Understanding the mechanisms underlying the poor immunogenicity of human self/tumor antigens is challenging because of experimental limitations in humans. Here, we developed a human-mouse chimeric model that allows us to investigate the roles of the frequency and self-reactivity of antigen-specific T cells in determination of the immunogenicity of an epitope (amino acids 209–217) derived from a human melanoma antigen, gp100. In these transgenic mice, CD8⁺ T cells express the variable regions of a human T cell receptor (hTCR) specific for an HLA-A*0201–restricted gp100₂₀₉–₂₁₇. Immunization of hTCR-transgenic mice with gp100₂₀₉–₂₁₇ peptide elicited minimal T cell responses, even in mice in which the epitope was knocked out. Conversely, a modified epitope, gp100₂₀₉–₂₁₇(2M), was significantly more immunogenic. Both biological and physical assays revealed a fast rate of dissociation of the native peptide from the HLA-A*0201 molecule and a considerably slower rate of dissociation of the modified peptide. In vivo, the time allowed for dissociation of peptide-MHC complexes on APCs prior to their exposure to T cells significantly affected the induction of immune responses. These findings indicate that the poor immunogenicity of some self/tumor antigens is due to the instability of the peptide-MHC complex rather than to the continual deletion or tolerization of self-reactive T cells.
Poor immunogenicity of a self/tumor antigen derives from peptide–MHC-I instability and is independent of tolerance

Zhiya Yu,1 Marc R. Theoret,1 Christopher E. Touloukian,1 Deborah R. Surman,1 Scott C. Garman,2 Lionel Feigenbaum,3 Tiffany K. Baxter,4 Brian M. Baker,4,5 and Nicholas P. Restifo1

1Surgery Branch, National Cancer Institute, NIH, Bethesda, Maryland, USA. 2Structure Biology Section, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, USA. 3Science Applications International Corp., National Cancer Institute, Frederick, Maryland, USA. 4Department of Chemistry and Biochemistry and 5Walther Cancer Research Center, University of Notre Dame, Notre Dame, Indiana, USA.

Understanding the mechanisms underlying the poor immunogenicity of human self/tumor antigens is challenging because of experimental limitations in humans. Here, we developed a human-mouse chimeric model that allows us to investigate the roles of the frequency and self-reactivity of antigen-specific T cells in determination of the immunogenicity of an epitope (amino acids 209–217) derived from a human melanoma antigen, gp100. In these transgenic mice, CD8+ T cells express the variable regions of a human T cell receptor (hTCR) specific for an HLA-A*0201–restricted gp100209–217. Immunization of hTCR-transgenic mice with gp100209–217 peptide elicited minimal T cell responses, even in mice in which the epitope was knocked out. Conversely, a modified epitope, gp100209–217(2M), was significantly more immunogenic. Both biological and physical assays revealed a fast rate of dissociation of the native peptide from the HLA-A*0201 molecule and a considerably slower rate of dissociation of the modified peptide. In vivo, the time allowed for dissociation of peptide-MHC complexes on APCs prior to their exposure to T cells significantly affected the induction of immune responses. These findings indicate that the poor immunogenicity of some self/tumor antigens is due to the instability of the peptide-MHC complex rather than to the continual deletion or tolerization of self-reactive T cells.

Nonstandard abbreviations used: human TCR (hTCR); human Vβ8 (hVβ8); incomplete Freund’s adjuvant (IFA); JR209 transgenic (JR209-Tg); T cell receptor (TCR).

Conflict of interest: The authors have declared that no conflict of interest exists.

Citation for this article: J Clin. Invest. 114:551–559 (2004). doi:10.1172/JCI200041695.
B cells specific to myelin basic
β+hVβb transgenic
lymphocytes + CTL clones have been successfully raised from
217-specific CD8
human HLA-A*0201 molecule were combined with mouse K
relevant TCR–MHC-I–peptide complex in vivo. Numerous gp100209–
classes and affinity of T cell precursors with different antigen speci-
we sought to precisely study the molecular interaction of this rel-
and man, we were able to study the in vivo activities of the trans-
552
TCR) specificity, these studies had to assume that the frequen-
and tumor peptides were dependent on MHC-peptide complex
immunogenicity (17), while the native peptide forms an unstable
complex that could fail to fully sustain signaling. Recent studies
improved the immunogenicity of the native and HLA-A*0201 anchor–modified
gp100209–217 peptides, which are both recognized by the parental
human T cell clone. In this study, our goal was to understand the
nature of the poor immunogenicity of the gp100209–217 epitope and
the precise reason why this poor immunogenicity is reversed when
using the modified peptide.

Results

T cells from the chimeric TCR-transgenic mouse are functional.
“Humanized” TCR-transgenic mice have been previously report-
ed only to model human CD4+ T cells specific to myelin basic protein in the context of HLA-DR2 (22). Our model is the first
to graft human self/tumor–reactive, HLA-A2–restricted CD8+ T
cells into mice (Figure 1A). To validate the bioimmunological
functions of the transgenic T cells in JR209 transgenic (JR209-
Tg) mice, we examined the number, antigen specificity, and
MHC restriction of the transgenic T cells.

Like conventional TCR-transgenic mice, the human-mouse
chimeras had an increased percentage of CD8+ lymphocytes
(40%) in the spleen compared with their TCR transgene–negative
mice and 41 in JR209-Tg littermates. (C) Binding of HLA-A*0201–
gp100209–217 tetramer to the lymphocyte-gated population from spleens
of A2/K (area under thick black line) and JR209-Tg (gray area). M1 (tetramer positive gate) represented 42% of the gated population.
(D) HLA-A*0201 expression on lymphocyte-gated population from
splenocytes of C57BL/6 (gray area), A2/K (area under gray line), and
JR209-Tg (area under thick black line) mice.

Because of the clinical importance of the gp100209–217 epitope,
we sought to precisely study the molecular interaction of this rel-
vant TCR–MHC-I–peptide complex in vivo. Numerous gp100209–
217–specific CD8+ CTL clones have been successfully raised from
melanoma patients. One of the representative clones, R6C12, was
selected for this study because it was highly reactive to both native
and modified gp100209–217 peptide–pulsed T2 cells and gp100 human
HLA-A*0201 melanoma cells. We genetically chimerized the vari-
able regions of human TCR (hTCR) with the constant regions
of mouse TCR. In addition, the peptide-binding domains of the
human HLA-A*0201 molecule were combined with mouse K+α3
domains, which allow interactions with mouse CD8 coreceptors in
these mice. Because the gp100209–217 sequence is identical in mouse
and man, we were able to study the in vivo activities of the trans-
genic T cells with a defined specificity to a true, “noninduced” self/

CD8+ T cells from naive JR209-Tg mice were in an inactivated
state, expressing low levels of CD69 and CD44 and a high level
of CD62L, but no CD25 (Figure 2A). gp100209–217 peptide–pulsed
APCs induced IFN-γ production by naive JR209-Tg T cells at the
concentration of 10–8 M (Figure 2B). After culturing in media
containing 1 μM of gp100209–217 peptide and 30 IU/ml of IL-2
for 7 days, JR209-Tg T cells were fully activated. They not only
phenotypically expressed high levels of CD25, CD69, and CD44
and a low level of CD62L (Figure 2A), but also secreted more
IFN-γ upon antigen stimulation (Figure 2B). These activities
were peptide-specific (Figure 2C) and could be blocked by mAb’s
against HLA-A2 and mouse CD8 (Figure 2D).
T cells from JR209-Tg mice are functional. (A) Expression of CD62L, CD44, CD69, and CD25 on freshly isolated (gray area) and ex vivo peptide-stimulated JR209-Tg (area under thick black line) CD8+ T cells. The florescence intensities of cells labeled with isotype Ab’s were less than 10^2 (not shown). (B) IFN-γ release in 24-hour coculture of 1 × 10^5 naive (filled squares) or gp100209–217 peptide–activated (open squares) CD8+ JR209-Tg T cells and 1 × 10^5 A2/Kb splenocytes pulsed with titrated gp100209–217 peptides. Data represented the mean of duplicate testing samples. (C) IFN-γ release in 24-hour coculture of 1 × 10^5 freshly isolated (gray bars) or ex vivo peptide-stimulated (white bars) CD8+ JR209-Tg T cells and 1 × 10^5 A2/Kb splenocytes pulsed with 1 μM of gp100209–217DM, gp100209–217 and gp100154–162 (irrelevant control) peptide. (D) IFN-γ release in 24-hour coculture of 1 μM gp100209–217 peptide–pulsed A2/Kb splenocytes and activated JR209-Tg T cells and their blockade by anti–HLA-A2 and anti-mCD8 mAb’s. Data represent the mean of duplicate testing samples.

We noticed that about 20% of lymphocytes in the spleen of the JR209-Tg mice were CD4+ T cells that also expressed human Vβ8 transgene. These CD4+ T cells did not proliferate in response to in vitro stimulation with gp100209–217 peptide (data not shown), and their functions were not known.

Tolerance is observed in JR209-Tg mice with the gp100209–217 epitope knockout. Despite large numbers of circulating antigen-specific CD8+ T cells and the expression of target antigens in normal melanocytes and other pigmented cells in eyes and brain, no significant changes in the color or appearance of hair, skin, or eyes were observed in JR209-Tg mice compared with nontransgenic littermates. To test whether these self-reactive T cells were tolerated, we compared the lymphocytes in JR209-Tg mice and JR209-Tg mice in which the gp100209–217 epitope was disrupted by insertion of the neomycin gene into exon 4 (corresponding to cDNA sequence 636–902 bp) of the gp100 gene. This resulted a truncation of gp100 protein from amino acid 212.

Although the numbers of thymocytes and splenocytes in both types of JR209-Tg mice were similar, naive splenocytes from JR209-Tg–gp100209–217WT mice produced more IFN-γ within 24 hours of peptide–APC stimulation than did those from JR209-Tg–gp100209–217WT mice expressing the epitope (Table 1). The differences between the naive self and non-self JR209-Tg T cells seemed to be more obvious when the antigen-specific proliferative responses were examined. In the absence of exogenous IL-2 in the culture media, more than 70% of JR209-Tg T cells from naive non–epitope-expressing mice had divided at least once within 48 hours of gp100209–217 stimulation. In comparison, less than 20% of JR209-Tg T cells from epitope-expressing mice had divided in the same period of time (Figure 3A). The sensitivity of JR209-Tg T cells to gp100209–217 epitope concentrations in ex vivo assays was similar regardless of the expression of the epitope (Table 1), which indicated unchanged TCR affinity in both types of mice. When JR209-Tg T cells were cultured ex vivo with antigen and IL-2 (known to reverse anergy of self-reactive T cells; see ref. 23), the differences in IFN-γ production and proliferation between the cells from epitope-expressing and nonexpressing mice diminished (data not shown). Our experimental results indicated that self-tolerance mechanisms partially abrogate the early T cell activation events.

Native gp100209–217 antigen fails to immunize JR209-Tg T cells in the epitope-expressing and knockout mice. To investigate whether the poor immunogenicity of the gp100209–217 epitope was due to the low frequency of self-reactive T cells, we compared immune responses induced by peptides in JR209 TCR-transgenic and non–TCR-transgenic A2/Kb mice (or A2/Kb mice). In A2/Kb mice, immunization with neither the native nor the modified gp100209–217 peptide could elicit antigen-specific CD8+ T cell responses, even at a 100-μg dose (data not shown). However, immunization of JR209-Tg mice with as little as 10 μg of the modified peptide enhanced gp100209–217 peptide–specific IFN-γ production in draining lymph nodes compared with PBS controls (Figure 3B). Clearly, in the case of the modified gp100209–217 peptide, there was a positive correlation between the frequency of antigen-specific T cells and peptide immunogenicity. When we examined this correlation in JR209-Tg mice immunized with the native peptide, we found that none of the tested doses activated JR209-Tg T cells in draining lymph nodes compared with PBS controls (Figure 3B). Our data indicated that the quantity of tumor-specific T cells was not a determining factor for the failure of the native gp100209–217 peptide to immunize.

To investigate whether self-tolerance was responsible for the inferior immunogenicity of the native gp100209–217 epitope, we immunized JR209-Tg–gp100209–217KO mice with the peptides. Seven days after immunization, none of the tested doses activated...
Native gp100_{209–217} peptide fails to activate JR209-Tg T cells in both gp100_{209–217}^{WT} and gp100_{209–217}^{KO} mice. (A) Ex vivo antigen-specific proliferative responses of freshly isolated splenocytes from JR209-Tg mice with and without gp100_{209–217} epitope expression. CFSE-labeled splenocytes were cultured in media containing 1 μM of gp100_{209–217} or gp100_{154–162} peptide for 48 hours before FACS. The dot plots represent 10,000 total events in each sample. (B) gp100_{209–217} peptide–specific IFN-γ release in cells from draining lymph nodes (pooled from two mice in each group) after various doses of gp100_{209–217}(2M) and gp100_{209–217} peptide immunization in JR209-Tg mice with (white bars) and without (black bars) the epitope expression. Draining lymph nodes were collected 7 days after immunization. One micromole of gp100_{209–217} peptide was added to 1 × 10⁶ cells in 200 μl of culture media and incubated for 24 hours. IFN-γ concentrations in the supernatant were determined by ELISA. (C) In vivo antigen-specific proliferative responses of adoptively transferred freshly isolated splenocytes from JR209-Tg mice with and without gp100_{209–217} epitope expression. CFSE-labeled splenocytes (1 × 10⁷) from JR209-Tg–gp100_{209–217}^{WT} or JR209-Tg–gp100_{209–217}^{KO} mice were intravenously injected into A2/K^b recipient mice, followed by immunization (into the footpad) with 100 μg of gp100_{209–217}(2M), gp100_{209–217} peptide, or PBS (in IFA). Four days after immunization, the cells of draining lymph nodes were pooled from two mice in each group and gated on hVβ8⁺CD8⁺ T cells for FACS analysis.

JR209-Tg T cells in draining lymph nodes to produce antigen-specific IFN-γ (Figure 3B). In contrast, the JR209-Tg–gp100_{209–217}^{KO} mice immunized with the modified gp100_{209–217}(2M) peptide responded better than JR209-Tg–gp100_{209–217}^{WT} mice did (Figure 3B). When CFSE-labeled naive JR209-Tg T cells from gp100_{209–217}^{WT} or gp100_{209–217}^{KO} mice were adoptively transferred into HLA-A2/ K^b recipient mice and immunized with gp100_{209–217}(2M) peptide, significant numbers of the transferred JR209-Tg T cells were proliferative 4 days after immunization. In addition, JR209-Tg T cells from gp100_{209–217}^{KO} mice seemed to proliferate more than those from gp100_{209–217}^{WT} mice (Figure 3C). However, 4 days after recipient mice were immunized with the native peptide, neither JR209-Tg T cells from gp100_{209–217}^{WT} mice nor those from gp100_{209–217}^{KO} mice had divided (Figure 3C). These results led us to consider factors other than self-tolerance that might contribute to the poor immunogenicity of the native epitope.

Native gp100_{209–217}–MHC-I complexes are metastable. Initiation and maintenance of immunological synapses and TCR signaling following interaction with peptide-MHC complexes are essential for full activation of T cells (15, 17, 24). Crystal structures of both native and modified HLA-A*0201–gp100_{209–217} complexes have been recently resolved (O.Y. Borbulevych and B.M. Baker, unpublished data). Preliminary analyses indicated minimal differences in peptide binding and TCR interface structure between the native and modified gp100_{209–217} peptides. This data was consistent with the observations that human T cell clones induced by either the native or modified peptide had no fine specificity enabling them to distinguish between the two forms of the peptide. Therefore, it is unlikely that two peptide–MHC-I complexes would result in different interactions with the TCR.

We decided to address whether the stability of the peptide–MHC-I complexes correlated to peptide immunogenicity. We determined the peptide–MHC-I dissociation rate by measuring the ability of a gp100_{209–217}–specific T cell clone to recognize peptide-pulsed target cells at different time points after the peptide–MHC-I binding occurred. A human T cell clone specific for gp100_{209–217} (CK3H6) recognized gp100_{209–217}(2M) peptide–pulsed T2 cells 24 hours after binding. In contrast, recognition of gp100_{209–217} peptide–pulsed T2 cells diminished 4 hours after binding. The calculated dissociation rate of the modified peptide–HLA-A2 complexes was significantly slower (P < 0.05) than that of native peptide–HLA-A2 (Figure 4A). Using cultured JR209-Tg T cells in which the TCR–peptide–MHC-I...
A tumor was comparable to growth

γ

+CD3

slower peptide dissociation, with a dissociation rate (off-rate, or

results clearly indicated that position 2 modification resulted in

nant HLA-A2 using an in vitro fluorescence assay (Figure 4C). The

we measured peptide dissociation directly from purified, recombi

tion and provide apparent dissociation rates unique to the T cell–

vation and provide apparent dissociation rates unique to the T cell–

APC pair, yet do not directly measure the effect of modification on

ation (25–27), direct calculation of

k

value

P

= 5–8 mice in each group. ^Significantly different (P < 0.05).

interaction was independent of CD8 coreceptors, we found similar

results as when we used human T cell clones (Figure 4B). There-

fore, the native peptide dissociated from HLA-A2 molecules at a

much faster rate than the modified peptide, which was likely to be
detrimental to activation of naive CD8

T cells.

The above experiments report biologically on peptide dissocia-
tion and provide apparent dissociation rates unique to the T cell–

APC pair, yet do not directly measure the effect of modification on

peptide dissociation from the HLA-A2 molecule. To investigate this,

we measured peptide dissociation directly from purified, recombi-
nant HLA-A2 using an in vitro fluorescence assay (Figure 4C). The

results clearly indicated that position 2 modification resulted in

slower peptide dissociation, with a dissociation rate (off-rate, or

k

off) at 37°C of 0.18 h

−1 for gp100209–217 and 0.03 h

−1 for gp100209–217(2M)

(i.e., the modified peptide dissociates 6-fold slower). The difference

in these rates was especially clear when we considered the

t

1/2 of the peptide-MHC complexes, or the time required for 50% of the

complex to decay. The t

1/2 for the parental peptide was 3.7 hours,

was predominantly due to slower peptide dissociation. As peptide

binding to HLA-A2 is rate-limited by a transition in the heavy

chain from a “peptide-inaccessible” to a “peptide-accessible” con-

formation (25–27), direct calculation of

k

off values from the cur-

rent data are not possible. However, preliminary measurements of

association rates for the two peptides supported the conclusion

that the association rate for the modified peptide was slightly fast-

er than that of the parental peptide (T.K. Baxter and B.M. Baker,

unpublished data).

Stable peptide–MHC-I complexes are required for successful induction of antitumor responses in vivo. Mouse melanoma cells expressing HLA-

A2/K

b molecules were not recognized by naive JR209-Tg T cells,

but were recognized by activated JR209-Tg T cells (Figure 5A) due to the increased avidity for sensing the low-density antigen–MHC

complexes on tumor cells (28). In JR209-Tg mice, growth of cuta-

neously implanted B16-A2/K

b tumor was comparable to growth

in TCR transgene-negative, A2/K

b mice. Only when JR209-Tg mice were immunized with both gp100209–217(2M) peptide and IL-2 was

whereas the t

1/2 for the modified peptide was considerably greater at 27 hours. The rates

from in vitro assays were slower than those reported for these biological measurements, as expected given the time required to form

an immunological synapse, initiate downstream signaling events, and release IFN-γ. However, the relative differences between

the rates were consistent with the biological measurements.

The affinity of the modified gp100209–217

peptide for HLA-A2 has been reported to be approximately 9-fold stronger than that of the parental peptide (5, 7). As

K

a is proportional to

k

off/

k

on, the

k

off measurements predict an approximate 2-fold increase in the peptide association rate for the modified

peptide. Thus the increased affinity resulting from the position 2 modification

Table 1

Comparison of lymphocytes in gp100209–217WT and gp100209–217KO JR209-Tg mice

<table>
<thead>
<tr>
<th></th>
<th>gp100209–217WT</th>
<th>gp100209–217KO</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>T cells (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in splenocytes</td>
<td>93% ± 2%</td>
<td>92% ± 2%</td>
<td>0.674</td>
</tr>
<tr>
<td>in CD8+ T cells</td>
<td>38% ± 4%</td>
<td>37% ± 5%</td>
<td>0.9522</td>
</tr>
<tr>
<td>IFN-γ production (pg/ml) per 10⁶ splenocytes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 μM gp100209–217</td>
<td>730 ± 75</td>
<td>1612 ± 202</td>
<td>0.0149^</td>
</tr>
<tr>
<td>0.1 μM gp100209–217</td>
<td>310 ± 31</td>
<td>736 ± 86</td>
<td>0.0096^</td>
</tr>
<tr>
<td>0.01 μM gp100209–217</td>
<td>91 ± 19</td>
<td>236 ± 134</td>
<td>0.3457</td>
</tr>
<tr>
<td>0.001 μM gp100209–217</td>
<td>18 ± 8</td>
<td>55 ± 33</td>
<td>0.3296</td>
</tr>
<tr>
<td>1 μM gp100209–154–162</td>
<td>12 ± 8</td>
<td>8 ± 4</td>
<td>0.3486</td>
</tr>
</tbody>
</table>

Figure 4

Native gp100209–217–MHC-I complex is metastable. (A and B) Determination of peptide dissociation rates from target cell surface. Calculated amounts of gp100209–217 (filled squares) and gp100209–217(2M) (open squares) peptide bound to HLA-A2 molecules were plotted over time. Apparent

k

off values were determined by fitting to a single exponential decay of all points above an undetectable concentration of peptide (1 × 10⁻⁹ M using human T cell clone for A and 1 × 10⁻⁶ M using JR209-Tg T cells for B). t

1/2 was determined from the relationship

k

off = 0.693/k

on. (C) Direct assay of peptide dissociation from purified peptide-MHC complexes using fluorescence anisotropy. Dissociation rates and

t

1/2 of gp100209–217 and gp100209–217(2M) peptides are indicated. Experiments were repeated in triplicate; experimental errors for the reported parameters were 3% for gp100209–217 and 7% for gp100209–217(2M) mA, millianisotropy.
B16-A2/Kb tumor growth inhibited (Figure 5B). As shown in an early experiment, the native peptide failed to activate JR209-Tg T cells in vivo, and immunization of JR209-Tg mice with the native peptide and IL-2 had no impact on B16-A2/Kb tumors (Figure 5B). In JR209-Tg gp100209-217KO mice, B16-A2/Kb tumor also had a similar growth rate to that in TCR transgene–negative littermates. Immunizing these mice with native peptide and IL-2 did not result in the significant tumor reduction seen with the modified peptide. Because in vivo activation of naive tumor-specific CD8+ T cells is known to occur in the draining lymph nodes where APCs cross-present tumor antigens to T cells (29), we hypothesized that after peptide immunization, the stability of peptide–MHC-I complexes during the migration from immunization sites to draining lymph nodes could determine the efficiency of the induction of immune responses. To test this, we used an ex vivo model in which naive JR209-Tg T cells and peptide-pulsed A2/Kb splenocytes were separated for 24 hours before they were mixed in culture and transferred into B16-A2/Kb tumor–bearing HLA-A2/Kb mice. Tumor growth was significantly inhibited only by ex vivo immunization with the modified peptide, not the native peptide (Figure 5C). In contrast, adoptively transferred JR209-Tg T cells that were stimulated ex vivo with HLA-A2/Kb splenocytes immediately after native peptide pulsing inhibited tumor growth (Figure 5C). Therefore, the level of available gp100209-217–MHC complexes on APCs at the time they encounter CD8+ T cells could have a dramatic impact on an antigen’s ability to sensitize T cells.

Discussion

The JR209-Tg mouse model presents a magnified picture of the interactions between a human self/tumor antigen–specific CD8+ T cell and its cognate peptide–MHC-I ligand. This model clearly shows that a stable peptide–MHC-I complex is the first requirement for activating self-reactive CD8+ T cells during peptide immunization. It not only explains the poor immunogenicity of
vaccines based on nonmodified tumor antigens, but also eluci- dates a plausible escape mechanism for autoreactive T cells with intermediate affinity to self/tumor antigens.

One mechanism by which autoreactive T cells escape negative selection is the lack of tissue-specific antigen expression in the thymus (30). This is unlikely in the case of JR209-Tg T cells because gp100 is highly expressed in mouse thymic epithelial and dendritic cells (31). We have shown that the number of JR209-Tg T cells in gp100209–217KO mice is comparable to the number found in gp100209–217WT mice. Therefore, the majority of JR209-Tg T cells escape thymic selection regardless of antigen expression. A possible explanation is that with a very fast rate of dissociation, the gp100209–217 epitope–MHC-I complex is not stable enough to initiate TCR signaling in the thymus and thus fails to clonally delete the self-reactive T cells.

However, in the periphery, JR209-Tg T cells have reduced responsiveness to self-antigen stimulation compared with those that mature in a self-antigen–free environment. If the self-reactive T cells do not “see” the antigen, there is no need to downregulate their response to it. Therefore, ignorance cannot explain the reduced responsiveness of tolerized JR209-Tg T cells. There are fewer CD4+ T cells in JR209-Tg mice than in A2/Kb mice, but it is not clear whether there are suppressive CD4+ T cells in the JR209-Tg mice. Anergy can result in tolerization of T cells. Although it is not known how anergy is induced in vivo, the lack of costimulatory signals during TCR-antigen recogni- tion is the common speculation (32). Because gp100 is abundantly expressed in melanoma and normal melanocytes, there are apparently still enough peptide-MHC complexes on the cell surface at any given time, even with a fast dissociation rate from MHC complexes. This could provide the cognate T cell signal 1. In addition, we have evidence that IL-2, which has been shown to reverse T cell anergy (23), can restore the responsiveness of JR209-Tg T cells from gp100209–217WT mice to self-antigen stimulation to the same level as that of JR209-Tg T cells from gp100209–217KO mice. If this mouse model mimics the situation in man and many of the tumor-reactive T cells in the host are anergized, it is impor- tant to combine de-energizing solutions such as common γ-chain cytokines or costimulatory factors with immunization protocols to achieve effective antitumor immune responses.

The key to understanding the poor immunogenicity of the gp100209–217 epitope becomes apparent following analysis of the dissociation rate of peptide–MHC-I complexes. The “anchor-modified” gp100209–217 peptide, in which a methionine replaces the natural threonine at position 2 of the nanomer, was predicted to fit well into the HLA-A2 binding pocket based on resolved peptide–HLA-A2 crystal structures. This prediction also indicated minimal dif- ferences of the peptide surface structures facing the TCR, which agreed with the clinical findings that human T cell clones do not distinguish the two peptides in the context of HLA-A2 molecules (5, 6). Thus, it is unlikely that the gp100209–217[25] peptide could stimulate a subset of T cells that cross-react to the native antigen. We are in the process of resolving the crystal structure of the TCR–peptide–MHC-I complex to further test this prediction. The parental peptide has a 9-fold weaker binding affinity than the modified peptide (5, 7), due primarily to faster peptide dissociation. Thus, at any given time after initial presentation on the cell surface, a greater amount of the modified peptide remains bound to MHC-I than does its parental peptide. The correlation between this difference in dissociation rate and immunological potency was clearly demon-
Production of transgenic mice expressing human gp100209–217–specific TCRs. R6C12, an HLA-A*0201–restricted, gp100209–217–specific CD8+ T cell clone derived from a melanoma patient was selected for hiTCR cloning. The basic procedures used to identify and clone the TCR were adopted from the methods described by Kouskoff et al. (40). Briefly, the VJ fragments of the α chain and the VDJ fragments of the β chain were cloned by S’ rapid amplification of cDNA ends and identified by DNA sequencing as Vα41S1, Jα54, Vβ8S1, DJβ2, and Jβ2S1. Genomic DNA of the TCR α and β chain, from the 10–12 bp upstream of the start codon and up to the 200-bp intronic sequences downstream of the junction regions, were PCR amplified and inserted into p γT and pTβ cassette vectors, respectively (kindly provided by Diane Mathis of Harvard University School of Medicine, Boston, Massachusetts, USA). The inserted genomic DNA fragments were verified by restriction enzyme digestion. After removing the prokaryotic DNA sequences, the linearized pγT and pTβ cassettes were co-joined into fertilized eggs from C57BL/6 mice. Founder mice carrying both the α and β chains of the transgenic TCR were identified by Southern blot analysis. To positively select the hiTCR in mice, the TCR-transgenic mice were bred to mice expressing HLA-A2/Kb MHC molecules (41) (purchased from The Jackson Laboratory, Bar Harbor, Maine, USA). Transgenic mice expressing both TCR and HLA-A2/Kb transgenes were named JR209-Tg mice.

Expression of human gp100209–217–specific TCR in epitope-knockout mice. JR209-Tg mice were crossed with C57BL/6 mice lacking expression of the gp100209–217–epitope (provided by Byoung Kwon, Indiana University, Indianapolis, Indiana, USA). Epitope-knockout mice were generated by insertion of a neo′/myc gene into exon 4 (corresponding to cDNA sequence 636–902 bp) of the gp100 gene. This genetic interruption resulted in a truncation of gp100 protein amino acid residue 212 and therefore eliminated the target epitope. Mice were housed at the NIH-10A animal facility and at Biocon Inc. (Rockville, Maryland, USA). All animal study protocols were approved by the NIH institutional review board.

Murine melanoma cell line engineered to express HLA-A2/Kb molecules. B16 murine melanoma cells were stably transfected with plasmid DNA encoding HLA-A2/Kb as described previously (10). The expression of the transgene on the B16-A2/Kb tumor cells was monitored by FACS analysis of HLA-A2 on the cell surface.

Evaluation of JR209-Tg T cells. Freshly isolated splenocytes (5 × 106 cells) from JR209-Tg mice were cultured at 37°C with 5% CO2 in 2 ml of RPMI culture media as described previously (10), containing 30 IU/ml of human recombinant IL-2 (Chiron Corp., Emeryville, California, USA) and 1 μm of gp100209–217 native or modified peptide in a 24-well plate. Once the cells grew confluent, they were subdivided in culture media containing IL-2.

To detect activation markers on JR209-Tg T cells upon antigen stimulation, 1 × 105 to 1 × 106 splenocytes or cultured T cells were stained with fluorescence-labeled mAb against H-2Dd (clone JR-2), CD25 (clone PC-61), CD62L (clone MEL-14), CD69 (clone H1.2F3), CD44 (clone TM-1), or their isotype controls (BD Biosciences - Pharmingen, San Diego, California, USA) and analyzed by FACS. In antigen-specific IFN-γ release assays, 1 × 105 naïve or peptide-stimulated JR209-Tg T cells were cocultured with 1 × 105 peptide-pulsed, irradiated (30 Gy) HLA-A2/Kb splenocytes or tumor cells from B16-A2/Kb, its parental B16 murine melanoma, and MC-38 murine colon adenocarcinoma (Southern Research Institute, Birmingham, Alabama, USA) in 200 μl of culture media/well of a 96-well U-bottom plate for 24 hours.

To test MHC restriction, 10 μg mAb against HLA-A2 (clone KS-21; Surgery Branch, National Cancer Institute, Bethesda, Maryland, USA), CD8 (clone 53-6.7, BD Biosciences - Pharmingen), and their isotype controls were added to target cells 30 minutes before coculture. The coculture supernatants were collected 24 hours later and assayed for IFN-γ by ELISA.

To measure the proliferation of JR209-Tg T cells in response to antigen stimulation, 1 × 106 freshly isolated splenocytes from naïve JR209-Tg mice were labeled with 1 nM of CFSE (Molecular Probes Inc., Eugene, Oregon, USA) and cultured in culture media with 1 μM of peptide for 1–5 days before FACS for CFSE on CD8+H-2Dd+ populations.

To examine the antigen-specific proliferation in vivo of naïve JR209-Tg T cells, 1 × 106 CFSE-labeled naïve JR209-Tg splenocytes were injected intravenously into each recipient mouse, which was then immunized with 100 μg of peptide in incomplete Freund’s adjuvant (IFA; Sigma-Aldrich, St. Louis, Missouri, USA) in the footpad. Three to five days later, the draining lymph nodes of immunized mice were harvested and FACS for CFSE on CD8+H-2Dd+ populations was performed.

Tumor treatment. B16-A2/Kb melanoma cells (2 × 106 cells in 100 μl of PBS) were injected intradermally into the flank region of mice. Seven to 14 days after tumor injection, mice were immunized (by injection into the footpads) with various doses of peptides emulsified in 100 μl of IFA. In adoptive-transfer experiments, tumor-bearing recipient mice were given whole-body sublethal irradiation (5 Gy) followed by intravenous injection of 1 × 106 cultured JR209-Tg T cells. All mice in the tumor treatment experiments were given recombinant human IL-2 (Chiron Corp.) starting the day of treatment, at 600,000 IU/dose twice daily for 3 days. Tumor size was measured in a randomized, blinded fashion. Vitiligo was determined by shaving the coat hair on the abdominal area of the mice and examining the return of depigmented hair at the site.

Ex vivo modeling of peptide immunization. Splenocytes from HLA-A2/Kb transgenic mice were pulsed with 1 μM of peptide for 3 hours at 37°C, washed three times with media, plated in 24-well plates, and incubated at 37°C overnight. Equal numbers of freshly isolated JR209-Tg splenocytes were then added to the wells and cocultured in media containing 30 IU/ml of IL-2 for 24 hours before adoptive transfer. As a control, freshly JR209-Tg splenocytes were cocultured with APCs immediately after peptide pulsing.

Determination of peptide dissociation rates from APCs. T2 cells, derived from human lymphoma and lacking transporter associated with antigen processing, were pulsed with various concentrations of peptide for 3 hours at 37°C and washed three times. Peptide-pulsed T2 cells were then suspended in culture media and incubated at 37°C for various time periods (see Figure 4 for time points) before they were cocultured for 24 hours with a human HLA-A2–restricted CD8+ T cell clone specific for gp100209–217 (CK3H6; Surgery Branch, National Cancer Institute) or JR209-Tg T cells stimulated with peptide for 7 days. The supernatants from the cocultures were assayed for IFN-γ by ELISA. The correlation between the concentration of peptide-MHC complexes and IFN-γ levels was calculated in the following manner. A regression analysis of peptide concentrations and IFN-γ was performed using the following equation. An analysis of variance was performed at each time point after peptide pulsing was determined. Data were fit to a first-order rate equation of the form γ = A0 + exp(−1/kaft) + y0, where A0 is the initial amplitude, kaft is the dissociation rate, t is time, and y0 is a baseline offset.

In vitro determination of peptide dissociation rates. Recombinant, soluble HLA-A2 and β2m were refolded from bacterially expressed inclusion bodies as previously described (42) in the presence of fluorescently labeled native or position 2–modified gp100209–217 peptide. Refolded peptide-MHC-I complexes remaining on the cell surface at each time point after peptide pulsing was determined. Data were fit to a first-order rate equation of the form γ = A0 + exp(−1/kaft) + y0, where A0 is the initial amplitude, kaft is the dissociation rate, t is time, and y0 is a baseline offset.

In vitro determination of peptide dissociation rates. Recombinant, soluble HLA-A2 and β2m were refolded from bacterially expressed inclusion bodies as previously described (42) in the presence of fluorescently labeled native or position 2–modified gp100209–217 peptide. Refolded peptide-MHC-I complexes were assessed chromatographically. Dissociation rates were measured using a fluorescence anisotropy assay as previously described (26). Briefly, about 7 nM HLA-A2 loaded with fluorescent peptide was incubated at 37°C with a 1,000-fold excess of unlabeled peptide, and the anisotropy was measured as a function of time using a Beacon 2000 fluorescence polarization instrument (Invitrogen Corp., Carlsbad, California, USA). The decay in anisotropy was fit to the first-order rate equation y = A0 + exp(−1/kaft) + y0, described above. The assay solution consisted of
10 mM HEPES and 150 mM NaCl, pH 7.4. A second kinetic phase, attributed in other reports to initial dissociation of \(\beta_2m \) prior to dissociation of the peptide (26), was not observed for dissociation of the gp100-based peptides. Measurements were performed in triplicate.

Statistical analysis. Statistical differences in tumor growth for different treatment groups were analyzed by Wilcoxon rank sum test. A Student’s t test was used to compare the average cell numbers or IFN-\(\gamma \) concentrations in different groups.

Acknowledgments

The authors wish to thank Diane Mathis and Byoung Kwon for generously providing transgenic mouse tissues for this study, and Mark Dudley for providing us the human CDB8+ T cell clones and helpful discussion during the manuscript preparation. The study was supported in part by grant GM-067079 (to B.M. Baker) from the National Institute of General Medical Sciences, NIH.

Received for publication March 24, 2004, and accepted in revised form June 8, 2004.

Address correspondence to: Nicholas P. Restifo, Surgery Branch, National Cancer Institute, National Institutes of Health, Building 10, Room 2B46, Bethesda, Maryland 20892, USA. Phone: (301) 496-4904; Fax: (301) 496-0011; E-mail: Nicholas.Restifo@nih.gov.