector     . As this vector is normalized against the average gene 25 

expression profile of all healthy matched controls for the same cell-type, only patient-specific disease patterns 26 

should emerge. Unsupervised clustering of these control normalized patient pseudobulk differentials is 27 

performed in the software ICGS2 to find shared disease-specific gene expression programs that emerge from 28 

all cell populations, patients and genes (Methods) (22, 23). To inform underlying biology, UDON reports the 29 

dominant impacted pathways for each discovered UDON gene cluster (Figure 4A). In contrast to other 30 

approaches such as covarying neighborhood analysis (CNA), that identify gene modules that covary across 31 

samples, UDON identifies pseudobulk clusters and their most discriminate markers (4). When applied to our 32 

SJIA cohort, UDON found 12 distinct clusters, which include those enriched in type I and II IFN signaling (U12), 33 



 

9 

 

T cell cytotoxicity/IL12 (U4), Erythrocyte Development (U2) and Macrophage polarization (U10). Importantly, we 1 

were able to confirm the existence of all UDON clusters by using      bulk      transcriptomes of two independent 2 

SJIA cohorts (201 subjects and 53 controls (13, 24), which demonstrate these signatures in subsets of patients.      3 

(Figure 4B, Table 1, Supplementary Figure 12, Supplementary Tables 5-6). While UDON clusters were 4 

derived from a small number of patients with SJIA-MAS, bulk PBMC transcriptomes from previously reported 5 

MAS patients (n=5)(13) further display the same enrichment of type I and II IFN signaling (U12)     .           Finally, 6 

u     sing CNA, we      identified 7 out of the 12 UDON clusters, based on the comparison of top correlated genes 7 

from CNA’s reported top 10 principal components (Supplementary Figure 13, Supplementary Table 7, 8 

Methods), further supporting the validity of UDON clusters. As UDON is a fully unsupervised approach, with no 9 

prior imposed gene sets, a potential limitation is that individual UDON clusters can be composed entirely of 10 

pseudobulks derived from only one patient. Nonetheless, we observed no UDON clusters derived from a single 11 

patient or from only one disease group, and cell-     types did not exclusively group together in the same UDON 12 

clusters (except U5), indicating clusters are driven rather by gene programs expressed across cell-     types 13 

(Figure 4C-F). To confirm UDON results are stable with different target clustering resolutions or fewer samples, 14 

we tested a range of clustering resolutions and a reduced dataset of patients and controls (Methods). These 15 

analyses demonstrate that UDON is      highly consistent when most      patients that comprise an UDON cluster 16 

are present (Supplementary Table 8, Supplementary Figure 14).  17 

 18 

Two UDON clusters, U4 (T cell cytotoxicity/IL-12) and U6 (complement induction), were      particularly surprising 19 

in our analysis which result in      distinct inflammatory pathways unique to active and SJIA-LD      (Figure 4G).      20 

Specifically     , U6 was intriguing as it was consistently induced in monocytes and pre-DC from all SJIA-LD 21 

patients, including complement genes C1QA-C along with IFITM3 and FLT3. This cluster was further 22 

characterized by induction of surfactant genes SFTPA1, SFTPA2 and SFTPB, which is particularly striking given 23 

the association of U6 with SJIA-LD pseudobulks (FDR-adjusted p-value < 0.1)      and the histologic finding of 24 

dysregulated surfactant processing and PAP in such patients (7) (Table 1, Methods).      Complement activation 25 

has not been well described in SJIA      pathogenesis; thus we performed an external validation for complement 26 

components in SJIA patient serum (Figure 4H, Supplementary Figure 15). Using ELISA, we found significantly 27 

elevated levels of C9 in SJIA-LD, SJIA-MAS and active SJIA patients compared to controls or inactive SJIA 28 

patients. Significantly elevated levels for C5a were also observed for active SJIA patients versus controls and 29 

inactive SJIA, while C4 was elevated by trend in SJIA-LD and SJIA-MAS patients compared to controls (Figure 30 

4H, Supplementary Figure 15), supporting that enhanced monocytic and macrophage production of 31 

complement represents a high-value target for further research.  32 

Identification of new cellular phenotypes associated with de novo SJIA subtypes using SATAY-UDON 33 

 34 
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While UDON clusters provide intriguing putative insights into cellular and patient heterogeneity with disease, to 1 

understand complex phenotypic associations, we require      methods to link clinical and diagnostic assay 2 

metadata with these predictions. To solve this challenge, we developed an accessory approach called Statistical 3 

Association Test for ClinicAl PhenotYpes (SATAY-UDON). SATAY-UDON considers phenotypes (e.g., disease 4 

classification, histology) and molecular correlates (e.g., metabolic readouts) together with non-redundant donor 5 

and cell-type associations in each UDON cluster using a metadata enrichment protocol (Figure 5A, Methods). 6 

Applied to our SJIA cohort, SATAY-UDON identified 40 phenotype-to-UDON cluster associations, suggesting 7 

patients represented in the UDON clusters share underlying clinical or diagnostic features (Figure 5B, 8 

Supplementary Figure 16). A subset of these SATAY-UDON associations is also identified in the top 5 9 

expanded cell types in CNA’s phenotypic association tests (Supplementary Figure 13C, Methods). Importantly, 10 

nearly all      these observations were unique to UDON clusters as opposed to clinically defined SJIA subtypes.  11 

 12 

     SATAY-UDON finds      a bias towards patients treated with steroids in UDON cluster U2, which contained 13 

genes involved in Erythrocyte differentiation (e.g., FAM10B, FECH, BPGM, and AHSP). All U2 were immature 14 

Erythrocytes from three active SJIA, three SJIA-LD and one SJIA-MAS sample. In contrast, U1 was associated 15 

with Fever, which was also comprised of Erythrocytes (and Platelets) and enriched in genes encoding 16 

Hemoglobin subunits as opposed to differentiation (Supplementary Figure 17, Table 1).  17 

 18 

In UDON cluster U4, we observe a strong association with high Absolute Neutrophil Count (ANC) and higher C-19 

reactive protein (CRP), well accepted markers for high underlying disease activity in SJIA (Figure 5B, 20 

Supplementary Figure 17). U4 consists primarily of cytotoxic T cells and CD4 and CD8 Mixed cells from three 21 

different active SJIA samples and 5 SJIA-LD samples. U4 marker genes are enriched in IL-12 mediated signaling 22 

and predicted cytotoxicity associated genes (e.g., KLRF1, PRF1, CCL4) (Supplementary Figure 17, Table 1).  23 

 24 

Intriguingly, UDON cluster U12 showed associations of both Fever (with CD16 Monocytes, preDCs) and CXCL9 25 

secretion (several myeloid and lymphoid populations), comprising all MAS patients plus one defined as active 26 

SJIA but noted to have subclinical MAS, further validating the clinical connection between these patients. U12 27 

was principally associated with type I and II IFN signaling, with IFNγ as the central driver of CXCL9 secretion 28 

(16). A more focused transcriptional analysis of CD16+ monocyte pseudobulks found three different CD16+ 29 

monocyte transcriptional phenotypes, associated with distinct inflammatory and RNA-binding pathways, which 30 

subdivided SJIA-LD, active and MAS patients into novel subsets. We identified an expanded U12 cluster of MAS, 31 

active and SJIA-LD patients, as well as a U10 cluster of CD16+ monocyte pseudobulks from active and SJIA-32 

LD patients, both of which were distinct from other CD16+ monocyte pseudobulks. The U10 cluster, defined by 33 

marker genes      IL1R2 and CD163, was associated with elevated S100A12 serum levels. The U12 cluster was 34 

associated with elevated CXCL9 serum levels and upstream of both type I and II IFN pathway genes, we 35 
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observed upregulation of a network of key inflammatory transcription factors previously implicated in IFN 1 

regulation (STAT1, IRF1) (Figure 5C-D). This further supports a central role of CD16 monocytes in driving the 2 

IFN response in SJIA-MAS. 3 

 4 

Finally, UDON cluster U7 cluster, enriched in TLR signaling among Platelets and Megakaryocytes was found to 5 

be associated with elevated serum levels of S100A8/A9 and S100A12. Notably, S100A8 and S100A9 mRNAs 6 

were the principal markers of this population. Unsupervised analysis of these Platelet pseudobulks finds an 7 

expanded U7 cluster comprised of three active and one MAS patient, enriched in genes involved in the induction 8 

of apoptosis (e.g., NOTCH2, TNFSF10) and NF-kappaB signaling (e.g., IRAK1, TRAF3) (Figure 5E-F). Given 9 

emerging data that S100 proteins signal through TLR (25), these findings could indicate a novel mechanism 10 

where platelet-mediated activation via S100 proteins drives inflammation in SJIA. Hence, these findings support 11 

the notion that heterogenous immunological diseases with variable clinical features and biomarkers, may stem 12 

from identifiable cell-type specific disease subtypes.  13 

 14 

UDON clusters represent broadly conserved transcriptional programs across a pan-immune landscape 15 

To determine if these disrupted signaling networks are unique to SJIA or shared across other systemic 16 

inflammatory disorders, we performed a comprehensive pan-immune survey of de novo subtypes, leveraging 17 

existing single-cell profiles from 41 autoimmune disease (SLE) and 982 healthy donors (OneK1K cohort) (2, 18 

3). We first performed UDON on a previously reported cohort of 33 patients with childhood-onset systemic lupus 19 

erythematosus (cSLE), as well as 8 adult SLE (aSLE) patients with matched controls (2). Using our 30 PBMC 20 

cell populations as a common reference, we produced pseudobulk folds for each child and adult relative to their 21 

matched controls. To assess the disease significance, we also produced pseudobulk folds for all healthy controls, 22 

relative to their collective average (Figure 6A, Methods). When applied to these SLE pseudobulk differentials, 23 

UDON found 21 stable clusters, after considering a range of possible resolutions (Figure 6B, Methods). While 24 

most of the UDON clusters were primarily composed of pediatric cases, only three (U5, U16, U19) were unique 25 

to cSLE, and no clusters were unique to a single patient (Supplementary Figure 18). Notably, 8 of the SLE-26 

UDON clusters mapped to at least one SJIA-UDON cluster, with most of the remaining mapping to SJIA cell 27 

and/or subtype signature (e.g., CD16 monocytes in SJIA-LD) (Supplementary Figure      18, Table 2). Further 28 

analysis of SLE UDON cluster U3 showed that this CD14/CD16 monocyte dominated cluster corresponded to 29 

our Complement-associated SJIA-LD enriched cluster U6 and type I and II IFN-associated SJIA-MAS enriched 30 

U12, based on gene-set enrichment (Figure 6C, Supplementary Figure 18). 31 

 32 

To examine the associations of UDON clusters with markers of SLE disease activity, we used SATAY-UDON 33 

with the associated SLE clinical metadata (2), which replicated earlier findings as well as proposed new disease 34 

associations (Figure 6D, Supplementary Figure 19     , Supplementary Table 9). For these analyses, we 35 

employed both the Cochran–Mantel–Haenszel (CMH) procedure to account for covariate association differences 36 
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among adult and pediatric patients in addition to the standard Fisher Exact test, applied separately to each age 1 

group (Methods). Prior work with this cohort demonstrated a strong IFN signature across several cell-types, and 2 

associated abundance of those clusters with higher cSLE disease activity (2, 19). In support of this we find that 3 

SLE UDON clusters that map to IFN signaling (SLE-U3 and SLE-U11) (Supplementary Figure 18) in CD16 4 

Monocytes and B Memory cells are associated with high systemic lupus erythematosus disease activity index 5 

(SLEDAI) scores, as well as in NK cells associated with kidney involvement (adjusted p < 0.1, CMH). More age-6 

specific associations of IFN signaling UDON clusters, U3 and U11, were observed with dsDNA levels, serum 7 

sub-score of the SLEDAI, and pyuria (Figure 6D). 8 

 9 

Strikingly, we also find a previously unrecognized association of higher complement component C4 levels in 10 

children with SLE-U13, which maps to IL-6 mediated signaling events, and this association was driven by a 11 

subset of lymphoid      cell-     types including NK     , CD8 Mixed,      and regulatory T cells. C4 was similarly 12 

associated with IL-5 mediated signaling SLE-U5 cluster, driven by monocytic cell-     types (adjusted p < 0.1 for 13 

CMH test) (Figure 6D). These findings are notable as they nominate gene pathways that may be relevant in 14 

lupus patients without hypocomplementemia. We furthermore identify associations of specific treatments such 15 

as hydroxychloroquine with SLE-U18 (mapping to the clotting cascade), and other age-group specific 16 

associations of SLE-U3 and SLE-U11 with rash, erythrocyte sedimentation rate (ESR) and arthritis in children 17 

(Supplementary Figure 19, Supplementary Table 9). 18 

 19 

Finally, to determine the overall pan-immune landscape of these inflammatory diseases we joint embedded SLE 20 

pseudobulk differentials and those derived from 982 normal donors from the OneK1K cohort into a SJIA-centric 21 

UMAP via UMAP projection. Considering all 30 cell-types we show broad alignment of controls from all three 22 

cohorts with inactive SJIA, as well as alignment of SJIA-MAS with aSLE (Figure 6E-F, Methods). Projecting 23 

labels from SLE to SJIA pseudobulk differentials, we found that the monocytes of a subset of cSLE patients 24 

phenocopy the SJIA macrophage activation (SJIA-U12) (Figure 6G-H). While the OneK1K cohort is comprised 25 

of only presumably healthy controls, it was previously discovered that known and novel autoimmunity quantitative 26 

trait loci associated with distinct autoimmunity implicated regulators in specific cell-     types (3). Given these 27 

results, we projected all healthy control pseudobulks differentials into both SJIA and SLE UDON clusters. 28 

Inspection of these results found that multiple SLE UDON subtypes were assigned to a small number of healthy 29 

controls (Supplementary Figure 18C), including intermediate-monocytes of complement/interferon-associated 30 

SLE-U3 and fibrin clotting-associated platelets from SLE-U18 (Figure 6I Supplementary Figure 19C). These 31 

intriguing findings support the hypothesis that single-cell genomics can identify emerging conserved autoimmune 32 

programs in health and disease, as well dominate novel diagnostic gene-regulatory programs (Figure 6J). 33 

 34 
 35 
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Discussion 1 

 2 
In this study we discover subtypes of systemic inflammatory disease that selectively associate with clinical 3 

features and biomarkers. To overcome existing analytical limitations, we defined a new computational approach 4 

to define subtypes that redraw established clinical classifications through transcriptomics      at the level of 5 

individual cell-types. These data suggest the existence of conserved, pre-specified gene programs within the 6 

same or similar cell-     types in distinct system inflammatory disorders.      O     ur focused analysis of SJIA 7 

reveals distinct impacted inflammatory pathways that resolve different stages of disease, including active 8 

disease, inactive disease and MAS. Although prior work has identified potential pathogenic programs in SJIA 9 

including monocyte, neutrophil, T and B cell activation (12, 20, 26–29), the underlying causes and contributors 10 

to this heterogeneity remain unknown. Here, our initial analysis revealed activation of IFN-     related genes 11 

across multiple cell-     types particularly in SJIA-MAS, distinct transcriptional changes in monocyte populations, 12 

and differences in the T cell compartment. However, given the marked      patient-level heterogeneity, we 13 

developed new methods called UDON and SATAY-UDON to identify and describe novel disease-associated 14 

transcriptional programs implicating new potential drivers of SJIA pathogenesis including IFN activation, multiple 15 

distinct monocyte phenotypes, and platelet activation. Critically we found that many of these transcriptional 16 

programs are broadly conserved across the immune landscape and represent previously hidden drivers of 17 

inflammatory diseases.  18 

 19 

By identifying novel patient subclusters at      individual cell-population level     , UDON can overcome an inherent 20 

limitation of existing supervised comparison methods. A      principal aim of single-cell genomics analysis is the 21 

ability to not only resolve cell-populations, but also complex underlying disease programs.      UDON exploits 22 

well-established integration and single-cell clustering approaches to define patient-specific differences that 23 

underlie hidden disease programs. While the number of donors maybe limited within this cohort, w     e 24 

orthogonally confirmed the presence of UDON signatures using independent bulk transcriptomic cohorts of SJIA, 25 

CNA, and experimental validations. SATAY-UDON then further illustrates how these previously hidden programs 26 

are associated with      clinical      measures     . Together, UDON and SATAY-UDON predictions provide new 27 

insights such as the predominance of IFN-driven activation in SJIA-MAS, and a monocytic-driven complement 28 

and interferon phenotype      in SJIA-LD.  29 

 30 

Critically, we found that UDON clusters represent not just features of SJIA pathogenesis, but broadly conserved 31 

transcriptional programs present across inflammatory disease states. We identified homologous UDON clusters 32 

present in both adult and childhood-onset SLE, with      UDON clusters associated with distinct clinical and 33 

serological markers of lupus disease activity. Projecting transcriptomic data from over 1000 healthy donors and 34 

SLE patients across UDON clusters, we demonstrated that healthy individuals largely diverge from those with 35 
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inflammatory disorders. However, a minority of healthy individuals have UDON clusters that co-segregate with 1 

those from SJIA and SLE patients. It is tempting to speculate that such individuals have subclinical disease or 2 

underlying genetic predisposition to autoimmunity. 3 

 4 

An important example is a new UDON-SJIA cluster dominated by IFN signaling (U12) present in patients with 5 

clinical evidence of overt and subclinical MAS, expressed by CD16+ and intermediate monocytes, preDCs, and 6 

other lymphocytic cell-     types. SATAY-UDON analysis      associated this UDON cluster with elevated levels of 7 

CXCL9, an IFNγ-induced chemokine and specific MAS biomarker (16). These findings align with our 8 

demonstration that the most distinct IFN signature was expressed by monocytic and CD4 IFN+ cells from SJIA-9 

MAS patients, with a lesser degree of elevated expression of these genes for monocytes from active SJIA and 10 

SJIA-LD. Prior work showing that monocytes from SJIA patients and      untreated MAS patients or patients with 11 

secondary hemophagocytic lymphohistiocytosis (sHLH) are hyperresponsive to IFNγ further supports the 12 

hypothesis that this IFN signature driving MAS is  derived from monocytes (20, 30, 31). 13 

 14 

Our analysis also revealed that      distinct monocyte transcriptional programs exist across the SJIA disease 15 

spectrum, including a myeloid polarization cluster (U10), expressed by active SJIA and SJIA-LD patients, and 16 

associated      with elevated S100A12 levels. The transcriptional profiles of CD16+ monocytes in this UDON 17 

cluster showed marked differences from those of other patients, including high CD163 expression, a myeloid 18 

differentiation marker which is responsible for binding and engulfing hemoglobin:haptoglobin complexes. 19 

Intriguingly, elevated CD163 expression has also previously been identified as a marker for patients who fail 20 

anti-IL-1 therapy, further highlighting how different monocyte phenotypes link to disease biology (14). 21 

 22 

UDON intriguingly discovered a      distinct, monocytic driven complement and interferon program (U6), which 23 

was present in      SJIA-LD patients and      several active SJIA patients. This monocyte program is particularly 24 

notable as it also shows high levels of surfactant protein expression; dysregulated surfactant metabolism in the 25 

lungs is a key histologic feature of SJIA-LD (7). SJIA-LD shares characteristics with pulmonary alveolar 26 

proteinosis (PAP), which is defined by intra-alveolar accumulation of surfactant proteins due to impaired 27 

clearance by alveolar macrophages (32). Surfactant expression in circulating monocytes, as seen here, may 28 

reflect a specific subset of blood monocytes primed to migrate into lung tissue, where they subsequently 29 

differentiate into alveolar macrophages (33). This transcriptional program was also found in monocytes of      30 

cSLE patients,      and associated with markers of severe disease activity. 31 

 32 

While      prior work has found increased expression of some      complement pathway genes or proteins in JIA 33 

(34–39), to our knowledge, no study has investigated the involvement of complement in SJIA-LD. The detected 34 

increase of several      serum complement proteins in SJIA patients observed here may partially derive      from 35 

hepatocytes in the liver, which are considered      the predominant source of complement components (40). 36 
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However,      recent scRNA-Seq studies have intriguingly highlighted a distinct monocyte/macrophage subset 1 

expressing C1QA-C in patients with pediatric SLE, Behḉet’s and      Kawasaki disease     ,      adult Rheumatoid 2 

Arthritis, and      bacterial infections (2, 41–44). In addition, a human cross-tissue scRNA-Seq study characterized 3 

a specialized lung alveolar macrophage subset strongly expressing C1QA-C (45), and our recent work examining 4 

lung tissue in a mouse model of MAS found a similar MAS-specific macrophage cell cluster enriched for 5 

complement activation (46). Clinically, low C3/C4, possibly reflecting complement consumption, has been 6 

described in 2 SJIA-MAS patients and 1      adult-onset Still’s disease-MAS (47). Furthermore, a recent study of 7 

23 patients with refractory HLH found 70% simultaneously present with complement mediated thrombotic 8 

microangiopathy (TMA). These authors hypothesized that the high levels of IFNγ in HLH activates complement, 9 

which then causes endothelial injury and damage in TMA (48). Together with the findings of Zheng and 10 

colleagues, who demonstrate that the C1Q-high inflammatory monocyte phenotype present in Behḉet’s disease 11 

patients is in vitro inducible with IFNγ (44), this highlights the potential interactions of complement activation and 12 

IFN signaling in driving pathogenesis in the SJIA clinical spectrum, and the conserved role of this monocytic 13 

program across the pan-immune landscape. 14 

 15 

     SATAY-UDON      revealed an unexpected association of increased serum levels of the alarmin proteins 16 

S100A8/A9 and S100A12 with Platelet Megakaryocytes in UDON cluster U7, which was enriched for genes 17 

involved in TLR signaling. S100A8/A9 has been previously shown to signal through both RAGE and TLR4 to 18 

amplify inflammatory responses, and      is likely the key driver of the TLR signaling pathways detected in U7 19 

(25). Platelet S100A8/A9 levels are also increased in patients with SLE and      peripheral artery      disease and 20 

are thought to promote thrombosis and cardiovascular disease (25, 49, 50). Such elevated Platelet and Platelet 21 

Megakaryocyte frequencies are detected in active SJIA and MAS (58), which supports the novel hypothesis that 22 

in SJIA, activated platelets may contribute to inflammation by releasing S100A8/A9 in the microenvironment to 23 

drive inflammation and thrombosis (50).  24 

 25 

We also find a strong association with well-     described clinical markers of high disease activity in SJIA – both 26 

laboratory parameters (CRP, ANC) and active arthritis – and cytolytic T cell populations in the IL-12 27 

signaling/cytotoxicity cluster U4. Indeed, most cytotoxic T cell pseudobulks were associated with U4, except for 28 

those from the SJIA-MAS patients which rather clustered with the IFN-driven U12. More broadly, our analysis of 29 

the T cell landscape supports a shift from more naïve to more active populations in SJIA. Recent work identifying 30 

a common HLA-DRB1*15 haplotype in many SJIA-LD patients (51) has suggested that this clinical subtype could 31 

have distinct patterns of T cell activation (21). Indeed, our analyses found that lymphocyte population in SJIA-32 

LD have a striking transcriptional signature that has some similarity but is distinct from that seen in SJIA-MAS. 33 

However, we saw similar patterns of Th1/Th2 markers across the active disease populations. We also observed 34 

no changes in Th17 polarization as has been previously reported (26). Intriguingly while the      MAIT cells was 35 

significantly lesser      in the disease group, these cells presented      a strongly dysregulated gene expression 36 
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profile particularly in SJIA-MAS patients, but also in active SJIA and SJIA-LD. Finally, SJIA-MAS patients had      1 

significantly more      dNTs, a cell-     type which was also expanded in pediatric lupus and is proposed to 2 

represent an end-stage T cell subset particularly efficient in cytokine secretion and cytotoxicity (52). While these 3 

clinical associations suggest novel hypotheses underlying the transcriptional programs, precise validation 4 

approaches are required in specific cell-     populations in patients. 5 

 6 

In conclusion, UDON and SATAY-UDON offer a novel exploratory computational strategy to discover distinct 7 

transcriptional programs in large clinically heterogeneous patient cohorts. Through this approach, we find a 8 

previously unexplored shared monocytic complement and interferon gene program in SJIA-LD, which is also 9 

present in lupus and associated with markers of high disease activity. We also discover a role for platelets in 10 

driving SJIA inflammation and evidence for distinct monocyte transcriptional phenotypes present across 11 

inflammatory disorders including lupus, SJIA, and MAS. Importantly, this method highlights heterogenous clinical 12 

phenotypes and serum measurements that underlie these novel subtypes, suggesting transcriptional programs 13 

result in separable and durable disease responses. Together, this approach can identify diverse transcriptional 14 

programs found across cell-     types in severe systemic autoimmune and autoinflammatory disorders. We 15 

anticipate new opportunities to      improve and expand these computational approaches in the future, including 16 

improved means to distinguish cell-type specific heterogeneous diseases impacts and automatically accounting      17 

for potential batch effects in various stages of the analyses.  18 

 19 

 20 

 21 

Methods 22 

Experimental design 23 

This was a      cohort study of children with SJIA, SJIA-MAS, and SJIA-LD.                                    Clinical and 24 

laboratory features were obtained from the electronic medical record using a standardized case report form. All 25 

patients were diagnosed with SJIA based on the International League of Associations for Rheumatology (ILAR) 26 

criteria (53); however, for newly diagnosed patients, samples were obtained and treatment initiated with a 27 

disease duration <6 months, using the operational definition of SJIA (54). Inactive disease was defined based 28 

on the Wallace criteria (55); conversely patients were considered to have active SJIA if they had any active 29 

clinical features including arthritis, rash, fever, adenopathy, hepatosplenomegaly, or elevated c-reactive protein 30 

or erythrocyte sedimentation rate. Patients were diagnosed with MAS based on diagnosis of the treating 31 

physician. Patients were considered to have SJIA-LD if they had both clinical and radiographic features of lung 32 

disease based on definition of probable or definite SJIA-LD (1). 33 

 34 

Sample collection 35 
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Fresh whole blood was collected in CPT tubes by venipuncture, mixed by inverting the tube 8-10 times and then 1 

centrifuged at 1600g, 20 min at room temperature. The cell pellet containing isolated peripheral blood 2 

mononuclear cells (PBMCs) was washed twice with PBS, resuspended at approximately 2-4 x 106 PBMCs/ml in 3 

freezing media (90% FCS/10% DMSO) and stored in liquid nitrogen until further processing. 4 

 5 

Complement protein analysis 6 

Serum levels of complement proteins were analyzed either by Luminex (R&D Systems, Inc., Minneapolis MN, 7 

USA) for C5a, C1q, C4 and MBL, by C9 ELISA (Abcam, Cambridge, United Kingdom) or TCC ELISA 8 

(Mybiosource, San Diego, CA, USA). Statistical analysis was performed with GraphPad Prism 9.3.1. Except 9 

where noted,      results of statistical tests      were significant when p<0.05. 10 

 11 

PBMC isolation and Single-cell RNA-Sequencing 12 

Frozen PBMCs were thawed and washed twice with PBS. Dead cells were removed with dead cell removal kit 13 

following the manufacturer’s instructions (Miltenyi Biotec, Bergisch Gladbach, Germany)), and then resuspended 14 

at 700-1,200 cells/μl in PBS (total count 12,800 cells). Samples were then sequenced with 10x Genomics 15 

(Pleasanton, CA, USA), version Chromium NextGEM (Chemistry: 3’v3 Assay)      16 

                     17 

Single-cell RNA-Seq Analysis 18 

Details on read alignment, cell clustering, differential gene expression analyses, and supervised clustering are 19 

provided in the supplementary methods section. 20 

 21 

UDON 22 

Intuition. UDON is an unsupervised approach to detect novel gene regulatory programs that are common or 23 

different among heterogeneous disease samples based on single-cell RNA-Seq. We assume that prior defined 24 

clinically annotated disease subtypes are imprecise, with the goal of redefining them at a pseudobulk fold level. 25 

UDON leverages the common concept of a pseudobulk profile, which is the average gene expression of a set of 26 

cells (usually from a cell-     type      or a cluster     ) from a donor, patient, or sample. For larger single-cell disease 27 

cohorts, individual patients can have      varying cell-type frequencies     . Combining all cells together without 28 

explicitly considering which cells are associated with which patients, can lead to disease observations      driven 29 

by a single patient; however, pseudobulks provide an effective way around this. The central premise of this 30 

approach is that once cell-types      are defined from a cohort (     outside of this program), case and control 31 

cohort designs can be exploited to identify common gene expression responses between sample-level gene 32 

expression changes in individual cell populations, as opposed to single-cells. Here, populations-level effects 33 

within a sample are defined by first calculating pseudobulks     . Specifically, for the controls within a cohort     , 34 

an aggregate pseudobulk for a cell-population is calculated across all controls. If different controls exist for 35 

different patients, based on age, batch or other factors (referred to here as batch), batch-specific pseudobulks 36 
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are computed. UDON computes fold change between patient-specific pseudobulks compared to the aggregate 1 

controls for each cell-type. In special scenarios, such as the analysis of the OneK1K cohort, pseudobulk fold 2 

changes are also computed for each control donor and cell-type. The fold      change is calculated between the 3 

sample-specific pseudobulks against the aggregate      control pseudobulks. We      cluster pseudobulk fold 4 

change instead of      pseudobulks, as the latter      alone would only identify distinct cell-type clusters, as opposed 5 

to common disease-specific transcriptional differences. Using the pseudobulk fold changes from samples with 6 

disease, the software finds clusters of pseudobulks with common gene expression changes by applying sparse 7 

non-negative matrix factorization (NMF)-based clustering (ICGS2     ). ICGS2 is an unsupervised method to 8 

define populations from bulk or scRNA-Seq in AltAnalyze and defines clusters using iterative guide-gene focused 9 

sample/cell      clustering to find coherent correlated gene modules. UDON is thus fully unsupervised and      10 

independent of prior gene sets and patient subtypes. An UDON cluster can be composed entirely of normalized 11 

pseudobulks from one cell-type or many. It      is a naive subtype identification approach which is only dependent 12 

on the initial cell-type definitions and the selection of explicit control samples. This program can identify patient 13 

populations with or without a pre-imposed k-parameter (desired number of clusters), but only reports NMF-14 

defined clusters with unique marker gene expression. For ICGS2, we used the default program options with the 15 

additional parameters rho set to 0.3, markerPearsonCutoff set to 0.2, k set to a range of tested values (10-30), 16 

and FoldDiff set to 2. A final k resolution of 15 was selected in SJIA and 25 for SLE, as the number of predicted 17 

clusters beyond these numbers failed to substantially increase the number of “stable”      clusters     . For each 18 

cluster, unique marker genes are determined using the MarkerFinder module of AltAnalyze. Table 1 displays the 19 

top 10 unique ranked marker genes using this MarkerFinder statistic. 20 

 21 

Assumptions. We make the following assumptions prior to applying this algorithm: 22 

1. A sufficiently sized cohort of patients is required to identify shared gene expression programs among two 23 

or more patients  24 

2. A relatively homogenous set of controls      is needed.  25 

3. Gene expression datasets have undergone quality control (including batch effect removal) and have been 26 

log-scaled. 27 

4. Cells have a cell-     type annotation assigned manually or from an external program.  28 

5. Phenotypically distinct cells comprise a reasonable subset of those in at least one cell-type from a patient.  29 

6. (If applying SATAY-UDON) There is at least one quantifiable clinical measurement for at least two 30 

disease samples included in the UDON analyses and the clinical measurement is/transformed into a 31 

binary variable.  32 

 33 

Defining sample-level gene expression change between diseased and control samples. Consider a cohort of 𝑑 34 

number of disease samples and ℎ number of healthy samples. L     et 𝐷 and 𝐻 be the gene expression matrices 35 

for disease and healthy samples respectively such that 𝐷𝑖 is a 𝑚 ×  𝑛𝑖 matrix of gene expression, where 𝑚 is 36 
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the number of genes and 𝑛𝑖 is the number of cells for disease sample 𝑖 ∈ [1, 𝑑] and 𝐻𝑖 is a 𝑚 ×  𝑛𝑖 matrix of 1 

gene expression, 𝑖 ∈ [1, ℎ], 2 

 3 

𝐷 = [𝐷1, 𝐷2, … 𝐷𝑑] 4 
𝐻 = [𝐻1, 𝐻2, … 𝐻ℎ] 5 

 6 

Let 𝑗 ∈ [1, 𝑐] where 𝑗 is a cell-     type belonging to 𝑐 cell-     types assigned to the cells of the samples. Then, for 7 

a disease sample 𝑖 ∈ [1, 𝑑], 8 

 9 

𝑃̃𝑖𝑗 =  ∑
𝑛𝑖𝑗

𝑟=1

𝐷𝑖𝑗𝑟

𝑛𝑖𝑗
 10 

 11 

where 𝑃̃𝑖𝑗 is a 𝑚 dimensional vector representing the sample-level disease cell-     type pseudobulk from 𝑛𝑖𝑗 cells 12 

to capture sample-specific gene expression programs.  13 

 14 

The control samples, however, are assumed to be homogenous in UDON and therefore, the cell-     type 15 

pseudobulk 𝑃𝑗 (a 𝑚 dimensional vector) is computed as an aggregate value across all controls. It is defined as:  16 

𝑃𝑗 =  
∑ℎ

𝑖=1 ∑
𝑛𝑖𝑗
𝑟=1 𝐻𝑖𝑗𝑟 ∑

∑ℎ
𝑖=1 𝑛𝑖𝑗

 17 

 18 

The fold change between the disease sample 𝑖 and the controls, for all 𝑗 ∈ [1, 𝑐], is simply defined as: 19 

𝑃̂𝑖𝑗 = 𝑃̃𝑖𝑗 − 𝑃𝑗 20 

where 𝑃̂𝑖𝑗 is a 𝑚 ×  𝑐 matrix.  21 

Lastly, prior to applying the sparse non-negative matrix factorization clustering algorithm to the pseudobulk 22 

profiles, we ensure that 𝑃̂𝑖𝑗 has non-negative entries, a required condition for the algorithm. Now,  23 

𝑃̂𝑖𝑗 =  𝑃̂𝑖𝑗 − 𝑀𝑖𝑗𝑔 24 

where 𝑀𝑖𝑗𝑔 is the minimum value of 𝑃̂𝑖𝑗 for gene 𝑔 ∈ [1, 𝑚].  25 

 26 

Applying sparse non-negative matrix factorization (NMF) for clustering pseudobulk profiles.  27 

Let [𝑃̂𝑖𝑗] be the matrix be the collection of 𝑃̂𝑖𝑗 vectors for all 𝑖 ∈ [1, 𝑑] and 𝑗 ∈ [1, 𝑐]. We provide [𝑃̂𝑖𝑗] as the input 28 

for      ICGS2, which applies the sparse non-negative matrix factorization (NMF) algorithm to cluster the 29 

pseudobulk profiles (the columns of [𝑃̂𝑖𝑗]). UDON provides an optional cluster resolution parameter k for NMF 30 

analysis that allows users to explore broader or more granular clusters.  31 

 32 

For the downstream analyses      presented in the paper, we have considered UDON clusters derived with k set 33 

to 15. The resolution of 15 was selected as stable (consistent with higher resolution results) after considering 34 

k=10, 15, 20 or 30, which reported 10, 12, 14 and 17 final UDON clusters, respectively. Dominant impacted 35 
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pathways (Pathway Commons by default) are reported for each UDON cluster, which represent common or 1 

heterogenous groups of patients and cell-types.  2 

 3 

Statistical analyses in SATAY-UDON 4 

To discover      underlying clinical or phenotypic associations from      UDON clusters, SATAY-UDON provides a 5 

statistical phenotype enrichment protocol, which considers non-redundant donor and cell-type associations per 6 

UDON cluster. Our null hypothesis is that there is no association between a sample’s clinical condition and the 7 

sample’s pseudobulk profile in      a gene response program (as indicated by an UDON cluster). We test this 8 

hypothesis for positive enrichment by performing a one-sided Fisher’s Exact test on all pseudobulk profiles for a 9 

given cell-     type in an UDON cluster. Fisher’s exact test requires categorical data, and thus, the continuous 10 

clinical variables are transformed into a binary variable based on clinical expert-set thresholds. This option is not 11 

provided in SATAY-UDON and must be determined by the user outside of the program. For a given cell-     type 12 

and      clinical measure, in a 2 by 2 contingency table, let the number of pseudobulks associated with samples 13 

with the clinical condition in and not in UDON cluster U be 𝑄 and 𝑟 respectively. Similarly, let the number of 14 

pseudobulks associated with samples that do not have the clinical condition in and not in UDON cluster U be 𝑆 15 

and 𝑡 respectively. Then, SATAY-UDON applies      Fisher’s exact test      on the described contingency table     16 

.        17 

 18 

By default, four or more samples are required for an association to take place between an UDON cluster and 19 

clinical covariate, indicated by 𝑄 value in the contingency table     . For a cell-     type, an association between a 20 

UDON cluster and a clinical variable is considered positive and visualized if      the one-sided p-value < 0.1 for 21 

the above-mentioned Fisher’s exact      test     ;      however, SATAY-UDON provides the confidence level (p-22 

value) as a user provided parameters for users. We report the false discovery rate (FDR) adjusted p-value by 23 

applying the Benjamini-Hochberg adjustment to the p-values from each clinical variable and visualizing the 24 

associations with an FDR adjusted p< 0.1.  25 

 26 

Cochran-Mantel-Haenszel test for confounding variables.  27 

To protect SATAY-UDON associations against confounding variables (such as age, sex, etc.), we employ the 28 

Cochran–Mantel–Haenszel (CMH) procedure to produce stratified estimates of association between UDON 29 

clusters and clinical covariates. The CMH test stratifies the samples by the categories in the confounding variable 30 

(for example, male and female if sex is a confounding variable) and considers a series of 2 by 2 contingency 31 

tables of the binary predictors for each stratum. In SATAY-UDON, for each stratum,      like the Fisher’s Exact 32 

Test, the 𝑖th 2 by 2 contingency table     , where 𝑖 ∈ [1, 𝑐] and is the stratum in a list of 𝑐 categories of a 33 

confounding variable, has the following values defined in same way as mentioned above: 𝑄𝑖 , 𝑟𝑖 indicate the 34 

number of pseudobulks associated with samples with the clinical condition of interest in and not in UDON cluster, 35 
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respectively,      and 𝑆𝑖, 𝑡𝑖 indicate the number of pseudobulks associated with samples without the clinical 1 

condition of interest in and not in UDON cluster, respectively.      2 

      3 

By default, two or more samples are required in each stratum for an association to take place between an UDON 4 

cluster and clinical covariate, indicated by 𝑄𝑖 value in the contingency table     . CMH calculates a p-value and 5 

an odd ratio that represents a weighted association between a UDON cluster and a covariate across the strata. 6 

We report the false discovery rate (FDR) adjusted p-value by applying the Benjamini-Hochberg      adjustment 7 

to the p-values from each clinical variable and visualizing the associations with an adjusted p     < 0.1     . For 8 

the sLE dataset, we applied the CMH test, considering age as the confounding variable, to identify the 9 

associations between a UDON cluster and      clinical covariate that are protected against adult and pediatric 10 

data imbalances. At least two samples are required in each age group of samples (also referred as stratum     ) 11 

for the binary predictors, UDON cluster and clinical covariate, to be considered for the CMH test. For determining 12 

age group-specific associations, we perform SATAY-UDON using the Fisher’s Exact Test on only age group-13 

specific samples and report the raw and FDR-adjusted p-values. We note that other study designs may 14 

necessitate distinct testing procedures and batch effects correction beyond the parameters described here.                     15 

           16 

 17 

Covarying Neighborhood Analysis (CNA) 18 

Details on CNA are provided in the supplementary methods. 19 

 20 

External bulk and scRNA-seq dataset analyses 21 

Details on external SJIA and SJIA-MAS dataset analyses are provided in the supplementary methods. 22 

 23 

Study approval 24 

This study was approved by the CCHMC institutional review board (IRB# 2018-2408) and written informed 25 

consent was obtained from each parent or guardian. Child assent was obtained where appropriate. 26 

 27 

Code and Data Availability 28 

The UDON workflow is composed of independent python and R modules. Scripts for pre-processing, data 29 

normalization and clinical covariate association analyses (SATAY-UDON) are available on Github 30 

(https://github.com/kairaveet/udon-sjia-sle).      Unsupervised iterative clustering via guide-gene selection are 31 

accomplished through the existing python2 module ICGS2 in AltAnalyze (http://www.altanalyze.org and 32 

https://github.com/nsalomonis/altanalyze). Excel file indicating supporting data values for figures is provided in 33 

addition to the supplemental tables. The processed PBMC SJIA scRNA-Seq and associated metadata have 34 

https://github.com/kairaveet/udon-sjia-sle
http://www.altanalyze.org/
https://github.com/nsalomonis/altanalyze
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been deposited in the Gene Expression Omnibus (GEO) database (GSE207633). Raw sequencing data is being 1 

made available in dbGAP, associated with this GEO study. 2 
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 1 
Figures: 2 

 3 
Figure 1. Peripheral blood mononuclear cells vary in composition by pediatric SJIA clinical subtype. A) Study 4 
overview illustrating 26 SJIA patients and controls, for which clinical features were collected and PBMCs were analyzed by 5 
single cell RNA Sequencing. B) Binary plot depicting treatments, laboratory parameters (protein biomarkers), and systemic 6 
features (clinical associations) of each patient at time of sample collection. C) Integrated UMAP of 234,128 single cells and 7 
30 annotated cell populations from SJIA samples and controls. Cluster identity specified on the basis of Azimuth and 8 
literature associations. D) Dot plot of average population gene expression for prior defined cell-     type marker genes. Dot 9 
size indicates the percentage of cells expressing the gene and color intensity indicates the mean expression. E) Bar plot 10 
indicating cell frequency of each cell-     type (Erythrocytes excluded) per sample in the cohort shown in panel A.  In=Inactive 11 
SJIA, Ac= active SJIA, LD= SJIA-LD, MAS= SJIA-MAS.  12 
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 1 
Figure 2. SJIA-MAS patients are distinguished from other SJIA patients by a distinct IFN gene signature. A) 2 
cellHarmony differential fold-change heatmap comparing SJIA patient cell pseudo-bulks in Disease (Active, LD, MAS) 3 
versus controls. Each column is the mean fold difference for a cell-population and each row a gene (fold>1.2 and empirical 4 
Bayes moderated t-test p<0.005, unadjusted). B) Identification of SJIA impacted gene-sets (modules), defined from all 5 
constituent cellHarmony SJIA subtype and cell-type comparisons. Each module represents multiple up- or down-regulated 6 
patient versus control signatures with mutual gene-set enrichments (GO-Elite). The source signatures include aggregate 7 
disease and specific SJIA subtypes versus controls. Module annotations (right) denote the major associated cell-types and 8 
subtypes signatures present. C) Transcription factor (TF) and gene interaction networks for shared genes in module M1 9 
from panel B. Red nodes = up-regulation and Blue nodes = down-regulation. Red arrows indicate annotated TF-target 10 
interactions in GO-Elite (TRRUST, Pazar, Amadeus). D) Module specific example Gene Ontology terms associated with 11 
each of the shared genes for each Module in panel B. E) Heatmap of scaled (z-score) expression values of IFN induced 12 
gene modules M1.2, M3.4 and M5.12 as described in Banchereau et al., 2016, across all PBMC cell clusters and clinical 13 
groups.  14 
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 1 
Figure 3. Transcriptional activation in monocytes and changes in lymphocyte cell frequency separate ongoing 2 
disease from inactive SJIA and controls. A) UMAP representing all 4 monocytic cell populations identified by scRNA-3 
seq. B) Feature plots indicating the expression levels of selected marker genes of monocyte populations. C) Matrix 4 
representing the cell frequency per individual SJIA patient or control for the 4 monocytic cell populations. D) Gene 5 
expression heatmap of previously determined monocyte signatures of high ferritin SJIA patients as described in Schulert et 6 
al, 2020, across the 4 monocytic populations. Supervised clustering defined clusters C1, C2 and C3 shown in D), and GO-7 
Elite analysis of associated cluster pathways (Pathway Commons) is shown in E). F) UMAP representing all 12 T-cell 8 
populations identified by scRNA-seq. G) Matrix representing cell frequency per individual SJIA patient or control. H) Violin 9 
plots depicting significant differences in cell frequency in the 4 T-cell populations between controls (n=5), Inactive SJIA 10 

(n=5) or Disease (combined data from Active SJIA, SJIA-LD and SJIA-MAS) (n=16). Bars indicate significant differences 11 

calculated by one-way ANOVA (*= adj. p-value ≤ 0.05, **= adj. p-value ≤ 0.005). 12 
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 1 
Figure 4. UDON analysis defines new SJIA disease subtypes including complement activation in monocytes in 2 
SJIA-LD patients. A) Overview of the UDON analysis pipeline, an unsupervised clustering method applied to control 3 
normalized patient pseudo-bulks to define disease subtypes. B) SJIA UDON patient-cell subtypes (UDON clusters 1-12), 4 
defined by the top cluster marker genes and top enriched pathways (PathwayCommons), are shown in the left heatmap. 5 
Confirmation of UDON SJIA subtypes from independent large bulk transcriptomics cohorts. Confirmation of UDON SJIA 6 
subtypes from two independent large bulk SJIA PBMC transcriptomics cohorts are shown to the right of the UDON heatmap, 7 
with matching genes, normalized to within cohort controls. C-F) UMAP visualization of control normalized patient 8 
pseudobulks for UDON clusters (C), clinical subtypes (D), individual patients (E) and cell-populations (F). G) Gene-to-GO 9 
term associations (GO-Elite) for UDON cluster 4 and cluster 6. H) Serum protein expression of complement component C9 10 

and C5a of      healthy controls (n=10) and      SJIA patients (n=57) by ELISA. Error bars indicate mean ± standard deviation. 11 

Significant differences calculated by one-way ANOVA (*= adj. p-value ≤ 0.05, **= adj. p-value ≤ 0.005, ***= adj. p-value ≤ 12 

0.001). 13 
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 1 
Figure 5. SATAY-UDON reveals novel cytokine and interferon signaling networks in SJIA-MAS non-classical 2 
Monocytes. A) Overview of the SATAY-UDON analysis. Associations between UDON clusters and sample metadata 3 
(disease group, clinical parameters or treatment) are assessed for each cell-     type. B) SATAY-UDON results depicting 4 

associations of UDON clusters with treatments or clinical parameters and cell-     types. Cell-     types are colored (green= 5 

inactive SJIA, blue= active SJIA, lilac= SJIA-LD, red= SJIA-MAS) if also associated to a patient group. C) Revised 6 

MarkerFinder analysis and D) DEG network (p≤0.05) comparing gene programs of CD16 Mono Pseudobulks of U10, U12 7 

vs. CD16 Mono in other UDON Clusters.  E) Marker genes and F) impacted genes of Platelet Megakaryocyte Pseudobulks 8 

aligning with the gene program of U7 vs. Platelet Megakaryocytes in other UDON Clusters. 9 
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 1 
Figure 6. UDON analysis identifies broad subtypes and inflammatory programs in a pan-immune atlas. A) Joint 2 
UMAP of SLE cohort (adult, child, controls) with healthy PBMC samples in the OneK1K cohort (pseudobulk folds). The 3 
drawn boundaries in the UMAP designate control enriched populations (grey) versus SLE (black). B) Visualization of only 4 
SLE samples from panel A, colored according to the UDON cluster number. C) Marker genes in SLE-UDON cluster 3 (n=60) 5 
that overlap with enriched SJIA-UDON clusters 6 (complement activation) and 12 (interferon signaling). D) Age-independent 6 
and age-specific SATAY-UDON results for selected SLE clinical parameters (blue = p < 0.10 Cochran-Mantel-Haenszel 7 
test, green = p < 0.10 adult-specific, pink = p < 0.10 child-specific one-sided Fisher’s Exact Test, yellow star = FDR-adjusted 8 
p < 0.10)). E) Joint UMAP of SJIA, OneK1K and SLE samples (each dot is a normalized pseudobulk     ) for SJIA UDON 9 
marker genes, colored by the known clinical subtype of each sample The drawn boundaries in the UMAP designate control-10 
enriched populations (grey) versus systemic inflammatory disease (black). F) Visualization of only SJIA samples on the 11 
same UMAP as panel E, colored according to UDON cluster number from Fig. 4C. G) Same UMAP as panel E but 12 
highlighting the SLE samples, colored by projected SJIA-UDON cluster labels from panel F onto sLE samples. H) Heatmap 13 
of common differentially expressed genes (fold>1.2 and empirical Bayes t-test p<0.05, two sided), for SJIA UDON cluster 14 
12 CD16 monocyte pseudobulk folds versus other CD16 monocytes in the SJIA cohort and SLE cohort. I) Heatmap of 15 
common differentially expressed genes (fold>1.2 and empirical Bayes t-test p<0.05, two sided), for SLE UDON cluster 18 16 
platelet pseudobulk folds versus other platelets in the SLE and OneK1K cohort. J) Proposed model for disease 17 
heterogeneity among systemic inflammatory disease patients and presumably healthy donors in the populations. 18 
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Table 1. UDON cluster summary. 1 

UDO
N 
cluste
r 

 Cluster name Patient 
group(s) 

No. 
Pseudo
-bulks 

Cell type(s) No. 
enriche
d genes 

Top 10 enriched genes (by 
Pearson rho) 

U1  Hemoglobin Functions 2 Active, 2 
MAS 

5 Erythrocytes/Platelet
s 

90 HBA1, HBM, HBA2, HBB, 
SLC25A39, IFI27, ADIPOR1, 
ALAS2, TSTA3, HBD 

U2  Erythrocyte 
Development 

3 Active, 3 
LD, 1 MAS 

7 Eryth Im 168 DCAF12, FECH, FAM210B, 
MKRN1, SLC25A37, 
STRADB, BNIP3L, BPGM, 
RPIA, BLVRB 

U3  BCR Signaling 2 Inactive, 
2 Active, 3 
LD 

9 mainly pDCs   75 MS4A1, CD79A, VPREB3, 
RALGPS2, CD79B, PLEKHF2, 
FCRLA, BANK1, SWAP70, 
LY86 

U4  T Cell Cytotoxicity/IL12 3 Active, 5 
LD 

25 cytotoxic T cells, 
CD4/ CD8 Mixed      
cells 

359 CD7, CTSW, TTC38, CLIC3, 
KLRF1, PRF1, CST7, CCL4, 
AOAH, SPON2 

U5  Molecular Transport in 
B Diff 

5 Inactive, 
6 Active, 7 
LD, 2 MAS 

20 B Diff 533 EML4, LRCH1, ORMDL1, 
DENND5B, ZBTB25, 
GOLGB1, NKTR, WEE1, 
BMP2K, COBLL1 

U6  Complement/IFN 
signaling 

3 Active, 7 
LD 

29 Monocytic 35 IFITM3, FLT3, C1QB, C1QA, 
C1QC, RETN, PLIN2, 
MS4A4A, SLC11A1, CNIH4 

U7  TLR Signaling 1 Inactive, 
3 Active, 1 
LD, 1 MAS 

40 T cells, mixed  118 S100A8, S100A9, LYZ, VCAN, 
S100A12, MNDA, FCN1, 
LILRB2, CD14, PLBD1 

U8  General Translation all 
samples 

216 mixed 253 HIST1H4C, MZT2A, NBEAL1, 
EEF1B2, GLTSCR2, 
TOMM20, TOMM7, EIF3D, 
MZT2B, EIF3E 

U9  Transcription/Translatio
n 

4 Inactive, 
5 Active, 6 
LD, 2 MAS 

86 mainly HSPC, 
T Reg/CD8 TEM 

795 TNRC6B, PIK3IP1, ZFP36L2, 
KIAA1551, CELF2, CABIN1, 
APBA2, TSC22D3, GPATCH8, 
ANKRD44 

U10  Macrophage 
Polarization 

1 Inactive, 
2 Active, 3 
LD 

27 mainly monocytic 56 IL1R2, CD163, SAP30, JDP2, 
ARL4A, RNF144B, PHC2, 
FKBP5, IRS2, KLF9 

U11  Apoptotic Signaling 4 Active, 3 
LD, 2 MAS 

24 mainly  MAIT, 
Erythrocytes and  
T Reg, other T cells 

728 BCL2L11, RNF167, ATP2B4, 
PYHIN1, SIT1, PPP1CA, 
MT1E, SAMD3, SLC9A3R1, 
MXD4 

U12  IFN Signaling 1 Active, 2 
MAS 

44 T cells/Monocytic, 
DC 

742 GBP1, GBP4, STAT1, APOL6, 
IFIT3, ISG15, EPSTI1, DTX3L, 
UBE2L6, GBP5 

 2 

  3 
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 Table 2. SJIA and sLE UDON cluster comparison summary. 1 

SJIA UDON 
cluster 

cSLE UDON 
cluster 

Cluster name # cSLE 
(#cSLE+aSLE) 
pseudobulks 

cSLE cell types SJIA cell types 

U4 U8 T Cell 
Cytotoxicity / IL-
12 

17 (20) Mainly 
Lymphoid 

Cytotoxic T cells, 
CD4/CD8 Mixed      
cells 

U6 U3 Complement / 
IFN Signaling 

30 (33) Monocytic Monocytic 

U7 U6 TLR Signaling 19 (34) CD4 IFN+      
cells, 
Erythrocytes 
and Platelets 

T cells, mixed 

U8 U14 General 
Translation 

86 (105) Mixed (B/T 
cells, 
Monocytic) 

Mixed 

U9 U16 Transcription / 
Translation 

108 (108) 
cSLE only 

Mixed T cells HSPC, T Reg, 
CD8 TEM 

U10 U4 Macrophage 
polarization 

47 (53) Monocytic Mainly monocytic 

U11 U12 Apoptotic 
Signaling 

57 (63) NK and MAIT 
cells, mixed T 
cells 

Mainly MAIT, 
erythrocytes, T 
reg, other T cells 

U12 U3 IFN Signaling 30 (33) Monocytic T cells, 
monocytic, DC 

U12 U11 IFN Signaling 53 (67) Mixed, plurality 
pDC 

T cells, 
monocytic, DC 

 2 

 3 

 4 
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