Tissue factor exposed at sites of vascular injury initiates coagulation resulting in thrombin generation. In addition to converting fibrinogen to fibrin, thrombin amplifies its own generation by activating platelets and by activating factors V and VIII, key cofactors in coagulation. Consequently, tight regulation of thrombin activity is essential to prevent excessive thrombosis (1). Regulation of thrombin Two naturally occurring anticoagulant pathways serve to regulate thrombin; the protein C pathway and antithrombin. The protein C pathway is initiated when thrombin binds to thrombomodulin, a thrombin receptor expressed by endothelial cells (2). Once bound to thrombomodulin, thrombin undergoes a conformational change at its active site that converts it from a procoagulant enzyme into a potent activator of protein C. Activated protein C, in concert with its cofactor protein S, serves as an anticoagulant by degrading and inactivating activated factors V and VIII (2). Several lines of evidence highlight the physiological importance of the protein C pathway. Mice totally deficient in thrombomodulin die in utero (3), whereas ablation of endothelial thrombomodulin causes early onset thrombosis (4). Likewise, patients with protein C or protein S deficiency are prone to thrombosis, as are those with the factor V Leiden mutation, a point mutation that renders activated factor V Leiden relatively resistant to inactivation by activated protein C (5). Antithrombin also is critical for the regulation […]

Find the latest version:

http://jci.me/18234/pdf
The physiological importance of the proteinase inhibitor (serpin); Nonstandard abbreviations used: serine proteinase inhibitor-1 (3-OST-1).

Conflict of interest: The author has declared no conflict of interest.

Address correspondence to: Jeffrey I. Weitz, Henderson Research Centre, 711 Concession Street, Hamilton, Ontario L8V 1C3, Canada. Phone: (905) 574-8550; Fax: (905) 575-2646; E-mail: weitz@thrombosis.hhsc.ca.

See the related article beginning on page 989.

Heparan sulfate: Antithrombotic or not?

Jeffrey I. Weitz

Henderson Research Centre, Hamilton, Ontario, Canada

Tissue factor exposed at sites of vascular injury initiates coagulation resulting in thrombin generation. In addition to converting fibrinogen to fibrin, thrombin amplifies its own generation by activating platelets and by activating factors V and VIII, key cofactors in coagulation. Consequently, tight regulation of thrombin activity is essential to prevent excessive thrombosis (1).

Regulation of thrombin

Two naturally occurring anticoagulant pathways serve to regulate thrombin: the protein C pathway and antithrombin. The protein C pathway is initiated when thrombin binds to thrombomodulin, a thrombin receptor expressed by endothelial cells (2). Once bound to thrombomodulin, thrombin undergoes a conformational change at its active site that converts it from a procoagulant enzyme into a potent activator of protein C. Activated protein C, in concert with its cofactor protein S, serves as an anticoagulant by degrading and inactivating activated factors V and VIII (2).

Several lines of evidence highlight the physiological importance of the protein C pathway. Mice totally deficient in thrombomodulin die in utero (3), whereas ablation of endothelial thrombomodulin causes early onset thrombosis (4). Likewise, patients with protein C or protein S deficiency are prone to thrombosis, as are those with the factor V Leiden mutation, a point mutation that renders activated factor V Leiden relatively resistant to inactivation by activated protein C (5).

Antithrombin also is critical for the regulation of coagulation. A member of the serine proteinase inhibitor (serpin) superfamily, antithrombin inhibits thrombin and other clotting enzymes in a slow, progressive fashion. The importance of antithrombin is highlighted by the fact that patients with heterozygous antithrombin deficiency have a thrombotic tendency (5, 6). Complete deficiency of antithrombin is likely to be incompatible with life, a concept supported by the observation that knocking out the antithrombin gene in mice results in intrauterine death from massive thrombosis (7).

Heparan sulfate

The activity of antithrombin is enhanced by heparin. Antithrombin possesses a heparin binding site that interacts with a unique pentasaccharide sequence found on one-third of the chains of unfractionated heparin. Key to high-affinity binding of antithrombin to this pentasaccharide sequence is 3-O-sulfated glucosamine, the middle saccharide unit of the pentasaccharide (8). Pentasaccharide binding to antithrombin induces conformational changes in the reactive center loop of the serpin that accelerate the rate at which antithrombin inhibits its target proteases by two to three orders of magnitude.

Although heparin is found in granules of human mast cells, it is not the physiological counterpart of medicinal heparin. Recent studies indicate that mast cell heparin regulates the types and amounts of positively-charged proteases stored in mast cell granules. Thus, mast cells deficient in heparin-synthesizing enzyme have altered morphology (9) and their granules contain reduced amounts of tryptase, chymase, and carboxypeptidase A (10). Not only are protease levels reduced, but their activity may also be limited because heparin enhances the activity of some mast cell proteases (11).

Current thinking is that the physiological counterpart of medicinal heparin is heparan sulfate, a glycosaminoglycan found on the surface of most eukaryotic cells and in the extracellular matrix. Anchored to the cell surface by its proteoglycan core, the functional units of heparan sulfate are found on its branching glycosaminoglycan side-chains (Figure 1). Cultured endothelial cells synthesize heparan sulfate and 1% to 10% of the molecules have anticoagulant activity because they contain the 3-O-sulfated glucosamine residue that is the hallmark of the antithrombin-binding pentasaccharide (11).

Antithrombin binds to cultured endothelial cells and binding is reduced when the cells are pretreated with heparinase (12), suggesting that this interaction is mediated by heparan sulfate. When radiolabeled antithrombin is used, over 90% of the antithrombin that binds to cultured endothelial cells or to the surface of perfused aortic segments can be localized to the subendothelial matrix (13). Exposure of cultured endothelial cells to IL-1 or tumor necrosis factor reduces heparan sulfate.
moxic and hypoxic conditions. tissues as wild-type mice under nor-
phenotype and have the same activity, the knockouts have a normal
due to reduced heparan sulfate
factor Xa compared with extracts
bin and to enhance its reaction with
reduced capacity to bind antithrom-
extracts from these mice exhibit
another 3-
imply responsible for 3-
ferase-1 (3-OST-1), the enzyme pri-
targeted disruption of 3-
enhances its reactivity with thrombin (IIa), thereby promoting the formation of AT/IIa complexes.
To explore the physiological impor-
sulfate–deficient mice
HajMohammadi and colleagues (15)
by 3-
attenuates 3-O-sulfation (in red) of the
critical glucosamine residue within the pentasaccharide sequence of heparan sulfate, thereby reduc-
ing its capacity to bind AT (inset). Antithrombin affinity is not abolished, however, because 3-OST-6,
another 3-O-sulfotransferase isoform, can also generate 3-O-sulfated glucosamine residues.
biosynthesis (14), raising the possibil-
may compensate for this phenomenon
endothelial cells are activated or damaged.
Heparan sulfate–deficient mice
To explore the physiological impor-
tance of heparan sulfate, HajMoham-
madi and colleagues (15) generated
mice deficient in 3-O-sulfotransferase-1 (3-OST-1), the enzyme pri-
arily responsible for 3-O-sulfation of the glucosamine residue within the
pentasaccharide sequence. As report-
ed in this issue of the JCI, tissue
samples from these mice exhibit
reduce capacity to bind antithrom-
bin and to enhance its reaction with
factor Xa compared with extracts
from tissues of wild-type mice. Despite reduced heparan sulfate
activity, the knockouts have a normal
phenotype and have the same
amount of fibrin deposition in their
tissues as wild-type mice under nor-
moxic and hypoxic conditions. Because most of the heparan sulfate
is found on the subendothelial matrix, HajMohammadi and colleagues (15)
used topical ferric chloride to induce
endothelial injury in the carotid arter-
ies, thereby exposing the subendotheli-
um. Despite the reduction in heparan
sulfate activity, 3-OST-1 knockout
mice failed to show accelerated throb-
mosis in the injured arteries compared with
their wild-type counterparts.
What can we learn from these ele-
gant studies? Because even modest
reductions in antithrombin levels are
associated with thrombosis (5, 6), the
lack of a procoagulant phenotype in
3-OST-1 knockout mice is surprising.
This finding raises the possibility that
other glycosaminoglycans can com-
pensate for the reduction in heparan
sulfate activity. One such candidate is the
chondroitin sulfate moiety on
thrombomodulin, a glycosaminogly-
can that enhances the reactivity of
thrombomodulin-bound thrombin
with antithrombin (16, 17). This phe-
nomenon may be yet another example
of redundancy in hemostatic path-
ways, one designed to limit thrombin
generation at sites of vascular injury.

Is heparan sulfate antithrombotic?
Do the findings in the 3-OST-1 knock-
out mice indicate that heparan sulfate is
not antithrombotic? I think not, based on
experiments in nature. Antithrom-
binsToyoma (18) and antithrombinFontainbleu
(19) are examples of congenital anti-
thrombin variants that react normally
with thrombin in the absence of
heparin, but fail to show accelerated
inhibition when heparin is present.
The lack of a heparin effect can be explained
by the fact that these variants have
reduced affinity for heparin because of
mutations in their heparin-binding
domain. Only patients who are homo-
zygous for these variant antithrombins
are prone to unprovoked thrombosis,
suggesting that dysregulation of throm-in inhibition requires complete dis-
ruption of the antithrombin-heparan
sulfate interaction. Supporting this con-
cept are the findings in mice that have
been engineered to express antithrom-
bin with reduced capacity to bind
heparan sulfate. Homozygotes die of
thrombosis early in life, whereas het-
erozygotes have a normal phenotype
(20). Thus, only complete deficiency of
heparan sulfate leads to thrombosis.
How do we rationalize the unpro-
voked thrombosis that occurs in
humans or mice homozygous for
antithrombin mutations that reduce
antithrombin’s affinity for heparan
sulfate, with the absence of thrombosis
in the 3-OST-1 knockout mice? The
answer to this question may lie in the
details of the study. Knocking out
3-OST-1 attenuates, but does not abol-
ish, the ability of heparan sulfate to bind and activate antithrombin. As the
authors indicate, the residual 2 to 20%
heparan sulfate activity in the 3-OST-1
knockout mice may compensate for the
reduction in heparan sulfate activity. Likely, the gen-
expression of such mice will require tar-
geted disruption of several 3-OST iso-
forms. Based on results of experiments

Figure 1
Heparan sulfate anticoagulant pathway. Anchored by a proteoglycan core to the vessel wall, heparan
sulfate binds antithrombin (AT) via a unique pentasaccharide sequence (diamonds) found on 1 to
10% of the glycosaminoglycan side-chains. Key to the high-affinity binding of AT to the pentasac-
charide is the 3-O-sulfated glucosamine residue in the middle of the pentasaccharide sequence (red diamond). Once bound, AT undergoes a conformational change at its reactive centre loop that
enhances its reactivity with thrombin (IIa), thereby promoting the formation of AT/IIa complexes.
Targeted disruption of 3-O-sulfotransferase-1 (3-OST-1) attenuates 3-O-sulfation of its binding domain.
This finding raises the possibility that residual heparan sulfate activity may be
sufficient to protect the mice from
thrombosis as is the case in patients
heterozygous for mutations in the
heparin-binding domain of anti-
thrombin. Testing this possibility
requires knockout mice with no
heparan sulfate activity. Likely, the
expression of such mice will require tar-
geted disruption of several 3-OST iso-
forms. Based on results of experiments

The Journal of Clinical Investigation | April 2003 | Volume 111 | Number 7

953
in nature, I predict that mice with no heparan sulfate activity will develop thrombosis, supporting the concept that heparan sulfate is antithrombotic. These mice also should exhibit more profound intrauterine growth retardation than 3-OST-1 knockouts (15), thereby demonstrating a biological gradient for this unexpected finding depending on the extent to which heparan sulfate activity is reduced.

Summary

With their studies in 3-OST-1 knockout mice, HajMohammadi and colleagues (15) have advanced our understanding of the pathways that regulate thrombin. Antithrombin is critical for thrombin regulation because even partial deficiency is associated with thrombosis. In contrast, complete deficiency of heparan sulfate activity is necessary to provoke thrombosis. These findings suggest that small amounts of residual heparan sulfate activity are sufficient to catalyze antithrombin or that other vessel wall glycosaminoglycans can compensate for all but complete lack of heparan sulfate activity.

Acknowledgments

J.I. Weitz is the recipient of a Career Investigator Award from the Heart and Stroke Foundation of Ontario and holds the Heart and Stroke Foundation of Ontario/J. Fraser Mustard Chair in Cardiovascular Research, and the Canada Research Chair in Thrombosis at McMaster University.

11. Hallgren, J., Spillmann, D., and Pejler, G. 2001. Structural requirements and mechanism of heparin-induced activation of a recombinant mouse mast cell tryptase, mouse mast cell pro-

See the related article beginning on page 1073.

Transplacental thyroxine and fetal brain development

R. Thomas Zoeller

Department of Biology, University of Massachusetts–Amherst, Morrill Science Center, Amherst, Massachusetts, USA

Address correspondence to: R. Thomas Zoeller, Department of Biology, University of Massachusetts–Amherst, Morrill Science Center, Amherst, Massachusetts 01003, USA. Phone: (413) 545-2088; Fax: (413) 545-3243; E-mail: zoeller@bio.umass.edu.

Conflict of interest: The author has declared that no conflict of interest exists.

Nonstandard abbreviations used: congenital hypothyroidism (CH); intelligence quotient (IQ); thyroxine (T4); triiodothyronine (T3); disabled homolog 1 (Dab1).

We all know that thyroid hormone is essential for normal brain development, so it is perhaps not surprising to read the title of the report by Lavado-Autric et al. in this issue of the *JCI* (1), indicating that thyroid hormone affects brain development in the rat. However, the article addresses two matters that are central to an ongoing debate about important details of thyroid hormone action in the developing brain.

Lavado-Autric et al. (1) report that subtle insufficiency of thyroid hormone in the pregnant rat disrupts the migration of neurons in the fetal cortex and hippocampus, leading to the presence of neurons in aberrant locations of the adult offspring’s brain and “blurring” cortical layers. Thus, the two important issues addressed in the design of this work are the timing of thyroid hormone action in the developing brain and the relative sensitivity of the fetal brain to maternal thyroid hormone insufficiency. Considering that maternal hypothyroxinemia may be 150–200 times more prevalent than congenital hypothyroidism (CH), several authors have recently speculated that screening for thyroid function should be routine for women early in their pregnancy.