A brain–tumor neural circuit controls breast cancer progression in mice

Si-Yi Xiong, … , Yi Zhang, Guang-Yan Wu

Graphical abstract

Find the latest version:
https://jci.me/167725/pdf
A brain–tumor neural circuit controls breast cancer progression in mice

Si-Yi Xiong1,8, Hui-Zhong Wen2,8, Li-Meng Dai3, Yun-Xiao Lou2, Zhao-Qun Wang2, Yi-Lun Yi4, Xiao-Jing Yan2, Ya-Ran Wu6, Wei Sun7, Peng-Hui Chen2, Si-Zhe Yang1, Xiao-Wei Qi1, Yi Zhang1*, Guang-Yan Wu4*

1Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing 400038, China
2Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
3Department of Medical Genetics, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
4Experimental Center of Basic Medicine, Chongqing Key Laboratory of Neurobiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
5Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
6Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Chongqing 400038, China
7Biomedical Analysis Center, Army Medical University, Chongqing 400038, China
8These authors contributed equally

*Address correspondence to: Guang-Yan Wu, Experimental Center of Basic Medicine, College of Basic Medicine Sciences, Army Medical University, Gaotanyan Street 30, Shapingba District, Chongqing 400038, China. Phone: 86.023.68771424; Email: wgy009@163.com. Or to: Yi Zhang, Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Gaotanyan Street 30, Shapingba District, Chongqing 400038, China. Phone: 86.023.68765661; Email: yzhang@tmmu.edu.cn.
Abstract

Tumor burden, considered a common chronic stressor, can cause widespread anxiety. Evidence suggests that cancer-induced anxiety can promote tumor progression, but the underlying neural mechanism remains unclear. Here, we used neuroscience and cancer tools to investigate how the brain contributes to tumor progression via nerve-tumor crosstalk in mice model of breast cancer. We showed that the tumor-bearing mice exhibited significant anxiety-like behaviors and that corticotropin-releasing hormone (CRH) neurons in the central medial amygdala (CeM) were activated. Moreover, newly formed sympathetic nerves were detected in tumors, which established a polysynaptically connected with the brain. Pharmacogenetic or optogenetic inhibition of CeM^{CRH} neurons and CeM^{CRH}→LPGi circuit significantly alleviated anxiety-like behaviors and slowed tumor growth. Conversely, artificial activation of CeM^{CRH} neurons and CeM^{CRH}→LPGi circuit increased anxiety and tumor growth. Importantly, alprazolam, an anti-anxiety drug, was found to be a promising intervention for slowing tumor progression. Furthermore, we showed that manipulation of CeM^{CRH}→LPGi circuit directly regulates the activity of the intratumoral sympathetic nerves and peripheral nerve-derived norepinephrine, then affecting tumor progression by modulating the antitumor immunity. Together, these findings reveal a brain–tumor neural circuit contributing to breast cancer progression and provide new therapeutic insights for breast cancer.

Keywords
Brain, Neural circuit, Sympathetic nerve, Anxiety, Cancer

Introduction

Tumor burden is perceived as a chronic stressor that can induce widespread anxiety (1-5). A growing body of evidence suggests that cancer-induced anxiety can accelerate tumor progression (6-10). Clinical data have demonstrated that psychotherapy and medication treatment can slow cancer progression by reducing anxiety (11-13). However, how brain neural activity underlying anxiety promotes tumor progression remains unclear.

The nervous system is widely distributed throughout the body and can regulate the development of organs and maintain homeostasis through peripheral nerves, which are controlled by the brain. Accumulating evidence indicates that the nervous system plays an important role in cancer treatment and prevention.
pathogenesis (14-16). Neuronal synaptic communication with brain cancer cells can regulate the growth of malignant gliomas through neurotransmitter and voltage-regulated mechanisms (17). Mounting evidence indicates that there is also a direct connection between peripheral nerves and tumors (15, 18, 19). For example, a study revealed that surgical or pharmacological denervation of the stomach can markedly reduce tumor progression (19). The sympathetic nervous system is an important pathway by which stress can promote tumor growth (20). Notably, tumor-specific sympathetic denervation suppresses prostate cancer and breast cancer progression in mouse models (21, 22). Nerve-cancer crosstalk can occur directly or through nervous system control of other cell types in the tumor microenvironment, such as immune cells and stromal cells (15, 18, 19). The sympathetic nervous system neurotransmitters norepinephrine (NE) may activate α- and β-adrenergic receptors of the tumor cells or other cells in the tumor microenvironment (20). It is known that anxiety could affect the activity of the sympathetic nervous system (23, 24), whereas how brain neural activities underlying anxiety control tumor progression remains unclear.

The neural circuits of the amygdala and connected brain regions are thought to be essential for anxiety processing (25-27). Patients with cancer exhibit a higher incidence of anxiety disorder, which is characterized by hyperactivity of the amygdala (28, 29). The CeM is the main output nucleus of the amygdala, which integrates cortical and intra-amygdala afferents and regulates anxiety by projecting to the brainstem nuclei including LPGi. Moreover, CeMCRH neurons orchestrate physiological and behavioral responses to anxiety (30, 31). Previous studies suggested that LPGiCA neurons innervate sympathoadrenal preganglionic neurons and are involved in regulating autonomic responses to various stressors (32, 33). Given that there are abundant nerves in tumors and that they are ultimately connected to the brain (21, 22), we explored whether brain CeMCRH neurons and associated circuitry control anxiety-promoting tumor progression via direct neural connections.

In this study, we injected rAAV2/2-CRH-Cre together with rAAV2/9-EF1α-Flex-taCasp3 into the CeM to ablate the CRH neurons and used optogenetic and chemogenetic approaches to specifically activate or inhibit CeMCRH neurons to investigate their role in cancer-induced anxiety and tumor progression. We demonstrate, using a transplanted (4T1) breast cancer model, that ablation or inhibition of CeMCRH neurons and the CeMCRH→LPGi circuit significantly decreased anxiety-like behaviors and tumor growth. This manipulation led to a significant reduction in intratumoral
sympathetic activity, as evidenced by diminished local NE levels in tumors. Consistently, activation of CeM^{CRH} neurons or their projection to LPGi significantly promoted anxiety-like behavior and tumor progression. Alprazolam was found to slow down tumor progression by inhibiting CeM^{CRH} and LPGi^{CA} neurons. The peripheral nerve-derived NE thus affecting tumor progression was mediated by immune system functions. Consistently, the above results were validated in a spontaneous MMTV-PyMT mouse model of breast cancer. Therefore, our research reveals a brain–tumor neural circuit contributing to breast cancer progression.

Results

Tumor-bearing mice exhibited serious cancer-induced anxiety

Accumulated clinical and experimental evidence has clearly demonstrated that tumor burden, considered an important chronic stressor, can induce widespread negative emotions, such as anxiety (34, 35). To investigate the relationship between breast cancer and anxiety-like behaviors in rodents, we first injected 4T1 cancer cells into the mammary gland of BALB/c mice to develop a mouse model of orthotopic breast cancer. After 28 days of tumor development (Figure 1, A–F), the 4T1 tumor-bearing mice exhibited multiple anxiety-like behaviors in routine assays, including the light-dark box test (LDT; reduced light box time and total transitions; Figure 1, G–I), the open field test (OFT; reduced time and distance in center zone; Figure 1, J–L), and the elevated plus maze (EPM) test (decreased time and entries in open arms and increased the anxiety index; Figure 1, M–P) compared with control mice. Notably, two-sided linear regression analysis illustrated that the degree of cancer-induced anxiety was strikingly correlated with the volume, weight and luciferase intensity of the 4T1 tumors (All P < 0.001, R^2 ≥ 0.6506; Supplemental Figure 1). Moreover, 7 days after 4T1-luc cancer cells injection, the 4T1 tumor-bearing mice also displayed serious anxiety-like behaviors at the early tumor stage (Supplemental Figure 2). In addition, we also assessed the anxiety-like behaviors of the PyMT tumor-bearing mice in a spontaneous breast cancer model. As expected, similar results were obtained in PyMT tumor-bearing mice. Behavioral results revealed that PyMT tumor-bearing mice showed obvious anxiety-like behaviors at 13 weeks of age (Supplemental Figure 3). Together, these results consistently suggest that anxiety-like behaviors are reliably induced by these breast cancer models, and there is frequent and common anxiety in breast tumor-bearing mice.

Results

Tumor-bearing mice exhibited serious cancer-induced anxiety

Accumulated clinical and experimental evidence has clearly demonstrated that tumor burden, considered an important chronic stressor, can induce widespread negative emotions, such as anxiety (34, 35). To investigate the relationship between breast cancer and anxiety-like behaviors in rodents, we first injected 4T1 cancer cells into the mammary gland of BALB/c mice to develop a mouse model of orthotopic breast cancer. After 28 days of tumor development (Figure 1, A–F), the 4T1 tumor-bearing mice exhibited multiple anxiety-like behaviors in routine assays, including the light-dark box test (LDT; reduced light box time and total transitions; Figure 1, G–I), the open field test (OFT; reduced time and distance in center zone; Figure 1, J–L), and the elevated plus maze (EPM) test (decreased time and entries in open arms and increased the anxiety index; Figure 1, M–P) compared with control mice. Notably, two-sided linear regression analysis illustrated that the degree of cancer-induced anxiety was strikingly correlated with the volume, weight and luciferase intensity of the 4T1 tumors (All P < 0.001, R^2 ≥ 0.6506; Supplemental Figure 1). Moreover, 7 days after 4T1-luc cancer cells injection, the 4T1 tumor-bearing mice also displayed serious anxiety-like behaviors at the early tumor stage (Supplemental Figure 2). In addition, we also assessed the anxiety-like behaviors of the PyMT tumor-bearing mice in a spontaneous breast cancer model. As expected, similar results were obtained in PyMT tumor-bearing mice. Behavioral results revealed that PyMT tumor-bearing mice showed obvious anxiety-like behaviors at 13 weeks of age (Supplemental Figure 3). Together, these results consistently suggest that anxiety-like behaviors are reliably induced by these breast cancer models, and there is frequent and common anxiety in breast tumor-bearing mice.
In addition, numerous studies have shown that the breast tumors are innervated by sympathetic nerves (22, 36), and that the activity of sympathetic nervous system is commonly associated with anxiety level (37, 38). Therefore, we next assessed the relationship between intratumor sympathetic activity and tumor progression. The content of sympathetic nervous system neurotransmitters (i.e., norepinephrine, NE) in peripheral tissues is an indicator of sympathetic activation (39). The NE concentration was determined by ELISA. Analysis of tumor tissue NE concentration revealed that the NE concentration in the 4T1 tumor tissue was highly associated with the volume, weight, and luciferase intensity of the tumors. The high positive correlations were confirmed by two-sided linear regression analysis (All P < 0.001, R² ≥ 0.7872; Figure 1, Q–T). These results indicate that intratumor sympathetic activity is positively correlated with breast cancer progression.

A neural circuit connected the brain with breast tumors

A large body of evidence suggests that many brain areas are activated during anxiety (40-42). Importantly, anxiety-induced hyperactivation of some brain regions can cause overactivity of the sympathetic nervous system (43, 44). A recent work has suggested that the activity of local sympathetic innervation in breast tumors makes a significant contribution to tumor growth and progression (22). However, it remains unknown whether the breast tumor is innervated by newly formed sympathetic nerves in the initial phases of cancer development. To address this situation, we injected 4T1 cancer cells into the mammary gland of BALB/c mice to develop a mouse model of orthotopic breast cancer. Immunofluorescence staining was then performed 5, 7 and 9 days after tumor cell inoculation, respectively (Figure 2A). Double immunofluorescence staining with the newly formed neuron-specific marker neurofilament-L (NF-L) and sympathetic nerve marker tyrosine hydroxylase (TH) revealed that 4T1 mammary tumors displayed denser sympathetic innervation 5, 7 and 9 days after tumor development (Figure 2, B and C, and Supplemental Figure 4). Additionally, in spontaneous MMTV-PyMT tumors, TH⁺ sympathetic innervation was detected in tumors at 10 weeks of age (Supplemental Figure 7A). Therefore, these results suggest that the breast tumor recruits newly formed sympathetic nerve fibers distributed in the tumor stroma at the early carcinoma stage.

Next, to investigate whether the newly formed sympathetic nerves connect to higher-order circuits, we performed retrograde trans-polysynaptic tracing using fluorescent protein-producing pseudorabies
virus (PRV). Six days after injection of PRV-CAG-EGFP into the 4T1 breast tumor stroma (Figure 2D), PRV ascended from the 4T1 tumor up into the spinal cord, brain stem, hypothalamus, and forebrain (Figure 2, E–J, and Supplemental Figure 5), which is similar to the injection of PRV into the mammary gland of wild-type BALB/c mice (only showing the CeM; Supplemental Figure 6, B and C). The mammary gland contained a dense network of local sympathetic fibers (Supplemental Figure 6 A). Moreover, this observation is also similar to previous findings with PRV injected directly into the stellate ganglion and adrenal gland of rats (45). Additionally, in the MMTV-PyMT mouse model, PRV-infected neurons were also observed in these regions (only showing the CeM) with the same PRV injected into the PyMT tumor (Supplemental Figure 7, B and C). Notably, the CeM and lateral paragigantocellular nucleus (LPGi) were prominently infected by PRV (Figure 2, E–I, and Supplemental Figure 5G). Next, to determine the neurotransmitter type of PRV-infected CeM and LPGi neurons, we performed immunofluorescence staining. Given that CeMCRH neurons play a critical role in the modulation of anxiety and that LPGi catecholaminergic (CA) (LPGiCA) neurons are involved in regulating autonomic responses to various stressors (30, 46, 47), we chose to focus on exploring whether PRV-infected CeM and LPGi neurons express CRH and TH, respectively. Immunofluorescence results indicated that PRV-infected CeM neurons were predominantly co-localized with a CRH-specific antibody (Figure 2 L), and that the majority of PRV-infected LPGi neurons expressed TH (Figure 2 M). Taken together, these results reveal that the newly formed sympathetic innervation of the breast tumor polysynaptically connects to CeMCRH neurons and LPGiCA neurons.

CeMCRH neurons were activated in breast cancer.

It is well known that CeMCRH neurons play a central role in mediating anxiety (30, 31). To determine whether CeMCRH neurons were activated in breast tumor-bearing mice with anxiety, we examined the expression of c-Fos (an immediate-early gene marker of neural activity) in CeMCRH neurons 28 days after 4T1 tumor development (Figure 3, A and B). Consistently, double immunofluorescence staining showed that CeMCRH neurons exhibited significantly higher c-Fos expression in tumor-bearing mice than that in control mice (Figure 3, C and D), suggesting that CeMCRH neurons were activated in tumor-bearing mice.
Next, to determine the direct functional effects of activation of CeM^{CRH} neurons on the activity of sympathetic nerves distributed in the tumor stroma, we injected Cre-dependent recombinant adeno-associated virus (rAAV) expressing channelrhodopsin-2 (ChR2, light-gated cation pumps can depolarize neurons and evoke action potentials) fused with mCherry (rAAV2/9-EF1α-DIO-ChR2-mCherry) together with rAAV2/2-CRH-Cre virus into the bilateral CeM, and implanted optical fibers above the bilateral CeM for optogenetic activation of these neurons. One week later, we injected 4T1 breast cancer cells into the mammary gland. Two weeks later, we injected pLenti-CMV-GRAB_{NE2h} or pLenti-CMV-EGFP (as a control) virus into the 4T1 tumor stroma of the above mice (Figure 3E). After virus expression, we performed optogenetic activation of CeM^{CRH} neurons and simultaneously employed fiber photometry recording of the fluorescent signals of the GRAB_{NE2h} sensor (a genetically encoded NE biosensor by AAV injection) or EGFP in anesthetized mice. Tissue NE concentration is an indicator of the local sympathetic activity (39). Therefore, the activity of sympathetic nerves in tumor was measured by GRAB_{NE2h} fluorescence (Figure 3, F–H). We found that optogenetic stimulation of CeM^{CRH} neurons induced a moderate and robust increase in fluorescent signals of GRAB_{NE2h} in 4T1 tumor tissue. In contrast, the fluorescent signals in control mice expressing EGFP in 4T1 tumor tissue did not show significant change during optogenetic stimulation (Figure 3, I–M). Altogether, these results suggest that CeM^{CRH} neurons are connected to and can directly activate sympathetic nerve fibers distributed in the breast tumor stroma.

Ablation of CeM^{CRH} neurons decelerates the cancer-induced anxiety and progression of breast tumors

We subsequently aimed to determine whether anxiety-induced hyperactivation of CeM^{CRH} neurons influences breast cancer progression. Three weeks following the injection of rAAV2/2-CRH-Cre together with rAAV2/9-EF1α-Flex-taCasp3-TEVp (encoding fusion protein taCasp3-TEVp, causing host neuron apoptosis (48)) or rAAV2/9-EF1α-DIO-EYFP (as a control) viruses into the bilateral CeM to ablate the CRH neurons, we inoculated 4T1-luc tumor cells into the mammary gland of BALB/c mice (Figure 4, A and B). The successful ablation of CeM^{CRH} neurons by rAAV2/2-CRH-Cre together with rAAV2/9-EF1α-Flex-taCasp3-TEVp was confirmed by staining brain slices from the mice 3 weeks after virus injection (Figure 4C). The behavior results of the LDT, OFT, and EPM
tests demonstrated that ablation of CeMCRH neurons significantly alleviated anxiety-like behaviors in 4T1 tumor-bearing mice (Figure 4, D–M). We found that ablation of CeMCRH neurons significantly inhibited 4T1 tumor growth (Figure 4N), and significantly decreased the weight (Figure 4, O and P), luciferase intensity (Figure 4, Q–R), and NE content (Figure 4S) of 4T1 tumors compared with the control mice. Next, to determine whether the reduced tumor cell proliferation rate and increased tumor cell apoptosis rate were responsible for the slowed tumor growth observed in taCasp3 group, we quantified the percentage of Ki67+ cells and TUNEL+ cells using immunofluorescence staining. Histological analysis revealed that there were significantly fewer Ki67+ cells and significantly more TUNEL+ cells in 4T1 tumors following ablation of CeMCRH neurons (Figure 4, U–W).

Currently, it is widely believed that the composition of the tumor microenvironment, including the immune cells (such as T cells, macrophages) plays important roles in the progression of cancer, and that the sympathetic nervous system is involved in the modulation of the immune system (14, 49, 50). Hence, we examined whether ablation of CeMCRH neurons altered antitumor immunity. The mice were subjected to the same injection of viruses to ablate CeMCRH neurons, or sham, 3 weeks before 4T1 cells injection (Supplemental Figure 8A). Indeed, flow cytometric analysis showed that ablation of CeMCRH neurons significantly increased the percentage of infiltrated CD4+ leukocytes in 4T1 tumors (Supplemental Figure 8B). Profiling of the increased infiltrated CD4+ leukocytes showed that there were significant increases in the CD4+ and CD8+ T cell populations following ablation of CeMCRH neurons (Supplemental Figure 8, C and D). Moreover, ablation of CeMCRH neurons significantly decreased the percentage of Tregs (CD4+CD25+FOXP3+ T regulatory cells), CD4+PD-1+ T cells, and CD8+PD-1+ T cells, but significantly increased the percentage of CD4+IFN-\textgamma+ T cells and CD8+IFN-\textgamma+ T cells in 4T1 tumors (Supplemental Figure 8, E–I). The spleen is an essential organ in the systemic antitumor immunity. Therefore, the CD4+ and CD8+ T cells in spleens from these 4T1 tumor-bearing mice were further examined. CeMCRH neuron-ablated mice showed an increased percentage of CD4+ and CD8+ T cells in spleens compared with control group (Supplemental Figure 8, J and K). Moreover, ablation of CeMCRH neurons significantly increased the percentage of CD11b+F4/80+CD86+CD206− M1 macrophages and the ratio of M1/M2 macrophages, but did not markedly affect the percentage of CD11b+F4/80+CD86−CD206+ M2 macrophages in 4T1 tumors (Supplemental Figure 9).
Additionally, in the MMTV-PyMT mouse model, we also examined the functional role of CeM^{CRH} neurons in the progression of spontaneous mammary tumor by using the caspase-3-based method to ablate the CeM^{CRH} neurons (Supplemental Figure 10, A and B). As expected, ablation of CeM^{CRH} neurons significantly suppressed anxiety-like behaviors of PyMT tumor-bearing mice (Supplemental Figure 10, C–L). Consistently, it also significantly slowed PyMT tumor growth (Supplemental Figure 10M), and significantly decreased the weight and NE content of PyMT tumors (Supplemental Figure 10, O and P). Furthermore, flow cytometric analysis showed that ablation of CeM^{CRH} neurons resulted in significant increases in infiltrated CD45^{+} leukocytes, CD4^{+} T cells and CD8^{+} T cells in PyMT tumors (Supplemental Figure 11, B–D). Ablation of CeM^{CRH} neurons significantly reduced the percentage of Tregs (CD4^{+}CD25^{+}FOXP3^{+} T regulatory cells), CD4^{+}PD-1^{+} T cells and CD8^{+}PD-1^{+} T cells, whereas the same manipulation significantly increased the percentage of CD4^{+}IFN-\gamma^{+} T cells and CD8^{+}IFN-\gamma^{+} T cells in PyMT tumors (Supplemental Figure 11, E–I). Significant increases in the percentage of CD4^{+} and CD8^{+} T cells in the spleens of PyMT tumor-bearing mice were observed after ablation of CeM^{CRH} neurons (Supplemental Figure 11, J and K). Furthermore, ablation of CeM^{CRH} neurons significantly increased the percentage of CD11b^{+}F4/80^{+}CD86^{+}CD206^{−} M1 macrophages, CD11b^{+}F4/80^{+}CD86^{−}CD206^{+} M2 macrophages, and the ratio of M1/M2 macrophages in PyMT tumors (Supplemental Figure 12). Together, these results suggest that ablation of CeM^{CRH} neurons significantly inhibits the cancer-induced anxiety, sympathetic nerves activity and significantly enhances antitumor immunity, decelerating cancer progression in both orthotopic and spontaneous mammary tumor-bearing mice.

Inhibition of CeM^{CRH} neurons suppresses cancer-induced anxiety and breast tumor progression

Ablation of CeM^{CRH} neurons might cause compensation by altering the neural circuit to regulate the activity of the sympathetic nervous system. Therefore, to further determine the functional role of CeM^{CRH} neurons in the progression of breast cancer, we employed the pharmacogenetic method of designer receptors exclusively activated by designer drugs (DREADDs) to inhibit CeM^{CRH} neuron activity and examined the impact on tumor progression. We first injected rAAV2/2-CRH-Cre together with rAAV2/9-EF1α-DIO-hM4Di-mCherry (hM4Di is an inhibitory DREADD receptor, exclusively activated by the “designer drug” CNO) or rAAV2/9-EF1α-DIO-mCherry (as a control) viruses into the...
bilateral CeM. Three weeks after viral injection, we inoculated 4T1 tumor cells into the mammary gland of BALB/c mice (Figure 5, A–C). Similar behavioral phenotypes were observed. Selective pharmacogenetic inhibition of CeMCRH neurons in 4T1 tumor-bearing mice significantly reduced anxiety-like behaviors (Figure 5, D–M). Administration of CNO via the diet throughout the remainder of the experiment significantly decelerated 4T1 tumor growth (Figure 5N), and significantly reduced the weight (Figure 5, O and P), luciferase intensity (Figure 5, Q and R), and NE content (Figure 5S) of 4T1 tumors in hM4Di-expressing mice, compared to the control mice. Immunofluorescence staining showed that pharmacogenetic inhibition of CeMCRH neurons resulted in a significant decrease in the percentage of Ki67+ cells, but a significant increase in the percentage of TUNEL+ cells in 4T1 tumors (Figure 5, U–W). Notably, as a control, to rule out any possibility of CNO having any effect on proliferation and apoptosis of 4T1 cells in vitro, 4T1 cells were cultured with or without CNO. As expected, we did not observe significant effect on the proliferation and apoptosis of 4T1 cells in vitro (Supplemental Figure 13).

In addition, flow cytometric analysis showed that pharmacogenetic inhibition of CeMCRH neurons resulted in significant increases in infiltrated CD45+ leukocytes, CD4+ T cells and CD8+ T cells in 4T1 tumors (Supplemental Figure 14, B–D). Pharmacogenetic inhibition of CeMCRH neurons significantly reduced the percentage of Tregs (CD4+CD25+FOXP3+ T regulatory cells), CD4+PD-1+ T cells and CD8+PD-1+ T cells, whereas the same manipulation significantly increased the percentage of CD4+IFN-\gamma+ T cells and CD8+IFN-\gamma+ T cells in 4T1 tumors (Supplemental Figure 14, E–I). The significant increases in percentage of CD4+ and CD8+ T cells in spleens of 4T1 tumor-bearing mice were observed following pharmacogenetic inhibition of CeMCRH neurons (Supplemental Figure 14, J and K). Furthermore, pharmacogenetic inhibition of CeMCRH neurons significantly increased the percentage of CD11b+F4/80+CD86−CD206− M1 macrophages and the ratio of M1/M2 macrophages, but did not significantly affect the percentage of CD11b+F4/80+CD86−CD206+ M2 macrophages in 4T1 tumors (Supplemental Figure 15). Notably, these significant differences in antitumor immunity were not due to CNO compound administration, since antitumor immunity did not differ in 4T1 tumor-bearing mice (without viral injections) with or without CNO in their food (Supplemental Figures 16 and 17).

Consistent with the results of pharmacogenetic suppression, optogenetic inhibition (Supplemental
Figure 18, A–C; We used AAV encoding light-driven chloride ion pump eNpHR3.0 for optogenetic inhibition) of CeMCRH neurons not only significantly inhibited anxiety-like behaviors of 4T1 tumor-bearing mice (Supplemental Figure 18, D–M), but also significantly slowed 4T1 tumor growth (Supplemental Figure 18N). Moreover, this manipulation also led to significant reductions in the weight (Supplemental Figure 18, O and P), luciferase intensity (Supplemental Figure 18, Q and R) and NE content (Supplemental Figure 18S) of 4T1 tumors. Thus, these results strongly suggest that suppression of CeMCRH neurons significantly inhibits cancer-induced anxiety, sympathetic nerve activity, and significantly improves antitumor immunity, delaying cancer progression in mammary tumor-bearing mice.

Activation of CeMCRH neurons accelerates cancer-induced anxiety and breast tumor progression

To gain further insight into the crucial role of activated CeMCRH neurons in breast tumor progression, we also increased the activity of CeMCRH neurons with pharmacogenetics and optogenetics. In pharmacogenetic activation experiments (Figure 6, A–C), CNO administration in 4T1 tumor-bearing mice expressing stimulatory DREADD receptor (hM3Dq) in the CeMCRH neurons, resulted in a significant increase in anxiety-like behaviors, compared to 4T1 tumor-bearing mice expressing the control mCherry fluorescent protein in the CeMCRH neurons (Figure 6, D–M). Furthermore, pharmacogenetic activation of CeMCRH neurons not only significantly accelerated the 4T1 tumor growth rate (Figure 6N), but also significantly increased the weight (Figure 6, O and P), luciferase intensity (Figure 6, Q and R), and NE content (Figure 6S) of 4T1 tumors. Immunofluorescence staining showed that pharmacogenetic activation of CeMCRH neurons resulted in a significant increase in the percentage of Ki67+ cells, but a significant decrease in the percentage of TUNEL+ cells in 4T1 tumors (Figure 6, U–W). In addition, flow cytometric analysis showed that pharmacogenetic activation of CeMCRH neurons resulted in significant decreases in infiltrated CD45+ leukocytes, CD4+ T cells and CD8+ T cells in 4T1 tumors (Supplemental Figure 14, B–D). Pharmacogenetic activation of CeMCRH neurons significantly increased the percentage of Tregs (CD4+CD25+FOXP3+ T regulatory cells), CD4+PD-1− T cells and CD8+PD-1− T cells, but significantly decreased the percentage of CD4+IFN-\gamma+ T cells and CD8+IFN-\gamma+ T cells in 4T1 tumors (Supplemental Figure 14, E–I). The significant decreases in percentage of CD4+ and CD8+ T cells in spleens of 4T1
tumor-bearing mice were observed following pharmacogenetic activation of CeMCRH neurons (Supplemental Figure 14, J and K). Furthermore, pharmacogenetic activation of CeMCRH neurons significantly decreased the percentage of CD11b\(^+\)F4/80\(^+\)CD86\(^+\)CD206\(^-\) M1 macrophages and the ratio of M1/M2 macrophages, but did not significantly affect the percentage of CD11b\(^+\)F4/80\(^+\)CD86\(^+\)CD206\(^-\) M2 macrophages in 4T1 tumors (Supplemental Figure 15).

Similar results were obtained in optogenetic activation experiments. We also found that optogenetic activation (Supplemental Figure 19, A–C) of CeMCRH neurons not only significantly increased anxiety-like behaviors of 4T1 tumor-bearing mice (Supplemental Figure 19, D–M), but also increased the growth (Supplemental Figure 19N), weight (Supplemental Figure 19, O and P), luciferase intensity (Supplemental Figure 19, Q and R), and NE content (Supplemental Figure 19S) of 4T1 tumors. Thus, these lines of evidence suggest that activation of CeMCRH neurons significantly increases the cancer-induced anxiety, sympathetic nerve activity, and significantly suppresses antitumor immunity, promoting the cancer progression in mammary tumor-bearing mice.

Inhibition of the CeMCRH→LPGi circuit suppresses cancer-induced anxiety and breast tumor progression

Because distinct subpopulations of CeMCRH neurons project to different hypothalamic and brain stem structures, it is unclear which of these projections participate in the circuit that modulates cancer-induced anxiety and breast tumor progression. Our data showed that there was a neural connection between the sympathetic nerves distributed in the tumor stroma and LPGi CA (LPGiCA) neurons (Figure 2M, and Supplemental Figure 5G). Moreover, previous studies suggested that LPGiCA neurons innervate sympathoadrenal preganglionic neurons (33, 45). To identify monosynaptic projections from CeMCRH neurons to LPGiCA neurons, a cell-type-specific retrograde trans-monosynaptic tracing system was employed (Figure 7A). We injected rAAV2/8-Dbh-Cre virus together with Cre-dependent AAV-helper viruses into LPGi. After 21 days, the retrograde trans-monosynaptic rabies virus RV-EnvA-ΔG-EGFP was injected at the same site (Figure 7A). The histological results showed that EGFP-labeled neurons were found in the CeM (Figure 7B). Immunofluorescence staining showed that the most EGFP-labeled neurons in the CeM colocalized with CRH (Figure 7, C and D). These data suggest that CeMCRH neurons send monosynaptic projections to LPGiCA neurons. In addition, fiber photometry
recordings in 4T1 tumors also indicated that direct optogenetic stimulation of LPGi-projecting CRH neurons in the CeM (CeMCRH→LPi circuit) also induced a moderate and robust increase in fluorescent signals of GRAB\textsubscript{NE2h} in tumor tissue. In contrast, the fluorescent signals in control mice expressing EGFP in the tumor tissue showed no significant change during optogenetic stimulation (Figure 7, E–M).

To address whether the anxiety-induced hyperactivation of the CeMCRH→LPi circuit alters breast tumor progression, we bilaterally injected retrogradely transported retroAAV expressing Cre recombinase (rAAV2/retro-CRH-Cre) into the LPGi and a Cre-dependent AAV encoding hM4Di-mCherry or mCherry (rAAV2/9-EF1\textalpha-DIO-hM4Di-mCherry or rAAV2/9-EF1\textalpha-DIO-mCherry) into the CeM (Figure 8, A–C). As expected, we found that pharmacogenetic suppression of the CeMCRH→LPi circuit not only significantly alleviated anxiety-like behaviors (Figure 8, D–M), but also significantly decreased the tumor growth rate (Figure 8N), weight (Figure 8, O and P), luciferase intensity (Figure 8, Q and R), and NE content (Figure 8S) of 4T1 tumors.

Similarly, consistent with the effects of pharmacogenetic suppression, optogenetic inhibition (Supplemental Figure 20, A–C) of the CeMCRH→LPi circuit also significantly inhibited anxiety-like behaviors (Supplemental Figure 20, D–M), and significantly decreased the tumor growth rate (Supplemental Figure 20N), weight (Supplemental Figure 20, O and P), luciferase intensity (Supplemental Figure 20, Q and R), and NE content (Supplemental Figure 20S) of 4T1 tumors. Thus, these results provide valid evidence to support the notion that inhibition of CeMCRH→LPi significantly suppresses cancer-induced anxiety, sympathetic nerve activity, and tumor progression in mammary tumor-bearing mice.

Activation of the CeMCRH→LPi circuit accelerates cancer-induced anxiety and breast tumor progression

Next, to confirm and further examine whether anxiety-induced activation of the CeMCRH→LPi circuit affects tumor progression, we bilaterally injected a retrograde rAAV2/retro-CRH-Cre virus into the LPGi and a Cre-dependent rAAV2/9-EF1\textalpha-DIO-hM3Dq-mCherry or rAAV2/9-EF1\textalpha-DIO-
mCherry (as a control) virus into the CeM (Figure 9, A–C). When CNO was administered from day 1 after tumor cell inoculation, anxiety-like behaviors of 4T1 tumor-bearing tumor mice expressing hM3Dq were significantly increased than that of control mice (Figure 9, D–M). Conversely, pharmacogenetic activation of the CeM^{CRH}→LPGi circuit significantly increased the tumor growth rate (Figure 9N), weight (Figure 9, O and P), luciferase intensity (Figure 9, Q and R), and NE content (Figure 9S) of 4T1 tumors.

In addition, we also observed that optogenetic activation of the CeM^{CRH}→LPGi circuit not only significantly enhanced anxiety-like behaviors (Supplemental Figure 21, D–M), but also significantly increased the tumor growth rate (Supplemental Figure 21N), weight (Supplemental Figure 21, O and P), luciferase intensity (Supplemental Figure 21, Q and R), and NE content (Supplemental Figure 21S) of 4T1 tumors. Collectively, these results suggest that activation of the CeM^{CRH}→LPGi circuit significantly increases the cancer-induced anxiety, sympathetic nerve activity, and tumor progression in mammary tumor-bearing mice.

Alprazolam is a promising intervention for slowing breast tumor progression

The present results suggest that cancer-induced anxiety and overactivity of CeM^{CRH} neurons play an important role in the progression of breast tumors. Alprazolam is widely used to treat anxiety disorders (51, 52). Moreover, it has been shown that acute or chronic treatment with alprazolam or other benzodiazepines significantly reduced amygdala activity (53-56). First, to determine whether treatment with alprazolam affects the activity of CeM^{CRH} and LPGi^{CA} neurons in tumor-bearing mice, we examined the activity of CeM^{CRH} and LPGi^{CA} neurons by using c-Fos as a neuronal activity marker. Double immunofluorescence staining indicated that the percentage of c-Fos^{+} CRH^{+} neurons among CeM^{CRH} neurons and of c-Fos^{+} CA^{+} neurons among LPGi^{CA} neurons decreased significantly after daily injection of alprazolam (Figure 9, A–E), suggesting that alprazolam treatment could significantly reduce the activity of CeM^{CRH} and LPGi^{CA} neurons in tumor-bearing mice.

Next, we tested the therapeutic effects of alprazolam on cancer-induced anxiety and breast tumor progression. Following 4T1 cells injection, the tumor-bearing mice were subjected to daily injection of alprazolam or vehicle for 4 weeks (Figure 10F). Daily treatment with alprazolam significantly
alleviated anxiety-like behaviors (Figure 10, G–P), and significantly decreased the tumor growth rate (Figure 10Q), weight (Figure 10, R and S), luciferase intensity (Figure 10, T and U), and NE content (Figure 10V) of 4T1 tumors. Moreover, flow cytometric analysis showed that daily treatment with alprazolam (Supplemental Figure 23A) resulted in significant increases in infiltrated CD45+ leukocytes, CD4+ T cells and CD8+ T cells in 4T1 tumors (Supplemental Figure 23, B–D). Alprazolam treatment significantly reduced the percentage of Tregs (CD4+CD25+FOXP3+ T regulatory cells), CD4+PD-1+ T cells and CD8+PD-1+ T cells, whereas significantly increased the percentage of CD4+IFN-γ+ T cells and CD8+IFN-γ+ T cells in PyMT tumors (Supplemental Figure 23, E–I). Significant increases in percentage of CD4+ and CD8+ T cells in spleens of 4T1 tumor-bearing mice were also observed following alprazolam treatment (Supplemental Figure 23, J and K). Furthermore, alprazolam treatment significantly increased the percentage of CD11b+F4/80+CD86+CD206− M1 macrophages and the ratio of M1/M2 macrophages, but did not significantly affect the percentage of CD11b+F4/80+CD86+CD206+ M2 macrophages in 4T1 tumors (Supplemental Figure 24). Notably, as a control, to rule out any possibility of alprazolam having any effect on proliferation and apoptosis of 4T1 cells in vitro, 4T1 cells were cultured with or without proliferation. As expected, we did not observe significant effect on the proliferation and apoptosis of 4T1 cells in vitro (Supplemental Figure 22).

Additionally, in the MMTV-PyMT mouse model, we also examined the functional role of alprazolam treatment in the cancer-induced anxiety and progression of spontaneous mammary tumor (Figure 11 A). As expected, alprazolam treatment significantly suppressed anxiety-like behaviors of PyMT tumor-bearing mice (Figure 11, B–K). Consistently, it also significantly slowed PyMT tumor growth (Figure 11L), and significantly decreased the weight and NE content of PyMT tumors (Figure 11, M and N). In addition, flow cytometric analysis showed that alprazolam treatment (Supplemental Figure 25A) resulted in significant increases in infiltrated CD45+ leukocytes, CD4+ T cells and CD8+ T cells in PyMT tumors (Supplemental Figure 25, B–D). Alprazolam treatment significantly reduced the percentage of Tregs (CD4+CD25+FOXP3+ T regulatory cells), CD4+PD-1+ T cells and CD8+PD-1+ T cells, whereas the same manipulation significantly increased the percentage of CD4+IFN-γ+ T cells and CD8+IFN-γ+ T cells in PyMT tumors (Supplemental Figure 25, E–I). The significant increases in percentage of CD4+ and CD8+ T cells in spleens of PyMT tumor-bearing mice were observed after
ablation of CeMCRH neurons (Supplemental Figure 25, J and K). Furthermore, alprazolam treatment also significantly increased the percentage of CD11b+F4/80+CD86−CD206− M1 macrophages, CD11b+F4/80+CD86−CD206+ M2 macrophages, and the ratio of M1/M2 macrophages in PyMT tumors (Supplemental Figure 26). Taken together, these results suggest that alprazolam treatment significantly inhibits the activity of CeMCRH and LPGiCA neurons, cancer-induced anxiety, sympathetic nerve activity, and significantly enhances antitumor immunity, slowing down the cancer progression in both orthotopic and spontaneous mammary tumor-bearing mice.

Discussion

Unlike anti-angiogenic and immunomodulatory therapies, which have become a mainstay of clinical oncology, we are only beginning to uncover how the nervous system modulates cancer growth (14, 16, 49). Notably, several studies have shown that peripheral nerves are emerging regulators of cancer progression (19, 21, 22). Peripheral nerves may underlie the increased progression and mortality of cancer patients with high psychosocial stress. Although peripheral nerves are ultimately connected to the brain, the neural mechanism underlying anxiety-promoted tumor progression remains unclear. In this study, we used interdisciplinary approaches combining cancer research and neuroscience to investigate how the brain contributes to tumor progression via direct tumor–nerve crosstalk. We showed that newly formed sympathetic nerves are distributed in breast tumors at the early stage of progression and that the nerves are polysynaptically connected to CeMCRH neurons. Additionally, CeMCRH neurons and the CeMCRH→LPGi circuit, an upstream neural circuit of the sympathetic nervous system, were activated in breast tumor-bearing mice. Artificial manipulation of the activity of CeMCRH neurons and the CeMCRH→LPGi circuit significantly affected the cancer-induced anxiety, sympathetic nerve activity, antitumor immunity, and cancer progression. Together, we establish a causal link between the brain activity of CeMCRH neurons and tumor growth. We demonstrate the crucial role of a brain–tumor circuit underlying cancer-induced anxiety via sympathetic innervation controlling breast tumor progression (Graphical abstract).

It remains to be shown whether targeting brain-tumor crosstalk with specific methods can lead to clinical benefits (15). In preclinical experiments, tricyclic antidepressants have been shown to control the growth of breast tumors, and relevant phase I clinical trial are currently underway (57). As a
commonly used anti-anxiety drug, benzodiazepine (such as alprazolam) is generally considered to be beneficial for patients with cancer-induced anxiety (13, 58, 59). We found that alprazolam significantly reduced the activity of CeMCRH and LPGiCA neurons, cancer-induced anxiety, and sympathetic nerve activity, then observably improved the antitumor immunity and slowed down tumor progression in tumor-bearing mice. The results suggested that anti-anxiety drugs and neural circuit interventions could be a potential avenue for the treatment of breast cancer.

Prior studies have shown that innervation occurred only after the tumor grew for a period of time (21, 22). However, we discovered that in the initial phases of tumor growth (5 days), there were obvious new sympathetic nerves growth in the tumor. These results indicated that sympathetic nerves may be involved in actively regulating breast cancer progression from the initial phases of tumor development.

This study aims to demonstrate a functional connection between an emotion regulating neuronal circuit and tumor growth. We showed that manipulation of CeMCRH neurons or the CeMCRH→LPGi circuit directly regulates the activity of the intratumoural sympathetic nerves, local level of NE, and tumor progression. Previous studies have confirmed that peripheral sympathetic innervation regulated cancer initiation and development (19, 21, 22, 60-62). As a key factor in nerve-cancer crosstalk in the tumor microenvironment, the neurotransmitter NE transmits sympathetic signals to various cells through adrenergic receptors (ARs) and plays multiple roles in tumor development (15, 63, 64). Anxiety is considered to induce the activation of the sympathetic nervous system (23, 24), and then the released NE directly acts on cancer cells to affect tumor progression (21, 22, 65). Several studies have shown that excessive activation of \(\alpha_2\)-AR significantly accelerates breast cancer progression. For example, dexmedetomidine, a highly selective \(\alpha_2\)-AR agonist, has been reported to significantly increase the proliferation, migration, and invasion of breast cancer cell lines MCF-7 and MDA-MB-231 in vitro, by activating \(\alpha_2\)-AR and downstream signaling pathways (66-68). Moreover, dexmedetomidine could also significantly elevate the weight and volume of MDA-MB-231 breast tumors in vivo (67). In contrast, suppression of \(\alpha_2\)-AR could significantly inhibit the proliferation, migration and invasion of MDA-MB-231 cells in vivo (69). Additionally, it has been proven that blocking \(\beta\)-AR significantly slows tumor growth and progression of both MDA-MB-231 and BT-549 breast tumors in vivo (22). Concordantly, in several clinical studies, treatment with \(\beta\)-blockers
significantly reduced the biomarkers and pathways associated with metastasis in breast cancer patients (70-72). These results suggest that local sympathetic nerves can influence the progression of breast cancer by secreting NE that directly binds to the corresponding receptors of breast cancer cells.

In addition, the other possible mechanism underlying sympathetic innervation-affected tumor progression was that the secreted NE indirectly acts on immune cells to modulate antitumor immunity (16, 65). It is generally believed that sympathetic nerves directly innervate all primary and secondary immune organs to regulate immunity, and that sympathetic activity suppresses antitumor immunity (50, 73). Indeed, our results also showed that the hyperactivation of intratumoral sympathetic nerves via artificial activation of CeM^{C_{RH}} neurons resulted in significant decreases in infiltrated CD45⁺ leukocytes, CD4⁺ T cells, CD8⁺ T cells, CD4⁺IFN-γ⁺ T cells and CD8⁺IFN-γ⁺ T cells, but significantly increases Tregs, CD4⁺PD-1⁺ T cells, CD8⁺PD-1⁺ T cells in tumors. The M1-like phenotype of tumor microenvironment is immunostimulatory and can restrain tumor development and progression (74, 75). Correspondingly, our data showed that activation of intratumoral sympathetic nerves significantly inhibited M1 polarization and reduced the M1/M2 macrophage ratio in tumor. In contrast, suppression of local sympathetic activity through artificial inhibition of the brain slowed the tumor growth by decreasing the local level of NE and enhancing antitumor immunity. Collectively, these findings raise the possibility that the cancer-induced anxiety activates sympathetic nerves, which in turn inhibits the antitumor immune response and promotes the progression of breast cancer. It is probably also worth noting that 4T1 cells do not express functional AR, but sympathetic nerves also regulate the 4T1 tumor growth via modulating the immune system (20). Nevertheless, it is likely that such a brain manipulation will also affect other physiological systems which can also contribute to tumor growth. For example, it has also been shown that intratumoral sympathetic nerves release NE to accelerate tumor growth by promoting angiogenesis (61, 63). Thus, attention should be given not only to direct neuron-cancer cell interactions, but also to the influence of the nervous system on other cells of the local stromal, immune, and systemic tumor environment. However, rather than dissecting the specific molecular mechanisms mediating these effects, our study aims to demonstrate a functional connection between a negative mood regulating neuronal circuit and tumor growth. The detailed mechanisms underlying how peripheral sympathetic innervation modulates breast cancer progression need further investigation.
In summary, our findings reveal a brain–tumor neural circuit that is activated by cancer-induced anxiety and controls tumor progression. These findings may lead to new therapeutic interventions for breast cancer.
Methods

Additional methods are available in Supplemental Methods.

Statistics. Statistical significance was determined by two-tailed unpaired Student’s t test, one-way ANOVA followed by Tukey post hoc test, or two-way repeated-measures ANOVA followed by separate one-way ANOVA, or two-tailed unpaired Student’s t test using SPSS software for Windows (v. 25.0). In addition, two-sided linear regression analysis was used to evaluate the correlation. A value of \(P < 0.05 \) was considered statistically significant.

Study approval. All animal experiments were approved by the Animal Care Committee of Army Medical University, in accordance with the principles outlined in the National Institutes of Health Guide for the Care and Use of Laboratory Animals.

Data availability. Raw data for the manuscript are also available in the Supporting Data Values file or from the corresponding author upon request.

Author contributions

GYW and YZ initiated and designed the research. SYX, HZW and GYW performed most of the experiments, analyzed the data and prepared the figures. LMD, YXL, ZQW, XJY, YRW, PHC, SZY and XWQ contributed to some of the experiments. YLY helped with figure preparation. SW assisted with flow cytometry. GYW, YZ, HZW and SYX wrote the manuscript. All the authors commented on the manuscript.

Acknowledgements

We thank Yulong Li (Peking University School of Life Sciences) for providing support for the GRAB\textsubscript{NE2h} sensor. This work was supported by grants from the National Natural Science Foundation of China (31700913 to GYW), the Natural Science Foundation of Chongqing (cstc2020jcyj-msxmX0391 to GYW, CSTB2023NSCQ-ZDJ0002 to YZ), the Chongqing Talent Plan (A31200144 to YZ), Army Medical University (2019XQN01 to GYW, Talent Plan 2019 MP to GYW). HZW, YXL
and ZQW are supported by the National Natural Science Foundation of China (32071015, 31921003).

Conflict of interest

The authors have declared that no conflict of interest exists.

References

Figure 1. 4T1 tumor-bearing mice showing obvious anxiety.

(A) Schematic of the experimental design.

(B) The tumor growth of mice injected with 4T1-luc cancer cells (n = 14).

(C) Representative tumors dissected from the 4T1 tumor-bearing mice.

(D) The tumor weight 4 weeks after 4T1-luc cancer cells inoculation (n = 14).

(E) Representative bioluminescence images of the two groups.

(F) The luciferase intensity of tumor 4 weeks after 4T1-luc cells inoculation (n = 14).

(G–I) In the light–dark box test, representative heatmaps (G), and quantitative summary of time spent in light box (H), and the total number of transitions (I) in the Vehicle (n = 17) and 4T1-luc (n = 14) groups.
(J–L) In the open field test, representative heatmaps (J), and quantification of the time spent in the center zone (K), and the distance traveled in the center zone (L) in the Vehicle (n = 17) and 4T1-luc (n = 14) groups.

(M–P) In the elevated plus maze test, representative heatmaps (M), and quantification of the time spent in the open arms (N), entries into open arms (O), and the anxiety index (P) in the Vehicle (n = 17) and 4T1-luc (n = 14) groups.

(Q) The NE content of tumor tissue at 4 weeks after 4T1-luc cells inoculation (n = 14).

(R–T) Correlation between tumor volume and tumor tissue NE (R), tumor weight and tumor tissue NE (S), tumor luciferase intensity and tumor tissue NE (T).

Data are presented as means ± SEM, except in box plot (K, L, Q), in which the centerline indicates the median, box edges represent the first and third quartiles and whiskers denote minimal and maximal values. ***P < 0.001, two-tailed unpaired Student’s t test (H, I, K, L, N–P), two-sided linear regression analysis (R–T).
Figure 2. The newly formed sympathetic innervation of 4T1 tumor connects to the brain.

(A) Schematic diagram for immunofluorescence staining of TH and NF-L in breast tumors (n = 4 for each group).

(B) Representative images showing immunofluorescence staining of TH and NF-L 5, 7 and 9 days after 4T1 cells inoculation.

(C) Quantification of TH+ sympathetic nerve fibers in outer regions of the tumor (field surface = 0.15 mm²; n = 4 for each group).

(D) Experimental scheme showing the transplantation of 4T1 cells, and intratumoral injection of neurotropic retrograde trans-polysynaptic pseudorabies virus PRV-EGFP.

(E–J) Representative images showing PRV-infected neurons (green) in the IML (E) and CeM (F–J) from the mice 6 days after PRV-EGFP injection into the tumor tissue.
(K) Quantification of PRV$^+$ neurons in the left and right CeM (n = 5).

(L) Representative images and quantification of PRV$^+$CRH$^+$ neurons among PRV$^+$ neurons in the CeM (n = 5).

(M) Representative images and quantification of PRV$^+$TH$^+$ neurons among PRV$^+$ neurons in the LPGi (n = 5).

Data are presented as means ± SEM, except in box and half violin plots (L, M), in which centerlines indicate medians, box edges represent the first and third quartiles and whiskers denote minimal and maximal values. N.S., not significant, ***P < 0.001, one-way ANOVA followed by Tukey post-hoc test (C), two-tailed unpaired Student’s t test (K).

BLA, basolateral amygdaloid nucleus; CeL central nucleus of the amygdala, lateral division; CeM, central nucleus of the amygdala, medial division; DH, dorsal horn; IML, intermediolateral cell column; VH, ventral horn.
Figure 3. Activation of CeM^{CRH} neurons increases the activities of local sympathetic nerves distributed in mammary tumors.

(A) Timeline for c-Fos and CRH immunofluorescence staining.

(B) Representative bioluminescence images of mice 4 weeks after injection of Vehicle and 4T1-luc breast cancer cells.

(C, D) Representative images (C) and quantification (D) of c-Fos⁺ neurons colocalized with CeM^{CRH} neurons from the Vehicle and 4T1-luc groups (n = 5 for each group).

(E, F) Timeline and scheme for recording the activities of sympathetic nerves distributed in tumor stroma during optogenetic stimulation of CeM^{CRH} neurons.

(G, H) Typical image of virus expression in CeM (G) and tumor stroma (H).

(I, J) Comparison of the mean ΔF/F (0–5 s; I) and peak amplitude of ΔF/F (J) between the GRAB_{NE2h} and EGFP groups (n = 5 for each group).

(K) Average fluorescence change in the GRAB_{NE2h} and EGFP groups, with shaded areas indicating the SEM.

(L, M) Heatmaps show the average fluorescence change in the GRAB_{NE2h} (L) and EGFP (M) groups.

Data are presented as means ± SEM. ***P < 0.001, two-tailed unpaired Student’s t test (D, I, J).
Figure 4. Specific ablation of CeMCRH neurons significantly reduces cancer-induced anxiety and suppresses 4T1 tumor progression.

(A) Schematic of the experimental design.
(B) Schematic showing bilateral injection of viruses into the CeM.
(C) Representative images showing the successful ablation of CeMCRH neurons.
(D–M) Representative heatmaps and summary data of the EYFP (n = 15) and taCasp3 (n = 12) groups.
in the light–dark box test (D–F), open field test (G–I), and the elevated plus maze test (J–M).

(N) The ablation of CeM^{CRH} neurons significantly slows 4T1 tumor growth.

(O) Representative 4T1 tumors dissected from the two groups.

(P) The ablation of CeM^{CRH} neurons significantly reduces 4T1 tumor weight.

(Q) Representative bioluminescence images of the two groups.

(R) The ablation of CeM^{CRH} neurons significantly reduces the luciferase intensity of 4T1 tumor (P, R: EYFP, n = 15, taCasp3, n = 12).

(S, T) The ablation of CeM^{CRH} neurons significantly decreases NE content of 4T1 orthotopic mammary (S) or ectopic (T) tumor (S: EYFP, n = 15, taCasp3, n = 12; T: n = 6 for each group).

(U) Timeline for immunofluorescence staining of 4T1 tumor tissues.

(V, W) Representative images and quantification of Ki67⁺ cells (V), TUNEL⁺ cells (W) within the 4T1 tumor (n = 6 for each group).

Data are presented as means ± SEM, except in box plots (H, I, S, T), in which centerlines indicate medians, box edges represent the first and third quartiles and whiskers denote minimal and maximal values. *P < 0.05, **P < 0.01, ***P < 0.001, two-way repeated-measures ANOVA followed by separate one-way ANOVA (N), two-tailed unpaired Student’s t test (E, F, H, I, K–M, P, R–T, V, W).
Figure 5. Chemogenetic inhibition of CeMCRH neurons significantly attenuates both cancer-induced anxiety and 4T1 tumor progression.

(A) Schematic of the experimental design.

(B) Schematic showing bilateral injection of viruses into the CeM.

(C) Representative images showing hM4Di-mCherry expression in CeMCRH neurons.

(D–M) Representative heatmaps and summary data of the mCherry (n = 15) and hM4Di (n = 14) groups in the light–dark box test (D–F), open field test (G–I), and the elevated plus maze test (J–M).
Chemogenetic inhibition of CeMCRH neurons significantly slows 4T1 tumor growth.

Representative tumors dissected from the two groups.

Chemogenetic inhibition of CeMCRH neurons significantly reduces 4T1 tumor weight.

Representative bioluminescence images of the two groups.

Chemogenetic inhibition of CeMCRH neurons significantly reduces the luciferase intensity of 4T1 tumor (P, R: mCherry, n = 15, hM4Di, n = 14).

Chemogenetic inhibition of CeMCRH neurons significantly decreases NE content of 4T1 orthotopic mammary (S) or ectopic (T) tumor (S: mCherry, n = 15, hM4Di, n = 14; T: n = 6 for each group).

Timeline for immunofluorescence staining of 4T1 tumor tissues.

Representative images and quantification of Ki67+ cells (V), TUNEL+ cells (W) within the 4T1 tumor (n = 6 for each group).

Data are presented as means ± SEM, except in box plots (H, I, S, T), in which centerlines indicate medians, box edges represent the first and third quartiles and whiskers denote minimal and maximal values. *P < 0.05, **P < 0.01, ***P < 0.001, two-way repeated-measures ANOVA followed by separate one-way ANOVA (N), two-tailed unpaired Student’s t test (E, F, H, I, K–M, P, R–T, V, W).
Figure 6. Chemogenetic activation of CeMCRH neurons significantly increases cancer-induced anxiety and accelerates 4T1 tumor progression.

(A) Schematic illustration of the experimental design.

(B) Schematic showing bilateral injection of viruses into the CeM.

(C) Representative images showing hM3Dq-mCherry expression in the CeM.

(D–M) Representative heatmaps and summary data of the mCherry (n = 15) and hM3Dq (n = 15) groups in the light–dark box test (D–F), open field test (G–I), and the elevated plus maze test (J–M).
Chemogenetic activation of CeM^{CRH} neurons significantly accelerates 4T1 tumor growth.

Representative tumors dissected from the two groups.

Chemogenetic activation of CeM^{CRH} neurons significantly increases 4T1 tumor weight.

Representative bioluminescence images of the two groups.

Chemogenetic activation of CeM^{CRH} neurons significantly increases the luciferase intensity of 4T1 tumor (P, R: n = 15 for each group).

Chemogenetic activation of CeM^{CRH} neurons significantly increases NE content of 4T1 orthotopic mammary (S) or ectopic (T) tumor (S: n = 15 for each group; T: n = 6 for each group).

Timeline for immunofluorescence staining of 4T1 tumor tissues.

Representative images and quantification of Ki67⁺ cells (V), TUNEL⁺ cells (W) within 4T1 tumor (n = 6 for each group).

Data are presented as means ± SEM, except in box plots (H, I, S, T), in which centerlines indicate medians, box edges represent the first and third quartiles and whiskers denote minimal and maximal values. *P < 0.05, **P < 0.01, ***P < 0.001, two-way repeated-measures ANOVA followed by separate one-way ANOVA (N), two-tailed unpaired Student’s t test (E, F, H, I, K–M, P, R–T, V, W).
Figure 7. Optogenetic stimulation of the CeM^{CRH}→LPGi circuit activates sympathetic nerves in the 4T1 tumors.

(A) Schematic of the Cre-dependent retrograde trans-monomousynaptic rabies virus tracing strategy in wild-type BALB/c mice.

(B) EGFP-labeled neurons in the CeM traced from LPGi^{CA} neurons.

(C, D) Representative images showing the colocalization of EGFP with CRH in the CeM (C) and summarized data (D; n = 5).

(E, F) Timeline and scheme for recording the activities of sympathetic nerves distributed in the tumor stroma during optogenetic stimulation of the CeM^{CRH}→LPGi circuit in the CeM.

(G, H) Typical image of viruses (AAV and pLenti) expression in the CeM (G) and tumor stroma (H).

(I, J) Comparison of the mean ΔF/F (0–5 s; I) and peak amplitude of ΔF/F (J) between the GRAB_{NE2h} and EGFP groups (n = 6 for each group).

(K) Average fluorescence change in the GRAB_{NE2h} and EGFP groups, with shaded areas indicating the
(L, M) Heatmaps show the average fluorescence change in the GRAB_{NE2h} (L) and EGFP (M) groups. Data are presented as means ± SEM, except in box and half violin plots (D), in which centerlines indicate medians, box edges represent the first and third quartiles and whiskers denote minimal and maximal values. ***P < 0.001, two-tailed unpaired Student’s t test (I, J).
Figure 8. Chemogenetic inhibition of the CeM_{CRH}→LPGi circuit significantly suppresses both cancer-induced anxiety and 4T1 tumor progression.

(A) Schematic of the experimental design.

(B) Schematic showing bilateral injection of rAAV2/retro-CRH-Cre into the LPGi, and of rAAV2/9-EF1α-DIO-hM4Di-mCherry or rAAV2/9-EF1α-DIO-mCherry into the CeM.

(C) Representative images showing hM4Di-mCherry expression in the CeM.

(D–M) Representative heatmaps and summary data of the mCherry (n = 14) and hM4Di (n = 13) groups in the light–dark box test (D–F), open field test (G–I), and the elevated plus maze test (J–M).

(N) Chemogenetic inhibition of the CeM_{CRH}→LPGi circuit significantly decelerates 4T1 tumor growth.

(O) Representative tumors dissected from the two groups.
Chemogenetic inhibition of the CeM^{CRH}→LPGi circuit significantly reduces 4T1 tumor weight.

Representative bioluminescence images of the two groups.

Chemogenetic inhibition of the CeM^{CRH}→LPGi circuit significantly reduces the luciferase intensity of 4T1 tumor (R) and tumor tissue NE content (S; P, R, S: mCherry, n = 14, hM4Di, n = 13).

Data are presented as means ± SEM, except in box plots (H, I, S), in which centerlines indicate medians, box edges represent the first and third quartiles and whiskers denote minimal and maximal values. *P < 0.05, **P < 0.01, ***P < 0.001, two-way repeated-measures ANOVA followed by separate one-way ANOVA (N), two-tailed unpaired Student’s t test (E, F, H, I, K–M, P, R, S).
Figure 9. Chemogenetic activation of the CeMCRH→LPGi circuit significantly increases cancer-induced anxiety and accelerates the 4T1 tumor progression.

(A) Schematic illustration of the experimental design.

(B) Schematic showing bilateral injection of rAAV2/retro-CRH-Cre into the LPGi, and of rAAV2/9-EF1\textalpha-DIO-hM3Dq-mCherry or rAAV2/9-EF1\textalpha-DIO-mCherry into the CeM.

(C) Representative images showing hM3Dq-mCherry expression in the CeM.

(D–M) Representative heatmaps and summary data of the mCherry (n = 16) and hM3Dq (n = 13) groups in the light–dark box test (D–F), open field test (G–I), and the elevated plus maze test (J–M).

(N) Chemogenetic activation of the CeMCRH→LPGi circuit significantly accelerates 4T1 tumor growth.

(O) Representative tumors dissected from the two groups.
(P) Chemogenetic activation of the CeM_{CRH}→LPGi circuit significantly increases 4T1 tumor weight.

(Q) Representative bioluminescence images of the two groups.

(R, S) Chemogenetic activation of the CeM_{CRH}→LPGi circuit significantly increases the luciferase intensity of 4T1 tumor (R) and tumor tissue NE content (S; P, R, S: mCherry, n = 16, hM3Dq, n = 13). Data are presented as means ± SEM, except in box plots (H, I, S), in which centerlines indicate medians, box edges represent the first and third quartiles and whiskers denote minimal and maximal values. *P < 0.05, **P < 0.01, ***P < 0.001, two-way repeated-measures ANOVA followed by separate one-way ANOVA (N), two-tailed unpaired Student’s t test (E, F, H, I, K–M, P, R, S).
Figure 10. Alprazolam treatment significantly inhibits the activity of CeM^{CRH} neurons and LPGi^{CA} neurons and decelerates the progression of 4T1 breast tumors.

(A) Experimental protocol for the treatment with alprazolam or vehicle and immunofluorescence staining.

(B–E) Representative images and summarized data of c-Fos expression in the CeM^{CRH} neurons (B, C)
and LPGiCA neurons (D, E) after treatment with alprazolam or vehicle (n = 5 for each group).

(F) Schematic overview of the experimental design.

(G–P) Representative heatmaps and summary data of the Vehicle (n = 16) and Alp (n = 15) groups in the light–dark box test (G–I), open field test (J–L), and the elevated plus maze test (M–P).

(Q) Alprazolam treatment significantly decelerates 4T1 tumor growth.

(R) Representative tumors dissected from the two groups.

(S) Alprazolam treatment significantly reduces 4T1 tumor weight.

(T) Representative bioluminescence images of the two groups.

(U, V) Alprazolam treatment significantly reduces the luciferase intensity of 4T1 tumor (U) and tumor tissue NE content (V; S, U, V: Vehicle, n = 16, Alp, n = 15).

Data are presented as means ± SEM, except in box plots (C, E, K, L, V), in which centerlines indicate medians, box edges represent the first and third quartiles and whiskers denote minimal and maximal values. *P < 0.05, **P < 0.01, ***P < 0.001, two-way repeated-measures ANOVA followed by separate one-way ANOVA (Q), two-tailed unpaired Student’s t test (C, E, H, I, K, L, N–P, S, U, V).
Figure 11. Alprazolam treatment significantly reduces cancer-induced anxiety and suppresses tumor progression in MMTV-PyMT mice.

(A) Schematic of the experimental design.

(B–K) Representative heatmaps and summary data of the Vehicle (n = 5) and Alp (n = 5) groups in the light–dark box test (B–D), open field test (E–G), and the elevated plus maze test (H–K).

(L) Alprazolam treatment significantly decelerates PyMT tumor growth.

(M) Alprazolam treatment significantly reduces PyMT tumor weight.

(N) Alprazolam treatment significantly reduces NE content of PyMT tumor tissue (n = 5 for each group).

Data are presented as means ± SEM, except in box plots (F, G, N), in which centerlines indicate medians, box edges represent the first and third quartiles and whiskers denote minimal and maximal values. *P < 0.05, **P < 0.01, ***P < 0.001, two-way repeated-measures ANOVA followed by separate one-way ANOVA (M), two-tailed unpaired Student’s t test (C, D, F, G, I–K, M).