F18-FDG PET imaging as a diagnostic tool for immune checkpoint inhibitor-associated acute kidney injury

Shruti Gupta, …, Ilya Glezerman, David E. Leaf

J Clin Invest. 2024. [https://doi.org/10.1172/JCI182275.](https://doi.org/10.1172/JCI182275)

Find the latest version:

https://jci.me/182275/pdf
F18-FDG PET imaging as a diagnostic tool for immune checkpoint inhibitor-associated acute kidney injury

Shruti Gupta,1,2,3* Olivia Green-Lingren,1 Sudhir Bhimaniya,3,4* Aleksandra Krokhmal,4 Heather Jacene,3,4 Marlies Ostermann,5 Sugama Chicklore,6 Ben Sprangers,7,8 Christophe M. Deroose,9 Sandra M. Herrmann,10 Sophia L. Wells,1 Sarah A. Kaunfer,1 Jessica L. Ortega,1 Clara Garcia Carro,11 Michael Bold,12 Kevin L. Chen,13 Meghan E. Sise,3,14 Pedram Heidari,15 Wai Lun Will Pak,16 Meghan D. Lee,14 Pzait Beckerman,17 Yael Eshet,18 Raymond K. Hsu,19 Miguel Hernandez Pampaloni,20 Arash Rashidi,21 Norbert Avril,22 Vicki Donley,21 Zain Mithani,23 Russ Kuker,24 Muhammad Awiwi,25 Mindy Wang,26 Sujal I. Shah,27 Michael Weintraub,4 Heiko Schoder,28 Raad B. Chowdhury,1,2,3 Harish Seethapathy,3,14 Kerry Reynolds,3,29 Maria Jose Soler,30 Ala Abudayyeh,26 Ilya Glezerman,16 David E. Leaf1,3

*Equal contribution

1Division of Renal Medicine, Brigham and Women’s Hospital, Boston, MA, USA
2Adult Survivorship Program, Dana-Farber Cancer Institute, Boston, MA, USA
3Harvard Medical School, Boston, MA, USA
4Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Brigham and Women’s Hospital, Boston, MA, USA
5Department of Critical Care & Nephrology, King’s College London, Guy’s and St Thomas’ Hospital, London, UK
6King’s College London & Guy’s St Thomas’ PET Centre, London, UK
7Biomedical Research Institute, Department of Immunology and Infection, UHasselt, Diepenbeek, Belgium
8Department of Nephrology, Ziekenhuis Oost Limburg, Genk, Belgium
9Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
10Division of Nephrology & Hypertension, Mayo Clinic, Rochester, MN, USA
11Nephrology Department, San Carlos Clinical University Hospital, Madrid, Spain
12Department of Radiology, Division of Nuclear Medicine, Mayo Clinic, Rochester, MN, USA
13Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA
14Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, MA, USA
15Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
16Renal Service, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA
17Institute of Nephrology and Hypertension, Sheba Medical Center and Sackler School of Medicine, Tel Aviv University, Tel Hashomer, Tel Aviv, Israel
18Department of Nuclear Imaging, Chaim Sheba Medical Center, Ramat Gan, Israel
19Division of Nephrology, University of California San Francisco, San Francisco, CA, USA
20Department of Radiology and Biomedical Imaging, University of California San Francisico, San Francisco, CA, USA
21Division of Nephrology and Hypertension, University Hospital Cleveland Medical Center, Cleveland, OH, USA
22Department of Radiology, Nuclear Medicine, University Hospitals Cleveland, Cleveland, OH, USA
23Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
24Department of Radiology, Division of Nuclear Medicine, University of Miami, Miami, FL, USA
25Division of Diagnostic Imaging, University of Texas Health Science Center at Houston, Houston, TX, USA
26Division of Internal Medicine, Section of Nephrology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
27Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
28Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
29Division of Hematology-Oncology, Massachusetts General Hospital, Boston, MA, USA
30Vall d’Hebron University Hospital, Vall d’Hebron Institute of Research, CSUR National Unit of Expertise for Complex Glomerular Diseases of Spain, Barcelona, Spain

Manuscript Word count: 1003
Figures: 1
Running Title: PET-CT for ICI-AKI

Address correspondence to:
Shruti Gupta, MD, MPH
75 Francis St
Boston, MA 02115
Email: Sgupta21@bwh.harvard.edu
Phone: 617-732-7482
Twitter: @ShrutiGKidney
Immune checkpoint inhibitors (ICIs), anti-cancer agents that enhance anti-tumor response, can cause autoimmune toxicities, including ICI-associated acute kidney injury (ICI-AKI). The most common histopathologic lesion in patients with ICI-AKI is acute tubulointerstitial nephritis (ATIN); however, a definitive diagnosis of ATIN requires a kidney biopsy (1). This represents a frequently encountered clinical challenge for providers, as AKI is very common among cancer patients, many of whom have contraindications to kidney biopsy (e.g., solitary kidney, therapeutic anticoagulation). Accordingly, non-invasive methods of diagnosing ICI-AKI are urgently needed, as treatment involves glucocorticoids and discontinuation of potentially life-saving immunotherapy.

Case reports and one case series explored the utility of 2-deoxy-2-[\(^{18}\)F]fluoro-D-glucose positron emission tomography-computed tomography (F\(^{18}\)-FDG PET-CT) for diagnosing ICI-AKI and reported mixed findings (2,3); however, these studies did not have clear inclusion and exclusion criteria to carefully phenotype the patients, did not use rigorous techniques to minimize sampling error, and, most importantly, in some cases did not include a control group. We sought to address these key knowledge gaps and define the role of F\(^{18}\)-FDG PET-CT in diagnosing ICI-AKI.
We used data from a retrospective, multicenter cohort study of 429 patients with ICI-AKI treated at 30 sites across 10 countries (1). Patients were diagnosed with ICI-AKI between 2012-2023 and had either biopsy-proven or clinically adjudicated ICI-AKI (Table S1), specifically ICI-ATIN.

We also assembled two control groups, each consisting of patients with cancer treated at Mass General Brigham (MGB). The first was comprised of patients with AKI from non-ICI etiologies, and the second was comprised of patients treated with ICIs who did not have AKI at the time of a follow-up F18-FDG PET-CT.

For all three groups, patients were included if they had F18-FDG PET-CT scans at baseline and within 14 days of AKI onset (or, for the second control group, a follow-up scan between 90-365 days following ICI initiation). Patients were excluded from all three groups if they had genitourinary cancer, lymphomatous infiltration of the kidneys, or received ≥7 days of glucocorticoids prior to the follow-up scan.

Radiologists at each site reviewed the F18-FDG PET-CTs. They were unaware of group assignment at the time of review. Five 0.5 cm diameter regions of interest (ROIs) were drawn in the cortex of each kidney, avoiding the collecting system and space-occupying lesions such as cysts. The ROIs were selected to represent each kidney’s upper, mid, and lower poles. The mean standardized uptake value (SUV\textsubscript{mean}) for each ROI was recorded.
53 patients were included (9 with ICI-AKI, 24 with AKI from non-ICI causes, and 20 ICI-treated without AKI; **Figure S1**). Baseline characteristics were largely similar among the three groups (**Table S2**), as were F18-FDG PET-CT scan technical parameters (**Table S3**).

Detailed characteristics of the 9 ICI-AKI patients are shown in **Table S4**. Three had biopsy-proven ATIN, whereas the remaining 6 had clinically-adjudicated ICI-ATIN. All had clinical features supporting a diagnosis of ATIN (**Table S5**). Those with AKI from non-ICI causes had prerenal AKI (n=10), ischemic or septic acute tubular necrosis (n=10), or other AKI etiologies (n=4) (**Table S6**).

Representative images from baseline and follow-up F18-FDG PET-CTs from an ICI-AKI patient (#1) are shown in **Figure 1A**. Among those with ICI-AKI, the SUV$_{\text{mean}}$ increased by a median of 57.4% (IQR, 40.3 to 119.8) from baseline to follow-up. In contrast, it increased by 8.5% (IQR, 1.4 to 19.9) among patients with AKI from non-ICI causes and decreased by 0.8% (IQR, -16.6 to 5.1) among patients receiving ICIs without AKI (P<0.001; **Figure 1B**). The increase in SUV$_{\text{mean}}$ in patients with ICI-AKI was also greater compared to that of patients with AKI from non-ICI causes when stratified by AKI etiology (**Figure S2**). The AUC for the differentiation of ICI-AKI from the two control groups according to percent change in SUV$_{\text{mean}}$ was 0.97 (95% CI, 0.93 to 1.00) (**Figure 1C**). In a sensitivity analysis (described in the supplemental methods), the AUC was unchanged at 0.97 (95% CI, 0.92 to 1.00).

In the ICI-AKI cohort, there was little intra-individual variability in the ROIs at each time point (**Figure S3**), though overall precision improved monotonically with a greater number of ROIs (**Figure S4**).
We found that patients with ICI-AKI had a considerable increase in SUV_{mean} on 18F-FDG PET-CT from baseline to the time of AKI compared to two groups of control patients. These findings suggest that, when a baseline 18F-FDG PET-CT is available, these scans have diagnostic utility in differentiating ICI-AKI from AKI caused by other etiologies and could offer a noninvasive alternative to kidney biopsy.

Though predominantly used for cancer staging and assessing treatment response, 18F-FDG PET-CTs have also been used to examine autoimmune toxicity resulting from ICIs. Patients with suspected ICI-associated colitis had increased radiotracer uptake in the colon, whereas uptake decreased with treatment with glucocorticoids (4). Another study found that patients with positive 18F-FDG PET-CTs of the thyroid were more likely to develop ICI-associated hypothyroidism (5).

Fewer data are available on the role of 18F-FDG PET-CT imaging for ICI-AKI (2,3). A single-center study examined 18F-FDG PET-CT scans in 14 patients with ICI-AKI and reported an increase in FDG activity in the renal parenchyma and a decrease in the collecting system (2). However, the study did not exclude patients with genitourinary cancer or those who had received prolonged courses of glucocorticoids prior to the follow-up 18F-FDG PET-CT scan, nor did they compare their findings to controls without ICI-AKI. Further, only a single ROI in the renal cortex was obtained in each patient, which could have resulted in sampling error.

In our study, we compared changes in FDG uptake from baseline to the time of AKI among patients with and without ICI-AKI while also incorporating rigorous inclusion and exclusion criteria. We acknowledge as a limitation that not all patients had biopsy-proven ICI-AKI; however, this reflects clinical practice, where a diagnosis is often made based on established risk factors, clinical features, and an absence of alternative etiologies (1).
In summary, we found that F18-FDG PET-CT may be a useful adjunctive test for diagnosing ICI-AKI in patients with baseline imaging available. Larger prospective studies are needed to validate these findings.
REFERENCES

Figure 1
Figure 1. 18FDG PET-CT and ICI-AKI. A) Representative 18FDG PET-CT images at baseline (top panels) and at the time of ICI-AKI (lower panels). B) Percent change in SUV_{mean} from baseline to the time AKI among patients with ICI-AKI (red), AKI from other causes (blue), and patients receiving ICI therapy without AKI (green). Biopsy-proven patients are represented by squares, and clinically-adjudicated patients with circles. C) ROC curve of percent change in SUV_{mean} for differentiation of ICI-AKI from AKI from other causes.