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Introduction
A critical challenge in oncology is balancing the need to achieve 
tumor regression while minimizing the systemic adverse conse-
quences of  cancer therapies. This challenge is compounded by 
the dual impact of  the malignancy and its treatment, which indi-
vidually and together disrupt physiological homeostasis, drive 
multi-organ dysfunction, and weaken overall patient health. 
Several considerations, including potentially life-threatening 
side effects of  therapies, such as neutropenic sepsis or liver fail-
ure, can limit treatment and clinical trial options for patients (1). 
One of  the less frequently considered complications is cancer-as-
sociated cachexia, perhaps because it is an imprecisely defined 
and complex syndrome characterized by involuntary weight 
loss, apathy, anorexia, skeletal muscle wasting, and profound 
metabolic disturbances (2). Affecting up to 80% of  patients 
with advanced cancer and contributing to 20% of  cancer-relat-
ed deaths (3, 4), cachexia remains underdiagnosed in clinical 
practice, underreported in trials, and insufficiently addressed in 
treatment protocols (5, 6).

Untreated cancers usually progress to become systemic diseas-
es, particularly in the context of  metastatic progression. Beyond 
the direct effects of  tumor invasion and tissue replacement,  

cancer exerts widespread influence through the release of  circu-
lating factors that disrupt normal organ function, metabolism, 
neuroendocrine biology, and interorgan communication (7–12). 
Consequently, patients frequently present with or develop weight 
loss, apathy, and anorexia during disease progression (13–15), 
symptoms and clinical signs that are similar to those associated 
with treatment toxicities (16). These manifestations may initial-
ly be mild but often worsen to the degree that cancer-associated 
cachexia is diagnosed, which is clinically defined by involuntary 
weight loss, often coupled with anorexia, of  more than 5% over 
the preceding 6 months of  visit (17, 18).

Despite the progress made in developing diverse anticancer 
therapies, the systemic effects of  treatments regularly extend beyond 
their antitumor effect, often resulting in patient-reported complica-
tions that significantly impair quality of  life and mirror the effects 
exerted by progressive untreated cancers (19–22). Across the major 
therapeutic modalities, including surgery, radiotherapy, targeted 
therapy, chemotherapy, and immunotherapy, patients frequently 
experience reduced energy levels, diminished appetite, weight loss, 
apathy, and cognitive decline (23–25), mirroring cachexia symp-
toms. Consequently, careful assessment of  patient-reported out-
come measures, such as lack of  appetite, should be coupled with 
blood tests used to monitor disruptions of  organ function, and 
radiological and biomarker-based assessments should be used to 
monitor tumor burden in clinical practice (26).

This perspective delineates the systemic effects of  cancer and 
its therapies, focusing on organ-specific disruptions and the inter-
organ communication pathways central to cancer progression and 
therapy-induced toxicity. We examine the temporal and dynamic 
interactions among cancer biology, therapeutic interventions, and 
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and sex-related physiological differences (29). However, we recog-
nize that they are important determinants of  whole-body condition 
and treatment tolerance. Last, in this Review, we focus on how ther-
apies activate cancer cachexia–relevant pathways and therefore do 
not extend our considerations to another important aspect, namely 
how cancer cachexia pathways can drive tumor progression.

Mechanisms of muscle and fat loss in cancer 
cachexia
Skeletal muscle and fat loss in cancer cachexia result from both 
shared and distinct molecular mechanisms that drive systemic 
energy imbalance (3). Proinflammatory cytokines, IL-6, TNF-α, 
and TGF-β, activate key transcription factors such as NF-κB and 
STAT3, promoting proteolysis in skeletal muscle via the ubiquitin/
proteasome system (UPS) and enhancing lipolytic signaling in adi-
pose tissue (30, 31). Parathyroid hormone-related protein (PTHrP) 
further amplifies catabolic signaling, driving UPS-mediated muscle 
degradation and stimulating thermogenic and lipid-catabolic activ-
ity in fat depots (32). Additionally, crosstalk between macrophages 
and cancer cells enhances NF-κB/STAT3 signaling, increasing 
tumor-derived TWEAK (TNF-like weak inducer of  apoptosis), a 
potent inducer of  muscle wasting through UPS activation (33)

Other tumor-derived factors contribute to systemic catab-
olism. Cancer-secreted exosomal proteins, such as HSP70 and 
HSP90, stimulate TLR4 and p38β MAPK pathways, exacerbat-
ing muscle breakdown (34). In adipose tissue, fat loss is driven 
by IL-6– and TNF-α–induced activation of  lipases including 
hormone-sensitive lipase (HSL) and adipose triglyceride lipase 
(ATGL), which promote lipid mobilization and energy expendi-
ture (35–37). Insulin resistance in the host further shifts metab-
olism toward catabolism, limiting nutrient storage and com-
pounding energy deficits (38). Tumor-derived oncostatin M and 
zinc–α2-glycoprotein (ZAG) also promote lipid mobilization, 
reinforcing adipose tissue depletion (39, 40).

These interconnected pathways drive cancer cachexia, yet they 
also overlap with mechanisms by which cancer therapy induces 
systemic metabolic dysfunction. While the molecular mechanisms 
of  cachexia have been extensively defined in numerous studies (3, 

disease progression. We show that the therapeutic window for bal-
ancing antitumor efficacy with systemic harm is defined by treat-
ment timing and intensity. We highlight converging mechanisms 
underlying both treatment-related toxicity and cancer-associated 
cachexia, with a focus on their impact on key organs, including 
muscle, adipose tissue, liver, brain, and heart. By integrating these 
perspectives, we attempt to provide a framework for understanding 
the interplay among cancer, therapy, and whole-body physiology 
for clinicians treating patients with cancer cachexia. We conclude 
by highlighting opportunities within clinical trials and treatment 
strategies to develop interventions that mitigate systemic dysfunc-
tion while maximizing therapeutic effectiveness.

Scope and considerations
While this review integrates insights from both human studies 
and preclinical models, much of  the mechanistic work discussed 
is derived from murine systems. Studying cachexia and treatment 
toxicity at a molecular level in humans is inherently challenging 
due to the limited access to tissues and the invasive nature of  many 
mechanistic investigations. Preclinical models, particularly murine 
systems, provide a controlled environment to reproducibly exam-
ine the effects of  cancer treatments and the pathways underlying 
cachexia (4). These models have been instrumental in uncovering 
fundamental mechanisms that inform our understanding of  can-
cer cachexia and its systemic consequences, while also guiding the 
development of  potential therapeutic approaches. In the sections 
below that refer to mechanistic work, this perspective is based on 
murine studies unless otherwise stated.

We selected a subset of  mechanisms relevant to therapeutics 
taken from the 2023 World Health Organization (WHO) Model 
List of  Essential Medicines (27) (summarized in Table 1, with a 
more detailed list of  examples in Supplemental Table 1; supple-
mental material available online with this article; https://doi.
org/10.1172/JCI191934DS1). We included cancer therapeutics 
whose adverse effects have defined mechanisms and acknowledge 
that other examples could have been chosen. We do not extend our 
work to discuss the relevance of  noncancer comorbidities and their 
medications, aging-related progressive physiological changes (28), 

Table 1. Mechanisms of cancer adverse effects associated with select chemotherapies, targeted therapies, immunomodulators, and 
adjuvant therapies

Medication type Medication class Medication Pathways affected Treatment indication
Chemotherapy Alkylating agents Cisplatin End-organ damage; 

inflammatory pathways; 
hormonal signaling

Advanced ovarian cancer, testicular cancer and bladder carcinoma

Chemotherapy Antimetabolite Methotrexate End-organ damage Adults and pediatric patients with acute lymphoblastic leukemia, mycosis fungoides, 
and relapsed or refractory non-Hodgkin lymphoma

Targeted therapy HER2 inhibitor Trastuzumab Inflammatory pathways HER2-overexpressing breast cancer, HER2-overexpressing metastatic gastric, or 
gastroesophageal junction adenocarcinoma

Immunomodulators PD-1 inhibitor Nivolumab Inflammatory pathways Melanoma, NSCLC, renal cell carcinoma (RCC), malignant pleural mesothelioma, 
Hodgkin lymphoma, squamous cell carcinoma of the head and neck, urothelial 
carcinoma, colorectal cancer, hepatocellular carcinoma, esophageal cancer, gastric 
cancer, gastroesophageal junction cancer, and esophageal adenocarcinoma

Adjuvant therapy Immunosuppression Dexamethasone Inflammatory pathways Edema reduction, antiemetic — across cancers

Examples derived from the 2023 WHO essential medication list (27). A more detailed list of examples appears in Supplemental Table 1. Information in the 
“Treatment indication” column is derived from FDA approval documents. Citations for the “Pathways affected” column appear in the main text.
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renal filtration of  toxic therapies due to tubular damage (63, 64), 
can further lead to host deterioration.

This interconnected network of  effects underscores the need for 
integrated therapeutic strategies that address and prevent the molec-
ular causes and consequences of  treatment toxicity and cachexia. 
Clinicians must consider the impact of  both cancer and treatments 
on patients to preserve organ function and physical condition and 
improve quality of  life.

Convergence of treatment toxicity and cachexia
Cancer cachexia and treatment toxicity arise through overlapping 
molecular mechanisms. We have identified three broad mecha-
nisms of  cachexia induction as a consequence of  cancer progres-
sion (Figure 2): (i) Inflammatory processes can alter organ function 
to promote cachexia. Key cytokines such as IL-6, which can be 
tumor secreted, cause central and peripheral dysfunction, namely 
in the brain and liver, respectively. IL-6 disrupts dopaminergic moti-
vation, resulting in apathy and fatigue (10, 43), while suppressing 
hepatic ketogenesis, exacerbating systemic energy imbalances (47). 
(ii) Hormonal signaling can alter metabolism and tissue homeo-
stasis, resulting in negative energy balance. Growth differentiation 
factor 15 (GDF-15) is increased due to prolonged inflammation. It 
signals to the brain to activate circuits driving food aversion, there-
by reducing nutrient intake and leading to a negative energy bal-
ance (65). (iii) Direct effects on end organs such as skeletal muscle 
and liver can lead to cachexia. For example, activin A can induce 
muscle degradation through upregulation of  SMAD2/3 signaling 
(66). This pathway disrupts protein synthesis, promotes proteolysis, 
and ultimately leads to muscle atrophy and weakness.

These three mechanisms of  cancer cachexia, inflammatory 
pathways, hormonal signaling, and end-organ effects, contribute 
distinct and convergent pathways leading to this state and often 
account for mechanisms by which tumor treatments inadvertent-
ly amplify systemic dysfunction. For example, chemotherapy, tar-
geted therapies, immunotherapy, radiotherapy, and surgery can 
exacerbate inflammatory cytokine production, hormonal dysreg-
ulation, or catabolic signaling in different organs, thereby mag-
nifying the metabolic and functional impairments initially driven 
by the tumor itself.

Mechanisms of treatment toxicity and cachexia
Building on these foundational categories, specific molecular pro-
cesses emerge that bridge the effects of  cachexia and treatment 
toxicity. By examining circulating factors such as hormones and 
cytokines and then their downstream impacts on target organs, we 
can delineate the precise pathways through which anticancer ther-
apies exacerbate systemic dysfunction (Figure 3). In the following 
sections, we examine these mechanisms according to treatment 
modality, chemotherapy, immunotherapy, radiotherapy, and target-
ed therapies, each discussed through the lens of  (i) inflammatory 
activation, (ii) hormonal signaling, and (iii) end-organ damage.

Chemotherapy
Inflammatory pathways. Doxorubicin, an anthracycline chemother-
apeutic, disrupts DNA replication and triggers apoptosis, giving 
rise to ROS (67), which amplifies cytotoxicity, and activates NF-κB 
signaling and downstream production of  TNF-α, IL-1β, and IL-6 

41), this Review does not aim to reiterate these well-characterized 
pathways. Instead, it examines the converging effects of  cancer 
and its therapies on systemic physiology, with a focus on shared 
inflammatory and metabolic mechanisms that drive cachexia. We 
emphasize organ-specific disruptions and interorgan communi-
cation pathways, highlighting how tumor- and treatment-derived 
factors activate overlapping molecular cascades across muscle, 
adipose tissue, liver, brain, and heart. In parallel, we examine the 
temporal interplay between cancer biology, therapeutic interven-
tions, and disease progression, showing how treatment timing and 
intensity shape the therapeutic window by balancing antitumor 
efficacy with systemic harm. By integrating these perspectives, we 
provide a framework for understanding how cancer and therapy 
cooperatively drive whole-body physiological decline, and where 
intervention opportunities to mitigate toxicity while preserving 
treatment effectiveness may lie.

Adverse interorgan effects of cancer therapy and 
cachexia
Understanding the physiological changes associated with cachexia 
and treatment toxicity requires consideration of  both organ-specif-
ic impairments and interorgan interactions (Figure 1). This can be 
illustrated, for example, through examination of  nutrient intake and 
processing. Here the brain plays a central role, as sensing of  treat-
ment toxicity and/or systemic inflammation suppresses appetite, 
drives fatigue, and induces apathy, thereby reducing caloric intake 
(10, 42, 43). The effects of  treatment toxicity on the digestive sys-
tem further compound these challenges, as chemotherapy-induced 
peripheral neuropathy and reduced motility exacerbate nausea, 
diarrhea, and impaired nutrient absorption (44, 45). Together these 
factors contribute to a state of  malnutrition, while a loss of  barri-
er function in various organs heightens susceptibility to systemic 
inflammation and infection (46). Function of  the liver, a critical hub 
of  metabolic regulation, is compromised by altered nutrient flux, 
redox imbalances, and diminished biosynthetic capacity, together 
worsening the negative energy balance, biosynthetic deficit, and 
metabolic stress characteristic of  cachexia (47–51). This energy 
deficit drives fat wasting and muscle atrophy, which are not solely 
a consequence of  nutrient deficits but may also stem from direct 
mechanistic drivers, in the context of  both treatment toxicity and 
cancer progression (52–54). Adipose tissue wasting is often accom-
panied by inflammatory infiltration, contributing to a proinflam-
matory environment that perpetuates systemic dysfunction (55). In 
parallel, skeletal muscles experience severe atrophy, reduced regen-
erative capacity, and thus progressive weakness, resulting in dimin-
ished physical function leading to cachexia development (56, 57).

One consequence of  this persistent metabolic and inflammato-
ry stress, compounded by use of  immune-modulating medications, 
is a state of  immune suppression (58) that is already a risk of  many 
chemotherapeutics and some targeted therapies due to bone mar-
row suppression. Coupled with immune suppression is the frequent 
occurrence of  anemia due to chronic illness and cancer treatments, 
impairing the body’s ability to fight infections and reducing oxygen 
transport (59, 60). Anemia can lead to breathlessness, which can 
also result from cardiac atrophy, reduced cardiac contractility and 
diaphragmatic weakness, which are processes that can compound 
each other (61, 62). These consequences, combined with reduced 
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reductase. Gemcitabine has been observed to activate proinflam-
matory pathways, markedly increasing cytokines such as IL-6 and 
IL-8 through CD95/CD95L signaling (75). Additionally, gemcit-
abine is associated with serious cardiotoxic effects, such as heart 
tissue damage, further complicating the patient’s overall health and 
response to cancer treatment (76, 77).

Bleomycin is a cytotoxic chemotherapy agent known for its 
ability to bind to DNA and induce strand breaks through free rad-
ical generation. Bleomycin has been implicated in the promotion 
of  cachexia through increased IL-6 and IL-33 production, which 
triggers lung fibrosis and muscle wasting (78).

Cyclophosphamide and ifosfamide, chemotherapeutic 
alkylating agents, interfere with DNA replication and RNA 
transcription by adding alkyl groups to DNA, leading to cell 
death. Cyclophosphamide induces a cytokine storm involving 
IL-1β, IL-7, IL-15, IL-2, IL-21, and IFN-γ, which while boost-
ing antitumor responses also intensifies systemic inflammation 
that contributes to muscle wasting (79). Similarly, ifosfamide 
affects immune modulation by altering dendritic cell functions 
and increasing levels of  cytokines, including IL-10, TNF-α, 
and IFN-γ, further impacting cachexia (80, 81). The metabolic  

(68, 69). This cytokine surge contributes to cachexia by promoting 
muscle protein degradation and inhibiting synthesis, manifesting 
as muscle wasting (70, 71). Additionally, doxorubicin-induced 
cardiotoxicity exacerbates cachexia by impairing cardiac function 
through mechanisms that involve the proteasomal degradation of  
TNF receptor–associated factor 2 (TRAF2), a component crucial 
for NF-κB signaling, ultimately promoting necrotic cell death in 
cardiac myocytes and worsening the systemic energy deficit (72).

5-Fluorouracil (5-FU), an antimetabolite chemotherapeutic 
agent, targets various cancers by inhibiting thymidylate synthase, 
an enzyme essential for DNA synthesis. Beyond its direct antitumor 
effects, 5-FU elevates proinflammatory cytokines such as TNF-α 
and IL-6, which are instrumental in promoting muscle wasting and 
cachexia (73). Preclinical studies have further elucidated 5-FU’s 
role in cachexia, showing changes in immune cell composition and 
a reduction in CD45+ immune cell infiltration into muscle tissues, 
highlighting a complex interaction between cancer pharmacothera-
py and systemic muscular degeneration (74).

Gemcitabine, a nucleoside metabolic inhibitor used to treat var-
ious cancers, including pancreatic, breast, ovarian, and non–small 
cell lung cancer (NSCLC), functions by inhibiting ribonucleotide 

Figure 1. Conceptual framework: systemic interplay between cancer, therapy, and organ dysfunction in cachexia. Tumor-secreted factors lead to changes 
in the cellular compartments which ultimately, cause biochemical changes that may create a positive feedback loop to drive factor secretion. Cancer ther-
apies affect cachexia development by interacting with tumors, for example, by influencing tumor-secreted factors and altering cellular and biochemical 
components. More specifically, the figure illustrates the interconnected systemic interactions among cancer, its treatments (surgery, chemotherapy, radio-
therapy, immunotherapy, and targeted therapies), and their effects on organ function, indicating the central role of interorgan communication in patient 
morbidity and the development of cancer cachexia. Each organ-specific list represents a set of examples of clinically observed symptoms (e.g., breathless-
ness in the lungs) and underlying biochemical or pathological changes (e.g., disrupted redox balance in the liver or cytokine-driven immune dysregulation).
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(GFRAL), is upregulated in increased cellular stress and can lead 
to behavior changes such as food aversion, fatigue, and anxiety 
(42, 43, 94, 95). It induces fatigue in cisplatin-treated preclinical 
models. Cisplatin-treated mice exhibit elevated GDF-15 levels and 
decreased wheel-running activity, which were both prevented by 
administration of  GFRAL-neutralizing antibodies (96). A similar 
effect has been demonstrated in nonhuman primates (65). There 
is ongoing work to evaluate the effect of  GDF-15 neutralization in 
clinical trials (97). Moreover, cisplatin has been shown to decrease 
levels of  plasma ghrelin, a hormone responsible for stimulating 
food intake and appetite, and may play a role in cancer treatment–
induced dyspepsia (98, 99).

In addition to nutrient processing deficits and hormonal lev-
el changes, chemotherapy, such as 5-FU and carboplatin, and 
radiotherapy can increase inflammation and alter levels of  the 
neurotransmitters serotonin, dopamine, and norepinephrine (100–
102). These neurotransmitters are crucial to cognitive function, 
learning, memory performance, and mood regulation, which are 
highly relevant to daily physical function.

End-organ damage. As a DNA intercalating agent, doxorubicin 
affects both nuclear and mitochondrial DNA equally. Mitochondri-
al dysfunction triggers the removal of  damaged organelles through 
autophagy, as evidenced by the upregulation of  autophagy-related 
proteins, such as Beclin-1, autophagy-related protein 12 (ATG12), 

byproducts of  ifosfamide, notably 2-chloroacetaldehyde, are 
linked to neurotoxic effects and systemic inflammatory responses 
that increase cachexia risks (82, 83).

Cisplatin increases inflammation through NF-κB activation 
(84), IL-6 signaling, and ROS formation in neurons (85). Oxalipla-
tin increases the formation of  neutrophil extracellular traps (NETs), 
which leads to mechanical hyperalgesia by inducing inflammasome 
release and increasing IL-18 levels (86). Paclitaxel increases IL-6, 
TNF-α, and CCL2 production in dorsal root ganglia neurons (87), 
and IL-6 neutralizing antibody pretreatment prevents peripher-
al neuropathy development (88), suggesting the role of  increased 
inflammation in peripheral neuropathy development.

Methotrexate inhibits dihydrofolate reductase and influenc-
es nucleotide synthesis, which causes apoptosis in cells with high 
mitotic activity. Methotrexate induces appetite loss by decreasing 
ghrelin transportation and increasing serotonin secretion (89, 90), 
nausea by influencing substance P expression (91), and mucosi-
tis by interfering with mucosal cell growth (92). It also increases 
inflammatory markers and necrosis in the intestinal tract, which 
further worsens nutrient absorption (46, 93).

Hormonal signaling. Chemotherapy may cause fatigue, vomit-
ing, and weight loss in patients by upregulating circulating factors 
such as cytokines and hormones. GDF-15, which binds to its recep-
tor, glial cell–derived neurotrophic factor family receptor alpha-like 

Figure 2. Detrimental contribution of treatment toxicity to cachexia. The interplay between inflammatory pathways, hormone signaling, 
end-organ damage, and patient experience (frequently reported by patients or relatives) in the intersection of progression of cancer cachexia and 
therapy is illustrated. Example treatments or treatment categories as well as toxicity examples are provided within each domain, demonstrating 
how they may contribute to systemic dysfunction and cachexia development.
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ATG7, and the microtubule-associated proteins 1A/1B light chain 
3 (LC3) with an increased LC3-II to LC3-I ratio (103, 104). Imbal-
anced autophagy accelerates organelle degradation, protein degra-
dation, and, ultimately, cell death in the affected muscle cells. In 
addition to autophagy pathways, doxorubicin triggers activation 
of  the ubiquitin/proteasome pathway in both skeletal and cardiac 
muscle tissues. This activation is mediated by muscle-specific E3 
ligases, such as atrogin-1 and MuRF-1, which are responsible for 
the polyubiquitination and subsequent degradation of  muscle pro-
teins (105). In skeletal muscle, doxorubicin induces overexpression 
of  FoxO1 and FoxO3 transcription factors, which further ampli-
fy the transcription of  genes associated with muscle atrophy and 
enhanced protein degradation (106). Cancer-upregulated E3 ligase 
UBR2 plays a critical role in cachexia by targeting the fast-twitch 
muscle fiber isoforms MHC II-b and II-x for proteasomal degrada-
tion, resulting in loss of  contractile function in fast fibers, which 
contributes to cancer cachexia (107).

The alkylating agents melphalan, oxaliplatin, carboplatin, 
cisplatin, cyclophosphamide, and ifosfamide increase cytotoxic-
ity through DNA crosslinking and oxidative stress, which cause 
cardiotoxicity, hepatotoxicity, nephrotoxicity, pulmonary toxicity, 
and pain hypersensitivity (108–117). In in vivo and in vitro models, 
decreased glutathione reductase and increased lipid peroxidation in 
multiple organs after alkylating agent treatment are possible expla-
nations for organ toxicity (113, 115–118). Aside from increasing 
oxidative stress, cisplatin upregulates ubiquitin–proteasome–relat-
ed genes such as MuRF-1 and Atrogin-1, leading to increased 
degradation of  muscle proteins (119), which contributes to further 
muscle deterioration and cachexia development.

Cytotoxic agents such as bleomycin, capecitabine, docetaxel, 
and paclitaxel interfere with DNA synthesis or replication, even-
tually resulting in cell death. Docetaxel and paclitaxel increase the 
activity of  oxidation enzymes, such as PKC and NADPH oxidase 
(120, 121). This upregulation coupled with decreased ROS scaven-
ger enzyme, which neutralizes ROS, increases oxidative stress (120, 
121). An increase in ROS induces liver, renal, and heart injury in in 
vivo models treated with cytotoxic agents (122–124).

Topoisomerase inhibitors etoposide and irinotecan inhibit 
DNA strand relaxing during DNA replication and transcription. 
The antimetabolites fluorouracil and methotrexate interfere with 
nucleic acid synthesis and vinca alkaloids vinblastine, and vinorel-
bine interferes with microtubule synthesis and disassembly, which 

are crucial in cell division. In in vivo and in vitro models, these 
agents result in increased oxidative stress in the heart, spleen, and 
intestine (125–132). Irinotecan can exacerbate autophagy-depen-
dent apoptosis in cancer cells by increasing production of  ROS and 
activating stress-related pathways such as JNK and P38 MAPK, 
which further promote autophagy in cancerous tissues (133).

As demonstrated through the mechanisms outlined above, 
chemotherapy contributes to cachexia not merely through col-
lateral toxicity, but by activating molecular pathways that con-
verge with those induced by cancer itself. Across diverse agents, 
recurring features, including NF-κB–driven cytokine surges, hor-
mone-mediated appetite suppression, and end-organ damage via 
oxidative stress, highlight a shared pathophysiological landscape. 
This convergence between tumor- and treatment-induced dys-
function amplifies inflammation, disrupts metabolism, and accel-
erates physiological decline. Recognizing these overlaps clarifies 
how chemotherapy intensifies cachexia and reveals opportunities 
for targeted mitigation.

Immunotherapy
Inflammatory pathways. Immune checkpoint inhibitors such as 
nivolumab and ipilimumab, approved for treating various cancers, 
inadvertently promote cachexia through their immune-modulat-
ing actions. Nivolumab blocks programmed cell death protein 1 
(PD-1) interactions on T cells with programmed death ligand 1 
(PD-L1) on tumor cells, and ipilimumab inhibits cytotoxic T lym-
phocyte–associated protein 4 (CTLA-4) to enhance T cell activa-
tion. This heightened immune response, though beneficial against 
tumors, also leads to increased cytokine production (134, 135). 
CAR T cell therapy has been a transformative development in can-
cer treatment; it is specifically engineered to enhance the immune 
system’s ability to target and destroy cancer cells by recognizing 
specific antigens (136). Despite its effectiveness, the therapy’s 
mechanism of  action produces a notable complication, cytokine 
release syndrome (137), which is marked by the increased release 
of  inflammatory mediators such as IL-1, IL-6, and GM-CSF. This 
cytokine storm induces systemic inflammatory responses that can 
substantially impact the patient’s metabolism and body composi-
tion. In addition to increased inflammation, high inflammatory 
cytokine levels could lead to neurotoxicity in the central nervous 
system (138). This causes further decline in physical health in 
patients who are at risk of  cachexia development.

Figure 3. Mechanistic pathways underlying tumor- and therapy-induced cachexia across key organs. Examples of converging molecular pathways 
through which tumors and cancer therapies drive cachexia-associated changes in five major organ systems: muscle, liver, fat, brain, and heart. Arrows 
indicate the connected mechanistic pathway resulting in physiological dysfunction in each organ, ultimately leading to a convergent effect. For example, 
in the brain, elevated GDF-15 or IL-6 levels, resulting from tumor progression or chemotherapy, are detected by neurons in the area postrema, resulting 
in the activation of circuitry that leads to food avoidance and behavior changes driven by hormone signaling (42, 43, 94, 96). In the heart, tumor- and 
therapy-driven activation of TGF-β signaling promotes cardiac fibrosis and heart failure (181–184). In the liver, tumor- and therapy-induced ROS acceler-
ate fibrosis and impair liver function (47, 109, 139, 185, 186). In muscle, tumors and chemotherapy agents (e.g., doxorubicin, cisplatin) activate the NF-κB 
axis (inflammatory pathways), leading to atrophy via upregulation of MuRF1 and atrogin-1 (187–192). In adipose tissue, lipolytic enzymes (HSL, ATGL) and 
β3-adrenergic/PKA/CREB signaling promote lipid mobilization and thermogenesis, leading to energy wasting and fat loss (31–37, 39, 40). These molecular 
pathways collectively unmask or exacerbate cachexia and contribute to multi-organ dysfunction and failure during cancer progression and therapy. The 
figure illustrates only selected examples and does not represent a comprehensive set of molecular pathways or causalities. ANP, atrial natriuretic peptide; 
BNP, brain natriuretic peptide; MMP2, matrix metallopeptidase 2; COL1A1, collagen type I alpha 1; COL3A1, collagen type III alpha 1; CGI-58, comparative 
gene identification-58; FFA, free fatty acid; PKA, protein kinase A; CREB, cAMP response element-binding protein; C/EBPβ, CCAAT/enhancer binding 
protein beta; UCP1, uncoupling protein 1; PGC-1α, peroxisome proliferator-activated receptor gamma coactivator 1-alpha; PRDM16, PR domain containing 
16; CPT1, carnitine palmitoyltransferase I; PDK4, pyruvate dehydrogenase kinase 4.
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Reversibility of cachexia drivers
There are ongoing efforts to target key mediators of  cachexia in 
hopes of  preventing progression or reversing functional decline. 
For example, antibodies targeting IL-6 and GDF-15 have been 
tested in patients with NSCLC and pancreatic cancer. In a phase 
II trial (ClinicalTrials.gov NCT00866970), an anti–IL-6 antibody 
(ALD518) was shown to be well tolerated and improve hemoglobin 
levels, reduce fatigue, and stabilize weight, though without a clear 
survival benefit. Tocilizumab was combined with gemcitabine/
nab-paclitaxel in a phase II study (NCT02767557) to treat patients 
with advanced pancreatic cancer and demonstrated lower mus-
cle loss compared with gemcitabine/nab-paclitaxel therapy alone 
(150). More recently, a GDF-15–neutralizing antibody (ponsegr-
omab) was evaluated in a phase II trial (NCT05546476), where it 
increased body weight and lean mass and improved appetite and 
physical function, with a favorable safety profile. However, treat-
ment response may depend on cytokine levels prior to treatment 
initiation (97, 151) and on route of  administration as demonstrated 
in vivo (43). Further understanding of  the mechanism of  disease 
will improve treatment outcomes and the possibility of  reversing 
cachexia development.

Dynamic effects of cancer therapy and cachexia
The effects of  treatments on the cancer-bearing host are time- and 
dose-dependent (Figure 4). Delayed cancer treatment is related to 
worse treatment outcomes, and late-stage cancer treatments some-
times only offer marginal benefits or cause harm (152). This is 
reflected in the use of  the Eastern Cooperative Oncology Group 
Performance Status (ECOG PS) scale, in which determination of  
a high value in patients indicates that initiation of  burdensome 
therapies should be avoided. When given early in the disease tra-
jectory, the antitumor effects of  the therapies are more likely to out-
weigh the unwanted side effects on the host. As discussed above, 
many cancer therapies, while effective as an antineoplastic agent, 
exhibit cumulative, dose-dependent toxicities that could exacerbate 
cachexia (153). For example, cisplatin, while effective in tumor sup-
pression, induces a progressive increase in GDF-15 and a decline 
in ghrelin levels over time, leading to appetite loss, reduced physical 
activity, and worsening cachexia symptoms (65). This demonstrates 
how temporal changes in treatment burden can shift physiological 
responses from resilience to vulnerability.

These dynamics extend beyond cytotoxic agents. Glucocor-
ticoids such as dexamethasone and prednisone are frequently pre-
scribed to manage the symptoms associated with cancer and its 
treatment, such as reduced appetite, chemotherapy-induced nausea, 
prevention of  edema after irradiation of  spinal cord–compressing 
metastases, and cerebral edema (154, 155). These steroids activate 
glucocorticoid receptor signaling to directly suppress inflammatory 
immune responses, reduce edema, and temporarily enhance patient 
comfort and quality of  life (156). However, their use is not without 
challenges, as glucocorticoids suppress systemic immunity, for exam-
ple, manifesting as reduced efficacy of  checkpoint immunotherapy 
(157), and phenocopy the organ atrophy observed in cachexia. Ste-
roid-induced muscle atrophy is driven by activation of  the ubiquitin/
proteasome pathway, leading to increased muscle protein degrada-
tion via specific ligases such as MuRF1 and MAFbx (158). Simulta-
neously, glucocorticoids inhibit protein synthesis by altering mTOR 

Although immunotherapy-induced inflammation is well doc-
umented, mechanistic evidence for its direct effects on hormonal 
signaling or end-organ toxicity remains limited. However, immune- 
mediated toxicities converge with tumor-driven mechanisms, ampli-
fying systemic dysfunction and accelerating cachexia in patients 
receiving immunotherapy.

Surgery and radiotherapy
Inflammatory pathways. Surgery is the first-line treatment for 
resectable solid tumors and is often combined with adjuvant 
therapies. Anesthetic agents used in surgery and the surgery pro-
cedure itself  can lead to increased production of  inflammatory 
cytokines and increased oxidative stress (139). Sevoflurane, an 
anesthetic agent, activates the NF-κB signaling pathway, which 
upregulates production of  the inflammatory cytokine IL-6 (140). 
Patients with a history of  immunotherapy may experience cyto-
kine release syndrome during radiotherapy treatment, leading to 
raised IL-6 levels (141, 142).

End-organ damage. Radiotherapy causes DNA damage and 
cell-cycle arrest by delivering high-energy radiation to cells. 
However, similar DNA damage and mitochondrial dysfunction 
occur in adjacent normal tissue. Damaged tissues increase global 
TGF-β and collagen levels, which contributes to cardiac toxici-
ty and fibrosis (143). Fibrosis formation in the heart can cause 
further decline in cardiac function and decreased physical ability 
(144, 145).

Although these modalities are often viewed as localized inter-
ventions, their systemic consequences, especially inflammation and 
fibrosis, may interact with tumor-induced stress to heighten vulner-
ability to cachexia.

Targeted therapy
Inflammatory pathways. Trastuzumab, a targeted therapy for 
HER2-positive cancers, is associated with cardiotoxicity through 
multiple mechanisms, including mitochondrial damage and 
increased oxidative stress within cardiac cells (146, 147). TGF-β– 
and IL-6–high environments promote cardiac fibrosis and struc-
tural remodeling (148), which further impairs cardiac function and 
contributes to heart failure. These adverse effects are exacerbated 
when trastuzumab is used in conjunction with cardiotoxic agents, 
such as doxorubicin, ultimately leading to worsening of  cardiac 
outcomes and increased risk of  heart failure (149).

By triggering cardiotoxicity and inflammatory remodeling, tar-
geted therapies such as trastuzumab can reinforce pathophysiolog-
ical processes already initiated by the tumor, thereby exacerbating 
cachexia-related decline.

Converging mechanisms across organs
Despite differences in therapeutic class, cancer treatments often acti-
vate the same inflammatory, hormonal, and metabolic pathways as 
the tumor itself, compounding systemic dysfunction. These shared 
mechanisms affect key organs, including muscle, adipose tissue, liver, 
brain, and heart, driving cachexia through oxidative stress, cytokine 
release, and disrupted energy homeostasis. The result is accelerated 
physiological decline and reduced treatment tolerance. Figure 3 illus-
trates these overlapping pathways and highlights potential targets for 
interventions aimed at preserving patient strength and function.



The Journal of Clinical Investigation      R E V I E W

9J Clin Invest. 2025;135(15):e191934  https://doi.org/10.1172/JCI191934

Considerations for clinical trials for patients 
with cancer
There are currently no approved therapies for the treatment of cachex-
ia. Guidelines and recommendations for clinical management provide 
modest evidence supporting the use of short-term glucocorticoids and 
progesterone pharmacotherapy but remain largely inconclusive about 
dietary and nutritional recommendations. The lack of conclusive clini-
cal trial evidence limits our ability to treat cachexia (163); however, the 
concepts and biology presented in this Review could help bridge this 
critical gap. Mechanistic insights into cachexia and its interplay with 
anticancer treatments underscore the importance of addressing sys-
temic dysfunctions that impact both therapeutic efficacy and patient 

signaling and induce insulin resistance (159), which impairs nutrient 
uptake and utilization by muscle cells, exacerbating muscle mass 
loss. Last, glucocorticoids are mainly metabolized by the cytochrome 
P450 (CYP) 3A4 enzyme (160, 161). The activity of  CYP3A4 can be 
modulated by medications such as tyrosine kinase inhibitors, leading 
to changes in drug concentration and elimination time (162). Given 
these factors, the use of  glucocorticoids in cancer treatment requires 
careful consideration to ensure that their benefits outweigh the risks, 
a complex question in the setting of  cachexia. Optimizing dosage 
and treatment duration can help mitigate the catabolic effects of  glu-
cocorticoids and preserve muscle mass, though it may be challenging 
to demonstrate this unequivocally in clinical trials.

Figure 4. Dynamic effects of cancer treatment on outcome and cachexia. Conceptualization of the interplay between cancer treatment efficacy and toxic-
ity (therapeutic window), disease progression, and the risk of developing cachexia. (A) Concept: Cancer and treatment have reciprocal interactions via fac-
tors x1, x2…xn and y1, y2…yn, and both affect the host system over time. The composite interactions determine how much the global body function declines. 
0 indicates a nonsymptomatic precancerous state when body function is well preserved, and 1 indicates the end point when body function declines to a 
survival threshold. (B) Specific example: Cisplatin treatment can reduce tumor burden and consequently tumor-associated GDF-15 levels, but it can also 
elevate GDF-15 levels through induction of cell stress in multiple tissues and can reduce its own excretion by reducing renal filtration rates. A net increase 
in GDF-15 level, therefore, can increase cachexia susceptibility potentially even in the context of reduced tumor burden. (C) A pseudotime representation 
of body function shows that as body function declines, the therapeutic benefits diminish, and the same intervention may ultimately become detrimental 
because of the host effect. Therefore, an early intervention when body function is still preserved may maximize net benefits and promote survival. As 
discussed in “Scope and considerations,”we did not include covariables in this discussion but acknowledge that they may have an impact on body function 
and the interaction between cancer and treatments.
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Technological advances such as single-cell RNA-Seq (scRNA-
Seq), single-nucleus RNA-Seq (snRNA-Seq), and spatial tran-
scriptomics are applicable to human tissue samples and have 
provided unprecedented insights into transcriptional changes 
across immune cells, muscle fibers, and adipose tissue, uncov-
ering key tumor-derived cytokines (IL-6, TNF-α, TWEAK, and 
PTHrP) and their downstream catabolic pathways (55, 172, 173). 
Leveraging these insights, monoclonal antibodies and bispecific 
molecules targeting IL-6, GDF-15, and activin A are emerging 
as potential interventions to suppress catabolic signaling and pre-
serve muscle mass (174, 175). PTHrP-neutralizing therapies may 
reduce energy expenditure, mitigating systemic wasting (32). To 
advance personalized cachexia management, biomarker-driven 
patient stratification should be prioritized in clinical trials (176). 
For example, GDF-15 has been linked to appetite suppression 
and muscle wasting in specific cachexia subtypes and is currently 
under investigation as a clinical biomarker (170, 177). However, its 
expression varies among patients, underscoring the need to iden-
tify additional biomarkers for more precise patient selection and 
therapeutic targeting. High-resolution molecular profiling will be 
essential for refining cachexia subtypes and should be combined 
with careful clinical phenotyping, including detailed analyses of  
patient-reported outcome measures, with the aim of  predicting 
treatment responses and guiding personalized interventions (178). 
Additionally, artificial intelligence–driven (AI-driven) predictive 
modeling and adaptive clinical trial designs will further enhance 
patient-specific therapeutic strategies, optimizing both survival 
and quality of  life (179, 180).

Conclusion
The advancement of  cancer treatments requires a deep under-
standing of  how the mode and timing of  therapy, cancer biol-
ogy, disease progression, physiology, and environment impact 
host condition and patient care. To date, research has primarily 
focused on antitumor effects to quantify treatment efficacy. This 
Review highlights the importance of  also considering the host 
organism in cancer management, using as an example the risk of  
cachexia development. Combined assessments of  patient-specific 
conditions and biological responses are essential for minimizing 
side effects and maximizing effectiveness. The emerging under-
standing of  interorgan effects during systemic processes, such 
as cachexia, offers an avenue to improved clinical trial and care 
design. Emphasizing a more comprehensive approach, enabled 
by an ever-increasing tool set to capture biological and clinical 
response data, will lead to better patient outcomes, improving 
both survival rates and quality of  life.
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well-being (164). Herein, we highlight several factors that may inform 
the design and execution of clinical trials to optimize outcomes for all 
cancer patients, including those at risk of developing cachexia.

Patient selection and stratification. Effective clinical trials need to 
account for patient heterogeneity and comorbidities, particularly 
regarding the patients’ risk of  developing cachexia. Biomarkers 
such as levels of  inflammatory cytokines and hormones, radiolog-
ical changes in organ volume, or muscle degradation markers can 
help identify patients at risk of  cachexia or systemic dysfunction 
(26, 165). Stratifying patients based on these factors may ensure 
trials address both cancer progression and the broader impacts of  
treatment on host physiology.

Trial endpoints. Traditional endpoints such as overall survival 
and tumor response may be complemented by metrics that capture 
systemic health, including functional recovery, actimetry, and qual-
ity of  life using established surveys such as the Functional Assess-
ment of  Chronic Illness Therapy (FACIT) measurement and mobile 
health data (166). These measures are critical for trials involving 
patients with or at risk of  cachexia, as they provide a more com-
plete evaluation of  therapeutic efficacy and tolerability. Different tri-
al endpoints that consider cancer stage rather than mortality could 
accelerate trial completion (167). In addition, early-phase clinical 
trials may benefit from clinical and mechanistic effect monitoring 
that is ideally tracked and analyzed longitudinally, perhaps using 
remote monitoring in combination with biological sample analysis. 
To identify ideal trial hypotheses and endpoints, an integration of  
preclinical models would provide valuable insights into the mecha-
nisms linking cancer progression, treatment toxicity, and cachexia.

Adaptive trial design. Adaptive trial designs may be essential for 
addressing the evolving nature of  cancer progression and systemic 
wasting. These frameworks allow prespecified changes based on 
interim patient responses, such as early signs of  weight loss or met-
abolic decline (168, 169). This approach enables timely implemen-
tation of  supportive strategies, including nutritional interventions, 
physical therapy, and pharmacologic agents. For example, a phase 
II clinical trial demonstrated the outcome of  using technologies 
such as wearable devices to conduct remote clinical trials (106). 
Targeted therapies such as anamorelin, a ghrelin receptor agonist 
that stimulates appetite and lean mass gain, and ponsegromab, a 
monoclonal antibody that neutralizes GDF-15–mediated anorex-
ia, may be most effective when guided by biomarker-based patient 
stratification (170, 171). Integrating these strategies into adaptive 
trial designs enhances clinical relevance and supports personalized 
care to preserve patients’ strength, function, and quality of  life.

Improved diagnosis and coding. Accurate diagnosis and clinical 
disease coding of  cachexia and its early markers in clinical settings 
may enhance patient identification and data collection for trials (5). 
This may even extend to patients at risk of  developing cachexia, 
enabling more targeted, earlier interventions and robust analysis.

By incorporating these principles, clinical trials may better 
capture the interplay between tumor progression, treatment tox-
icity, and systemic health, ultimately improving outcomes for all 
patients with cancer.

Future directions for patient-based research
The complexity of  cancer cachexia necessitates high-resolu-
tion approaches to dissect its molecular and cellular drivers.  
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