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integrate feedback from sex steroids facilitating regulation of the menstrual cycle and mediate the effects of metabolic
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signaling in astrocytes to influence GnRH neuronal output. Astrocytes had kisspeptin receptors that activated canonical
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Additionally, the appositions between kisspeptin and GnRH neurons were dynamic during the ovarian cycle, with
astrocyte kisspeptin signaling proposed as a putative modulator of this neuroplasticity. Importantly, astrocyte kisspeptin
signaling also mediated susceptibility to metabolic stressors and the development of obesity-induced hypogonadism,
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Kisspeptin regulates GnRH 
neurons in the hypothalamus
Kisspeptin is essential for reproductive 
health; inactivating variants in genes 
encoding for kisspeptin or its receptor 
result in hypogonadotropic hypogonadism 
and a failure to initiate pubertal develop-
ment (1, 2). Conversely, excess kisspeptin 
signaling results in early activation of the 
reproductive endocrine axis and precocious 
puberty (3). Following a plethora of further 
research across several species, kisspeptin 
is now recognized to be a key regulator of 
reproductive hormones and controls the 
secretion of gonadotropin releasing hor-
mone (GnRH) from dedicated neurons in 
the hypothalamus (4, 5).

Kisspeptin resides in two major neuro-
nal populations in the hypothalamus; first, 
in the arcuate nucleus (ARC), where it reg-
ulates the physiological pulsatile secretion 
of GnRH, and second, in the preoptic area 
(POA), which includes the anteroventral 
periventricular nucleus (AVPV) in animal 
models, where it is responsible for the mid-
cycle ovulatory luteinizing hormone (LH) 
surge (6). Kisspeptin neurons in the ARC 
coexpress neurokinin B (NKB) and dynor-
phin and are commonly referred to as KNDy 
neurons (7, 8). These neuropeptides act in 
concert in an auto/paracrine manner to 
regulate the activity of KNDy neurons, with 
NKB being a positive regulator and dynor-
phin a negative regulator of their activity. 

The output of these KNDy neurons is kiss-
peptin, which acts on GnRH neuronal den-
drons through nonsynaptic appositions via 
short-distance volume transmission (9). 
Thus, ARC kisspeptin neurons are believed 
to be the ‘GnRH pulse generator’ playing 
a critical role in the physiological pulsatile 
secretion of GnRH and downstream repro-
ductive hormone secretion.

Kisspeptin neurons are a key conduit 
for the integration of peripheral signals into 
the reproductive axis, including sex steroids 
and metabolic markers. Kisspeptin neurons 
mediate feedback loops needed for the 
functional operation of the menstrual cycle, 
with estradiol acting via ARC kisspeptin 
neurons to cause negative feedback on pul-
satile GnRH secretion during the follicular 
phase of the menstrual cycle. In contrast, 
higher levels of estradiol found towards the 
end of the follicular phase act on kisspeptin 
neurons in the POA to induce positive feed-
back and the mid-cycle LH surge responsi-
ble for ovulation (6). As the LH surge is of 
relevance only in females, AVPV kisspeptin 
neurons are far more prominent in females 
than males. Indeed, kisspeptin is generally 
more critical to female reproductive func-
tion, with less hypothalamic kisspeptin 
expression being required in males to main-
tain fertility (8).

Overall, kisspeptin neurons play a piv-
otal role in the regulation of GnRH neurons 
and the reproductive axis; however, the rel-
evance of kisspeptin signaling in other non-
neuronal brain cells is far less studied. In this 
issue of the JCI, Torres and colleagues pro-
vide the first description of kisspeptin mod-
ulating the activity of nonneuronal cells in 
the brain, akin to the seminal appreciation 
of the functional importance of noncoding 
regions of the genome (10).

Kisspeptin signaling in 
nonneuronal brain cells
The investigators originally applied label-
free proteomics in the POA of the hypothal-
amus (where GnRH neurons are situated) 
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Kisspeptin is an essential neuropeptide sitting at the apex of the 
hypothalamo-pituitary-gonadal (HPG) endocrine axis to regulate 
gonadotropin-releasing hormone (GnRH) neurons and downstream 
reproductive hormones. Kisspeptin neurons integrate feedback from sex 
steroids facilitating regulation of the menstrual cycle and mediate the effects 
of metabolic stressors on the reproductive axis. In this issue of the JCI, Torres 
and colleagues describe another pathway for kisspeptin signaling in astrocytes 
to influence GnRH neuronal output. Astrocytes had kisspeptin receptors 
that activated canonical intracellular signaling pathways to constrain the 
magnitude of kisspeptin-induced GnRH neuronal stimulation. Additionally, 
the appositions between kisspeptin and GnRH neurons were dynamic during 
the ovarian cycle, with astrocyte kisspeptin signaling proposed as a putative 
modulator of this neuroplasticity. Importantly, astrocyte kisspeptin signaling 
also mediated susceptibility to metabolic stressors and the development 
of obesity-induced hypogonadism, underscoring the physiological and 
pathological importance of this pathway and revealing the importance of 
nonneuronal signaling in reproductive health.
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C (PLC), leading to inositol triphosphate 
(IP3) and diacylglycerol (DAG), which 
activate Protein Kinase C (PKC), resulting 
in stimulation of the mitogen-activated 
protein kinase (MAPK) signaling cascade 
and ERK1/2 (11, 12). Torres and colleagues 
demonstrated that kisspeptin, likewise, 
induced phosphorylation of ERK1/2 in 
rodent astrocyte culture, consistent with 
kisspeptin activating its canonical signal-
ing pathway in these cells (10).

Interestingly, Torres and investigators 
noted regional variation in kisspeptin’s 
induction of signaling in astrocytes, with 
colocalization of astrocyte markers and the 
kisspeptin receptor being greater in GnRH- 
and kisspeptin-rich areas, but less in cortical 
areas from which astrocytes did not respond 
to kisspeptin stimulation (10). Indeed, close 
appositions between astrocytes and kiss-
peptin neurons were demonstrated, espe-
cially in key hypothalamic areas such as 
the ARC and anteroventral periventricular 

ence neuronal signaling via the uptake 
and recycling of excess neurotransmitters 
from synapses back to neurons as well as 
by releasing gliotransmitters, which are 
substances released from astrocytes such 
as glutamate, adenosine, or adenosine 
triphosphate that modulate neuronal syn-
aptic activity and plasticity. In particular, 
astrocytes envelop GnRH neurons and can 
modulate their activity; for example, astro-
cytes can release prostaglandin E2 (PGE2) 
to stimulate GnRH neuronal activity. 
Overall, astrocytes are important support-
ive neural cells but could also play a role in 
modulating neuronal signaling.

Torres et al. provided further evidence 
of a direct effect of kisspeptin on astro-
cytes by demonstrating the presence of the 
kisspeptin receptor (but not kisspeptin) in 
murine and human astrocytes (10). Typi-
cally, activation of the G-protein–coupled 
kisspeptin receptor on GnRH neurons trig-
gers Gαq/11 and activation of Phospholipase 

to identify protein targets of kisspeptin sig-
naling (10). Different protein clusters were 
identified following kisspeptin stimulation, 
but the investigators were intrigued by the 
increase in glial fibrillary acidic protein 
(GFAP) and vimentin, and the decrease 
in Amyloid Precursor Protein (APP) and 
Metallothionein 3 (MT3) levels (10). These 
markers are present in astrocytes, suggest-
ing that kisspeptin stimulation could affect 
these nonneuronal brain cells.

Astrocytes are the most common sub-
type of glial cell and provide structural 
support to neurons to ensure that synaps-
es are apposite and aligned. They play an 
important role in neuronal sustenance, 
hosting energy sources such as glycogen 
and acting as a conduit for the passage 
of nutrients from blood vessels. Addi-
tionally, astrocytes have an important 
role in maintaining the blood-brain bar-
rier (BBB) and regulating regional blood 
flow. Notably, astrocytes can also influ-

Figure 1. Kisspeptin signaling in astrocytes. Kisspeptin stimulation of kisspeptin receptors on astrocytes decreases their production of prostaglandin E2 
(PGE2). PGE2 is a stimulatory input onto GnRH neurons. Consequently, the kisspeptin-astrocyte signaling pathway constrains kisspeptin-induced stim-
ulation of GnRH neurons. Kisspeptin neurons in the arcuate nucleus of the hypothalamus are responsible for pulsatile GnRH/LH secretion and respond 
to negative feedback from sex steroids. Kisspeptin neurons in the preoptic nucleus of the hypothalamus respond to positive feedback from higher levels 
of sex steroids to induce the midcycle ovulatory LH surge in females. FSH, Follicle Stimulating Hormone; LH, Luteinizing Hormone; GnRH, Gonadotropin 
Releasing Hormone; KNDy, Kisspeptin Neurokinin B, Dynorphin.
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to the pathogenesis of PCOS (19). Moreover, 
there is increasing recognition of potential 
roles of GnRH and kisspeptin beyond their 
more archetypal functions in the reproduc-
tive axis, including in Parkinson’s disease 
(20), cognition (21), and mood (22). Thus, 
it is likely that further uncovering the roles 
of nonneuronal cells, both in the reproduc-
tive axis and beyond, will continue to be an 
important focus of study.

Overall, these data represent an import-
ant step forward in our recognition of the 
impact of kisspeptin signaling within non-
neuronal cells in the brain on the function 
of established neuronal pathways, yielding 
both physiological and pathophysiological 
importance.
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Appositions between kisspeptin and GnRH 
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