Systemic lupus erythematosus serum IgG increases CREM binding to the *IL-2* promoter and suppresses IL-2 production through CaMKIV

Yuang-Taung Juang, …, Vasileios C. Kyttaratis, George C. Tsokos

J Clin Invest. 2005;115(4):996-1005. https://doi.org/10.1172/JCI22854.

Systemic lupus erythematosus (SLE) T cells express high levels of cAMP response element modulator (CREM) that binds to the *IL-2* promoter and represses the transcription of the *IL-2* gene. This study was designed to identify pathways that lead to increased binding of CREM to the *IL-2* promoter in SLE T cells. Ca\(^{2+}\)/calmodulin–dependent kinase IV (CaMKIV) was found to be increased in the nucleus of SLE T cells and to be involved in the overexpression of CREM and its binding to the *IL-2* promoter. Treatment of normal T cells with SLE serum resulted in increased expression of CREM protein, increased binding of CREM to the *IL-2* promoter, and decreased *IL-2* promoter activity and IL-2 production. This process was abolished when a dominant inactive form of CaMKIV was expressed in normal T cells. The effect of SLE serum resided within the IgG fraction and was specifically attributed to anti–TCR/CD3 autoantibodies. This study identifies CaMKIV as being responsible for the increased expression of CREM and the decreased production of IL-2 in SLE T cells and demonstrates that anti–TCR/CD3 antibodies present in SLE sera can account for the increased expression of CREM and the suppression of IL-2 production.

Find the latest version:

http://jci.me/22854/pdf
Systemic lupus erythematosus serum IgG increases CREM binding to the IL-2 promoter and suppresses IL-2 production through CaMKIV

Yuang-Taung Juang,1,2 Ying Wang,1 Elena E. Solomou,1 Yansong Li,1 Christian Mawrin,1 Klaus Tenbrock,1 Vasileios C. Kyttaris,1,2,3 and George C. Tsokos1,2

1Department of Cellular Injury, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA. 2Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA. 3Department of Medicine, Section of Rheumatology, Washington Hospital Center, Washington, D.C., USA.

Systemic lupus erythematosus (SLE) T cells express high levels of cAMP response element modulator (CREM) that binds to the IL-2 promoter and represses the transcription of the IL-2 gene. This study was designed to identify pathways that lead to increased binding of CREM to the IL-2 promoter in SLE T cells. Ca2+/calmodulin–dependent kinase IV (CaMKIV) was found to be increased in the nucleus of SLE T cells and to be involved in the overexpression of CREM and its binding to the IL-2 promoter. Treatment of normal T cells with SLE serum resulted in increased expression of CREM protein, increased binding of CREM to the IL-2 promoter, and decreased IL-2 promoter activity and IL-2 production. This process was abolished when a dominant inactive form of CaMKIV was expressed in normal T cells. The effect of SLE serum resided within the IgG fraction and was specifically attributed to anti–TCR/CD3 autoantibodies. This study identifies CaMKIV as being responsible for the increased expression of CREM and the decreased production of IL-2 in SLE T cells and demonstrates that anti–TCR/CD3 antibodies present in SLE sera can account for the increased expression of CREM and the suppression of IL-2 production.

Introduction

T cells from humans (1) and mice (2) with systemic lupus erythematosus (SLE) produce less IL-2. Decreased IL-2 production contributes to an increased rate of infections (3) and decreased ability to generate proper activation-induced cell death, allowing B cell–helping subsets to survive longer (4). While exploring the reasons for the decreased production of IL-2, we found that the cAMP response element modulator (CREM) was present at increased levels in the nucleus of T lymphocytes from patients with SLE and that it bound to the –180 site of the IL-2 promoter. This binding has been shown to lead to transcriptional repression of IL-2 promoter activity (5, 6). However, the molecular mechanisms underlying the upregulated activity of CREM in SLE T cells remain unknown.

CREM is a transcription factor of the leucine-zipper family that also includes CREB, CREB-2, and ATF-1, -2, and -3 (7). All members share highly homologous structure in both DNA-binding and kinase-inducible domains. They differ, though, from each other in the number of activation domains they contain. CREMα and CREMβ, unlike CREB, do not encode the Q1 and Q2 activation domains, and, therefore, they function as transcriptional suppressors (8). CREM binds to cAMP response element (CRE) either as a homodimer or as a CREM/CREB heterodimer. Binding of CREM to the IL-2 promoter in the anergic T cell line A.E7 (9) and SLE T cells (5, 6) limits the production of IL-2.

CREM and CREB are downstream transcription factors to multiple signaling pathways triggered by diverse stimuli including stress and hormones (7). Kinases modulate the activity of CREM and CREB by altering their transcriptional and translational regulation, as well as by implementing posttranslational modifications. Kinases known to regulate the activity of CREB and CREM include PKA, PKC, ERK1, and Ca2+/calmodulin–dependent kinase II (CaMKII) and CaMKIV (10, 11). The facts that PKA, ERK1, and PKC expression and/or activity have been reported to be decreased in SLE T cells (10–12) and that SLE T cells display increased TCR-mediated free intracytoplasmic Ca2+ responses (13) have provided a rationale for the exploration of the role of CaMKs in the increased expression of CREM in SLE T cells. In addition, CREM can be activated by sera through the p70 S6 kinase (14), and CaMKIV has been reported to be activated by serum in murine fetal thymic organ cultures (15). SLE sera contain various components that are not present in significant levels in normal sera, such as autoantibodies, immune complexes, and various cytokines including IFN-α and IL-6 (16, 17), all of which can affect cell function. In this study we demonstrate that SLE serum IgG activates CaMKIV, which moves to the nucleus and causes increased binding of CREM to the IL-2 promoter and represses its activity.

Results

Increased expression and binding of CREM to the –180 site of the IL-2 promoter in SLE T cells. We have previously shown that SLE T cells...
Increased binding of CREM to the –180 site of the IL-2 promoter in SLE T cells. As shown in Figure 3A, treatment of normal T cells with SLE sera increased the levels of CREM mRNA (Figure 3B, n = 10, P < 0.05). Treatment of normal T cells with SLE sera also caused increased expression of CREM protein, whereas the levels of CREB protein remained largely unchanged (Figure 3C). In Figure 3D, cumulative data from 8 experiments are shown (P < 0.05). Sera from patients with RA did not increase the expression of CREM mRNA (Figure 3E, A and B) or protein (Figure 3C and D). We then tested whether the increased expression of CREM in normal T cells treated with SLE sera led to enhanced formation of –180/protein complex. As shown in Figure 3E, SLE sera, when compared with normal sera, enhanced the formation of –180/protein complex (Figure 3F, cumulative data, n = 10, P < 0.05). Treatment of normal T cells with RA sera did not increase the binding of protein to the –180 oligonucleotide (Figure 3, E and F). Normal T cells treated with SLE sera did not display higher AP-1-DNA-binding activity (data not shown); this demonstrates that CREM expression is specifically activated in normal T cells treated with SLE sera. These findings indicate that SLE sera, unlike normal and RA sera, can account for the increased expression and binding of CREM protein to the IL-2 promoter. We plotted the SLE disease-activity index of each patient from which the serum was collected against the densitometric readings of the induced –180/protein complex in normal T cells; no significant correlation was detected (Pearson correlation value = 0.144, P = 0.69).

Increased expression of CaMKIV in the nucleus of SLE T cells. CREB and CREM are substrates of a number of kinases that are activated

Figure 2
Increased binding of CREM to the –180 site of the IL-2 promoter in SLE T cells. (A) Nuclear proteins were incubated with a 32P-labeled oligonucleotide encoding the –180 site of the IL-2 promoter as described in Methods. Shown are 3 independently conducted EMSAs, each containing 1 pair of simultaneously purified normal (N) and SLE T cells. (B) Nuclear proteins from an SLE patient were incubated with the –180 oligonucleotide with or without antibody against CREB, CREM, or c-Jun for 15 minutes, followed by shift analysis. (C) Nuclear proteins from primary T cells were incubated with 32P-labeled oligonucleotide encoding the –180 site of the IL-2 promoter. Where indicated, unlabeled wild-type or mutant oligonucleotides containing 2 mutated nucleotides were also added into the reaction.
through various signaling pathways. Among the kinases known to activate CREM, PKA, PKC, and ERK have been reported to be defective in SLE T cells (10–12), while the activity of CaMKs that are known to regulate the activity of CREM has not been studied. Furthermore, SLE T cells are known to display increased TCR-mediated free intracytoplasmic Ca2+ response (13), and Ca2+ concentration is known to regulate the activity of CaMKs (18). Therefore, we investigated the role of the CaMKs in the activation of CREM. Although CaMKs are located in both the cytoplasm and the nucleus, it is the nuclear CaMKs that directly activate transcription factors. Because not all CaMKs migrate to the nucleus (19), we focused on CaMKIV and CaMKII, which can migrate and localize to the nucleus. We purified cytoplasmic and nuclear proteins from normal and SLE T cells and determined the CaMKIV levels in each compartment. As shown in Figure 4, SLE T cells expressed more CaMKIV in the nuclear compartment than normal T cells. No correlation was identified between disease activity and the densitometric values of CaMKIV expression. When the nuclear levels of CaMKIV were elevated, the cytoplasmic levels were decreased, which suggests that enhanced nuclear import is responsible for the increased levels of nuclear CaMKIV (Figure 4A). In contrast, normal T cells had higher levels of CaMKII than SLE T cells in the nucleus (Figure 4, A and B). Densitometric analysis of data from 11 patients with SLE and 11 normal individuals demonstrated higher levels of CaMKIV, but not CaMKII, in the nucleus of SLE T cells compared to normal T cells.
with normal T cells ($P < 0.05$). Next we used confocal microscopy to visualize the localization of CaMKIV. In both normal and RA T cells CaMKIV was detected primarily in the cytoplasm, whereas in SLE T cells CaMKIV was detected in the nucleus of the cells and to a lesser extent in the cytoplasm. Specifically, 41.4% ± 8.8% of SLE T cells have more CaMKIV in the nucleus than in the cytoplasm, compared with 7.3% ± 3.4% of normal and 10.1% ± 3.1% of RA T cells ($n = 3$, $P < 0.05$ comparing SLE with normal). Representative cell-staining data are shown in Figure 5. These data suggest that CaMKIV but not CaMKII is activated in a manner that promotes its translocation to the nucleus of SLE T cells.

Overexpression of inactive CaMKIV blocked the effect of SLE sera on the formation of −180/protein complex. To confirm whether the enhanced expression of CREM and its subsequent binding to the −180 site of the IL-2 promoter in SLE T cells. We established that the available CaMKIV vector, when transfected into T cells, resulted in CaMKIV protein expression. As shown in Figure 7A, transfection of normal T cells with a CaMKIV expression construct resulted in a time-dependent increase in the expression of CaMKIV protein. Next, SLE T cells were transiently transfected with plasmids overexpressing wild-type CaMKIV and then were treated with PMA and ionomycin to activate CaMKIV. Transfection of normal T cells with CaMKIV expression or empty vectors did not affect the ability of cells to mobilize Ca$^{2+}$ in response to ionomycin 3 hours later (data not shown). As shown in Figure 7B, overexpression of CaMKIV blocked the expression of CREM but not heterogeneous ribonucleoprotein (hnRNP) in SLE T cells. The increased expression of CREM that was observed in SLE T cells following the expression of CaMKIV was associated with the increased binding of protein to the −180 site–defined oligonucleotide (Figure 7C).

We then asked whether overexpression of CaMKIV alone was sufficient to induce the −180/protein complex in normal T cells. Normal T cells were transfected with an empty vector or a plasmid expressing wild-type CaMKIV and then were treated with PMA and ionomycin. As shown in Figure 7D, in contrast to SLE T cells, where CaMKIV significantly enhanced the formation of the −180/protein complex, there was no consistent effect in normal T cells in which CaMKIV was overexpressed. Time-curve analysis of normal CaMKIV(i) did not alter the effect of normal and RA sera. In Figure 6B, cumulative data are shown from 5 experiments in which the effect of SLE, normal, or RA sera on the formation of −180/protein complex was studied in cells transfected with CaMKIV(i) or pcDNA. The effect of SLE serum was limited significantly ($P < 0.05$) in the presence of CaMKIV(i), whereas the effect of normal and RA serum was not. To demonstrate that sera exerted their effect only through CaMKIV, we repeated these experiments using an inactive form of CaMKII. As can be seen in Figure 6, C and D, CaMKII(i), unlike CaMKIV(i), did not alter the effect of SLE sera on the formation of −180/protein complex. These data indicate that the SLE serum–induced increase in the formation of −180/CREM protein complex is dependent on the presence of CaMKIV.

CaMKIV enhanced the expression of CREM and its binding to the −180 site of the IL-2 promoter in SLE T cells. Next we compared the effect of overexpression of CaMKIV on the formation of −180/protein complex in normal and SLE T cells. We established that the available CaMKIV vector, when transfected into T cells, resulted in CaMKIV protein expression. As shown in Figure 7A, transfection of normal T cells with a CaMKIV expression construct resulted in a time-dependent increase in the expression of CaMKIV protein. Next, SLE T cells were transiently transfected with plasmids overexpressing wild-type CaMKIV and then were treated with PMA and ionomycin to activate CaMKIV. Transfection of normal T cells with CaMKIV expression or empty vectors did not affect the ability of cells to mobilize Ca$^{2+}$ in response to ionomycin 3 hours later (data not shown). As shown in Figure 7B, overexpression of CaMKIV blocked the expression of CREM but not heterogeneous ribonucleoprotein (hnRNP) in SLE T cells. The increased expression of CREM that was observed in SLE T cells following the expression of CaMKIV was associated with the increased binding of protein to the −180 site–defined oligonucleotide (Figure 7C).
CaMKIV suppresses the –180 element–driven luciferase activity in SLE but not in normal T cells. We have reported that increased amounts of –180/CREM protein complex result in suppression of IL-2 promoter activity in normal and SLE T cells. The y axis represents the ratio of the intensity of the –180/protein complex in the CaMKIV-transfected cells to that in the cells transfected with control plasmid. Normal and SLE T cells were subjected to the experimental protocol detailed in C. Filled symbols, SLE T cells; open symbols, normal T cells. *P < 0.05.

Figure 8
CaMKIV suppresses the –180 site–driven reporter activity in SLE T cells. Freshly purified normal and SLE T cells were transiently cotransfected with the luciferase reporter construct driven by the –180 site of the IL-2 promoter (2 copies placed in tandem) and with control plasmid or a plasmid expressing wild-type CaMKIV and then stimulated with PMA and ionomycin. The y axis represents the β-gal–normalized luciferase activity, which was assayed 6 hours after transfection. *P < 0.05.

and SLE cells demonstrated that CaMKIV increased the intensity of the –180/protein complex formation only in SLE T cells. This effect was prominent at the 6-hour time point. This finding indicates that overexpression of CaMKIV in normal T cells is insufficient to reproduce the effect of SLE sera.

CaMKIV suppresses the –180 element–driven luciferase activity in SLE but not in normal T cells. We have reported that increased amounts of –180/CREM protein complex result in suppression of IL-2 promoter activity in SLE T cells (5). To test whether CaMKIV-mediated increased binding of CREM to the IL-2 promoter is associated with decreased IL-2 promoter activity, we compared the effect of CaMKIV on the –180 site–driven luciferase activity in normal and SLE T cells. The activity of this construct reflects that of the proximal IL-2 promoter and IL-2 production (5). A luciferase reporter construct driven by 2 copies of the –180 site on the IL-2 promoter was cotransfected into normal (n = 5) and SLE (n = 4) T cells with either control plasmid or CaMKIV expression vector. In accordance with previously published data (5), normal T cells had 3.5 times higher basal –180 site–driven reporter activity than SLE T cells, and this difference inversely correlated with the respective basal CREM-binding activity. The difference was not due to the differential transfection efficiency of normal and SLE T cells, since the activity of the cotransfected galactosidase was comparable in normal and SLE T cells. We arbitrarily set the basal activity level of the –180 site–driven luciferase construct at 100 in normal and SLE T cells. As shown in Figure 8, the –180 reporter activity was not affected significantly by CaMKIV in normal T cells, while it was significantly downregulated (P < 0.05) in SLE T cells.

Priming of normal T cells with SLE serum before transfection with CaMKIV enhances the formation of –180/protein complex. We next determined whether incubation of normal CaMKIV-transfected T cells with SLE sera could facilitate the formation of –180/protein complex. To this end, we treated normal T cells with SLE sera for 2 hours, transfected them with a CaMKIV expression construct, and analyzed them 3 hours later. As shown in Figure 9, A (representative) and B (cumulative), SLE sera significantly augmented (n = 4, P < 0.05) the formation of the –180/protein complex in normal T cells overexpressing CaMKIV. These data suggest that SLE sera are required for the optimization of the effect of CaMKIV on the formation of the –180/protein complex.

Figure 7
CaMKIV upregulates the expression of CREM and its binding to the –180 site of the IL-2 promoter in SLE T cells. (A) Normal T cells were transfected with a CaMKIV expression construct for the indicated time, and the lysates were blotted with an anti-CaMKIV or an anti-hnRNP (control) antibody. (B) SLE T cells were transfected with control plasmid or a plasmid overexpressing CaMKIV and then were treated with PMA and ionomycin. Four hours later, nuclear proteins were purified, and Western blotting was conducted by sequential use of antibodies as indicated. An antibody against hnRNP was used as control. (C) SLE T cells were transfected with control plasmid or a plasmid expressing wild-type CaMKIV and then were treated with PMA and ionomycin. At the indicated time points, cells were harvested, and EMSA was conducted using the oligonucleotide encoding the –180 site of the IL-2 promoter. (D) Cumulative time-curve results of the effect of CaMKIV overexpression in normal and SLE T cells. The y axis represents the intensity of the –180/protein complex in the CaMKIV-transfected cells to that in the cells transfected with control plasmid.

Priming of normal T cells with SLE serum before transfection with CaMKIV enhances the formation of –180/protein complex. We next determined whether incubation of normal CaMKIV-transfected T cells with SLE sera could facilitate the formation of –180/protein complex. To this end, we treated normal T cells with SLE sera for 2 hours, transfected them with a CaMKIV expression construct, and analyzed them 3 hours later. As shown in Figure 9, A (representative) and B (cumulative), SLE sera significantly augmented (n = 4, P < 0.05) the formation of the –180/protein complex in normal T cells overexpressing CaMKIV. These data suggest that SLE sera are required for the optimization of the effect of CaMKIV on the formation of the –180/protein complex.

Priming of CaMKIV-transfected normal T cells with SLE sera suppresses proximal IL-2 promoter activity and IL-2 production. To establish that priming of normal cells with SLE sera suppresses the transcriptional activity of the IL-2 promoter, we incubated normal T cells with SLE sera and transfected them with CaMKIV and a proximal IL-2 promoter reporter construct. As is shown in Figure 10A (cumulative data from 4 experiments), exposure of normal T cells to SLE sera suppressed the activity of the IL-2 promoter by approximately 50% (P < 0.03). The effect on the promoter activity was reflected in decreased IL-2 production by these cells. As shown in Figure 10B, pretreatment of normal cells with SLE serum resulted in significantly decreased IL-2 production (n = 5, P < 0.03). Therefore, exposure of normal T cells overexpressing CaMKIV (through
transfection) to SLE sera results in transcriptional repression of the IL-2 gene and decreased production of IL-2.

SLE serum IgG is responsible for the increased –180 site of the IL-2 promoter/protein complex formation and the decreased production of IL-2 by normal T cells. In order to identify the component(s) of SLE sera responsible for the increased formation of –180/protein complex, we fractionated SLE sera into IgG and non-IgG fractions (Figure 11A). As shown in Figure 11B (one representative experiment) and Figure 11C (cumulative data, n = 4), the effect of the SLE sera on the formation of –180/protein complex resided primarily within the IgG fraction. Similarly, the IgG fraction was found to be responsible for the decreased production of IL-2 by normal T cells.

SLE sera have been extensively shown to contain anti-lymphocytic antibodies directed against various determinants, including antibodies against CD45, CD4, and TCRαβ chain (17). To address directly whether antibodies directed against these determinants can reproduce the effects observed with SLE Ig, we treated normal cells with antibodies against CD3 (surrogate for TCR/CD3) and treated with PMA and ionomycin. Three hours later, cells were harvested, and EMSA was performed by incubation of nuclear proteins with the –180/protein complex. (B) Cumulative results from 4 experiments (P < 0.05).

Discussion

We previously demonstrated that CREM is overexpressed in SLE T cells, binds to the IL-2 promoter, and limits its activity, resulting in decreased production of IL-2 (5, 6). In this report we show that SLE sera cause normal T cells to acquire the molecular phenotype of SLE T cells, that is, increased CREM expression with decreased IL-2 promoter activity and IL-2 expression.

SLE sera can induce the expression of CREM in normal T cells at both the protein and the mRNA level. The effect on CREM mRNA suggests that SLE sera cause either enhanced CREM gene transcription or increased CREM mRNA stability. The effect of SLE sera was limited to CREM, since the expression levels of CREB were not affected. This finding is consistent with previously published data that indicated that the expression of CREM can be induced independently of that of CREB (20, 21). It is possible that SLE sera, either through the demonstrated effect on CaMKIV or through other signaling pathways, may affect CREM mRNA stability.

CREM is the effector molecule of multiple signaling pathways that involve kinases such as PKA, PKC, p70 S6 kinase (22), and CaMKs

Figure 9

SLE sera enhance CaMKIV-mediated activation of the –180/protein complex in normal T cells. (A) SLE sera augment the effect of CaMKIV on the formation of the –180/protein complex in normal T cells. Normal T cells were primed with normal or SLE sera for 2 hours; cells were then transfected with CaMKIV expression plasmids and treated with PMA and ionomycin. Three hours later, cells were harvested, and EMSA was performed by incubation of nuclear proteins with the –180/protein complex. (B) Cumulative results from 4 experiments (P < 0.05).

Figure 10

SLE sera suppress IL-2 production by normal T cells. (A) Normal T cells were incubated for 16 hours with 1% SLE serum and then cotransfected with a CaMKIV expression vector and a proximal (–575 to +57) IL-2 promoter reporter construct. Three hours later, cells were treated with PMA and ionomycin, and after 5 hours the luciferase activity was measured and normalized against β-gal activity to control for transfection efficiency. (B) Cells were subjected to the same treatment, and the produced IL-2 was determined using an ELISA.
The fact that both PKA and PKC as well as ERK are defective in SLE T cells (10–12) has directed our attention to the study of the role of CaMKs in the overexpression of CREM in SLE T cells. This rationale was further supported by the facts that SLE T cells display enhanced Ca\(^2+\) responses (13) and that Ca\(^2+\) is typically required for the function of CaMKs (18). More importantly, we found enhanced expression of CaMKIV in the nucleus of SLE T cells. This finding is of pathophysiological importance for 2 reasons. First, CaMKIV has a selective immune cell expression pattern, as it is expressed primarily by T cells whereas B cells and macrophages have no detectable CaMKIV (23–25). Second, as shown in Figures 4 and 5, CaMKIV is located in the cytoplasmic compartment of normal T cells, whereas in SLE T cells CaMKIV resides primarily in the nucleus. Therefore, CaMKIV is aberrantly regulated in SLE T cells and may contribute to dysregulation of gene expression.

There is a substantial cross-talk between CaMKIV and other kinases that activate CREM. In particular, CaMKIV is negatively regulated by both PKA and PKC (26, 27), both of which have been reported to be less active in SLE T cells compared with normal T cells (10, 12). Also, it has been shown that CaMKII negatively regulates the effects of CaMKIV on the activity of both CREB and ATF-1 (28). In Figure 4 we showed that, in SLE T cells, increased nuclear levels of CaMKIV are associated with decreased levels of CaMKII. This finding is in agreement with a previous report that CaMKIV can antagonize the effect of CaMKII by inhibiting its nuclear translocation (29). Therefore, it appears that CaMKIV exerts a dominant effect in SLE T cells that remains unopposed by PKA, PKC, and CaMKII because the activity of all 3 kinases is decreased.

After identifying that CaMKIV is responsible for the induction of the –180/protein complex in SLE T cells, we tested whether overexpression of CaMKIV is sufficient to reproduce the enhanced formation of –180/protein complex in normal T cells.
The complexity of the regulation of the activity of CaMKIV suggests (30), report that the increase in expression and binding of CREM to the of association with disease activity is consistent with our previous size may be small for statistically powerful conclusions, the lack of CaMKIV in the nucleus of the cells. In the studied sample of intensity of the –180/protein complex formation or the presence any time point must represent the effect of multiple mechanisms, gests that in both normal and SLE T cells the level of its activity at

Figure 13

The TCR/CD3 complex represents the ligand for SLE serum IgG that is responsible for the increased expression of –180/protein complex formation. (A) Wild-type Jurkat T cells or J.EMS.T3.3 cells (a Jurkat T cell subline missing the TCR/CD3 complex) were treated with 1% normal or SLE sera for 3 hours, and nuclear extracts were subjected to a shift assay using the –180 oligonucleotide. (B) Cumulative data (n = 4) are shown. The y axis indicates relative densitometric units with the effect on TCR/CD3-positive cells set at 1. *P < 0.05. (C) Normal or SLE sera were adsorbed for 30 minutes at room temperature and another 30 minutes at 4°C on either Jurkat or J.EMS.T3.3 T cells and used to treat normal T cells for 3 hours. Nuclear extracts were subjected to a shift assay using the –180 oligonucleotide. (D) Cumulative data showing the effect of adsorption of SLE sera (n = 4) on TCR/CD3–positive and –negative Jurkat T cells. The y axis indicates relative densitometric units with the effect of sera adsorbed on TCR/CD3–positive cells set at 1. *P < 0.05. (E) SLE sera were adsorbed on TCR/CD3–positive and –negative cells, and the IgG fraction was isolated and used to treat normal T cells for 3 hours. Nuclear extracts were isolated and subjected to a shift assay using the –180 oligonucleotide. One of 2 similar experiments is shown.

SLE sera contain various components that are not present in significant levels in normal sera that could, individually or acting together, cause translocation of CaMKIV to the nucleus, increased expression of CREM, and increased binding of protein to the –180 site of the IL-2 promoter. These components, such as autoantibodies (17), immune complexes, and various cytokines, including IFN-α (16) and IL-6 (32), have been claimed to affect cell function. In the present study we considered that SLE IgG could be responsible for the increased binding of protein to the –180 site. Indeed, the IgG fraction of SLE serum was found to be responsible for the observed effect. SLE sera contain anti-lymphocytic antibodies directed against various determinants, including TCRβ, CD4, and CD45 (17). In this study, we demonstrate that anti-CD3 antibody, used as a surrogate for anti-TCRβ antibody, can activate CaMKIV and increase the –180/protein complex (Figure 12). More importantly, adsorption of SLE sera on TCR-positive, but not TCR-negative, Jurkat cells limited their ability to enhance the expression of –180/protein complex in normal T cells; in addition, SLE sera stimulated the expression of –180/protein complex only in TCR-positive and not in TCR-negative Jurkat T cells (Figure 13). Interestingly, none of the other antibodies used had a similar effect, and, more importantly, the presence of anti-CD28 did not enhance the effect of anti-CD3 antibody (data not shown). Therefore, anti-TCR antibodies present in the sera of SLE patients can, by activating CaMKIV and CREM, lead to decreased IL-2 production. Our studies do not exclude the possibility that additional factors, including IFN-α, can contribute to the increased expression of CREM and the suppression of IL-2 production. Yet, treatment of normal T cells with IFN-α failed to induce the expression of mRNA CREM (unpublished observations, V. Kyttaris, Y.-T. Juang, and G.C. Tsokos).

In summary, this study demonstrates that SLE serum factors enhance the levels of –180/protein complex in a CaMKIV-dependent manner. The presence of increased amounts of CaMKIV in the nucleus of SLE T cells isolated from the peripheral blood of patients may represent a chronic stimulatory effect of various serum components on the cells. CREM is upregulated in normal T cells stimulated in vitro, and it has been postulated that this upregulation occurs in time to terminate the IL-2 production so that the immune system is not exhausted (33). In SLE patients, the continuous effect of serum factors leads to an inappropriate decrease of IL-2 production with significant effect on the development of cytotoxic responses (34, 35) and the elimination of autoreactive T cells (4), 2 processes that require the presence of IL-2. In addition, defective IL-2 production may curtail the expansion of regulatory T cells (36). It is interesting to note that the pathway described herein, SLE sera → CaMKIV → CREM, will affect only genes controlled by the CRE α element, not other genes. A number of genes, such as CD40 ligand (37, 38) and IL-6 (32), are upregulated in SLE and are involved in providing help to B cells to produce autoantibody. Therefore, although the increased expression of CREM in SLE T cells may represent the effect of anti-TCR/CD3 antibodies present in SLE sera, other T cell defects may be independent of the effect of serum factors (17). Because SLE T cells provide help to B cells to produce most autoantibodies, it is possible that the production of anti-TCR/CD3 antibodies was instigated by T cells.
overexpressing CD40 ligand. Future studies will delineate the order of appearance of SLE T cell abnormalities and define their importance in the expression of the disease.

Methods

Patients and controls. Thirty-nine patients fulfilling at least 4 of 11 revised criteria of the American College of Rheumatology for the classification of SLE were studied. All patients were women 21–82 years old and had SLE disease-activity index (SLEDAI) scores ranging from 0 to 12. Five patients with the diagnosis of RA were also included in the study. Medications were discontinued at least 24 hours before venipuncture. Thirty-three normal women served as controls in this study. The protocol was approved by Institutional Review Boards of the Walter Reed Army Institute of Research, the Washington Hospital Center, and the Uniformed Services University of the Health Sciences.

T cells. Primary T cells were purified from human blood within 2–16 hours after venipuncture using the RosetteSep T cell purification kit (StemCell Technologies). More than 95% of the purified cells were CD3 positive as determined by flow cytometry. Sera were collected and frozen at ~70°C until used. Sera were heat-inactivated at 56°C for 30 minutes and centrifuged before use. Jurkat T cells were maintained in the laboratory. The Jurkat T cell subline J.EMS.T3.3 was provided kindly by A. Weiss (University of San Francisco, San Francisco, California, USA). This line does not express TCR/CD3 but expresses all other molecules, including CD28 (39).

Antibodies, plasmids, and reagents. To detect CREM in a specific manner, we generated an anti-human CREM antibody by immunizing rabbits with a peptide with its sequence specific to the N-terminal of human CREM (amino acids 21–34, SKSAHVQTQTGQNS), where the least homology was found among CREM, CREB, and ATF-1. The produced anti-CREM antibody recognized in both human primary T and Jurkat cells a band migrating to a position level with 26 kDa, corresponding to the calculated molecular mass of human CREM. This antibody does not cross-react with CREB or ATF-1, as indicated by its failure to pick up bands of 33 kDa (ATF-1) or 43 kDa (CREB). Both CREB and ATF-1 antibodies were purchased from Upstate Cell Signaling Solution; normal murine IgG, anti-CD4, and anti-c-Jun antibodies were purchased from Santa Cruz Biotechnology Inc.; antibodies against CD28 and CD45 were purchased from BD Biosciences — Pharmingen; anti-CD3 antibody was purchased fromOrtho-Immunology Inc.; antibodies against CD28 and CD45 were purchased from BD Biosciences — Pharmingen; anti-CD3 antibody was purchased from Ortho Biotech Products LP; antibodies against CaMKII and CaMKIV were purchased from Transduction Laboratories. The generation and characterization of anti-hnRNP antibody have been described (40).

The expression plasmids of CaMKII(K42M), wild-type CaMKIV, and CaMKIV(K75E) were kindly provided by A.R. Means (Duke University, Durham, North Carolina, USA) and have been described (41, 42). Mutations of K42M in CaMKII and K75E in CaMKIV leads to the expression of inactive enzymes, which are referred to as inactive constructs in this article. Overexpression of these mutated constructs exerts a dominant negative effect because they block the function of endogenous CaMKII or CaMKIV (43, 44). The luciferase reporter driven by 2 copies of the –180 element of oligonucleotides used for IL-2 promoter –180 site binding have been described (5); the sequence of the M1 oligonucleotide, which was used as cold competitor, represents the wild-type –180 oligonucleotide with 2 nucleotides changed (45). The sequence of the CREM peptide amino acids 21–34 is SKSAHVQTQTGQNS. The sequence of the control peptide hRNPD0 amino acids 263–275 is YQQQQQWGSRGGF.

Sera fractionation. SLE or normal sera were fractionated by ProteoExtract IgG Removal Kit (Calbiochem). Briefly, sera were diluted 1:10 into binding buffer and then loaded onto the column that retains IgG. After collection of the flow-through, the column was thoroughly washed with the same binding buffer before the bound IgG was eluted by 10 mM glycine. The eluate was immediately mixed with 10 mM Tris, pH 8.0, to neutralize the pH. The purity of each fraction was assayed by SDS gel electrophoresis followed by staining. The functional integrity of the IgG that was purified was implied by the fact that similarly purified anti-CREM antibody maintained its function in Western blots.

Statistical analysis. Data are reported as mean ± SEM. SPSS version 11.5.1 (SPSS Inc.) was used for statistical analysis.

Acknowledgments

This work was supported by NIH grants RO1 AI42269 and RO1 AI49954. We thank A. Weiss, T. Brumeanu, R. Wange, D. Farber, and R. Peckham for helpful reagents and discussions, and M. Zidanic for expert help with confocal microscopy. We also thank A. Weinstein, R. Bagati, P. De Marco, B. Wallitt, S. Timbil, and V. Logan for their help with the recruitment of the research subjects. The opinions expressed herein are those of the authors and do not represent those of the Department of Defense.

Received for publication July 28, 2004, and accepted in revised form January 5, 2005.

Address correspondence to: George C. Tsokos, Walter Reed Army Institute of Research, Building 503, Room 1A32, Silver Spring, Maryland 20910, USA. Phone: (301) 319-9911; Fax: (301) 319-9133; E-mail: gtsokos@usuhs.mil.

4. kovacs, b., vassilopoulos, d., vogelseang, s.a., and tsokos, g.c. 1996. defective cd3-mediated cell death in activated t cells from patients with systemic lupus erythematosus: role of decreased intracellular tnf-alpha. clin. immunol. immunopathol. 76:141–145.

5. solomou, e.e., juang, y.t., gourley, m.f., kammer, g.m., and tsokos, g.c. 2001. molecular basis of defective ifn-2 production in t cells from patients with systemic lupus erythematosus. j. immunol. 167:231–236.

6. tenbrock, k., juang, y.t., gourley, m.f., nambiar, m.p., and tsokos, g.c. 2002. antisense cyclic adenosine 5’-monophosphate response element modulator up-regulates ifn-2 in t cells from patients with systemic lupus erythematosus. j. immunol. 169:4174–4152.

9. powell, j.d., lerner, c.g., ewoldt, g.r., and kandel, e.r. 1999. cAMP response element-binding protein is activated by Ca2+/calmodulin- as well as CaM/calmodulin-dependent protein kinase is. proc. natl. acad. sci. u.s.a. 88:5061–5065.

15. hanissian, s.h., franakis, m., bland, m.m., jawa, h., and chaitla, t.a. 1993. expression of a Ca2+/calmodulin-dependent protein kinase gene in human t lymphocytes. regulation of kinase activity by t cell receptor signaling. j. biol. chem. 268:20055–20063.

17. wayman, g.a., tokumitsu, h., and soderling, t.r. 1997. inhibitory cross-talk by cAMP kinase on the calmodulin-dependent protein kinase cascade. j. biol. chem. 272:10763–10767.

22. selbert, m.a., et al. 1995. phosphorylation and activation of Ca2+/calmodulin-dependent protein kinase iv by Ca2+/calmodulin-dependent protein kinase la kinase. phosphorylation of threo-onine 196 is essential for activation. j. biol. chem. 270:17616–17621.

23. linker-israeli, m., et al. 1999. association of il-6 gene alleles with systemic lupus erythematosus (sle) and with elevated il-6 expression. genes immunol. 1:45–52.

24. tenbrock, k., juang, y.t., tolnay, m., and tsokos, g.c. 2003. the cyclic adenosine 5’-monophosphate response element modulator suppresses il-2 production in stimulated t cells by a chromatin-dependent mechanism. j. immunol. 170:2971–2976.

25. tsokos, g.c. 1999. overview of cellular immune function in systemic lupus erythematosus. in lupus: molecular and cellular pathogenesis. g.m. kammer and g.c. tsokos, editors. humana press inc. totowa, new jersey, usa. 299–311.

27. koshy, m.,berger, d., and crow, m.k. 1996. increased expression of cd40 ligand on systemic lupus erythematosus lymphocytes. j. clin. invest. 98:836–847.

29. weiss, a., and stebo, j.d. 1984. requirement for the coexpression of t3 and the t cell antigen receptor on a malignant human t cell line. j. exp. med. 159:1284–1299.

30. tolnay, m., yerevichagyna, l.a., and tsokos, g.c. 1999. heterogeneous nuclear ribonucleoprotein d0b is a sequence-specific dna-binding protein. biochem. j. 338:417–425.

31. chaitla, t., anderson, k.a., ho, n., and means, a.r. 1996. a unique phosphorylation-dependent mechanism for the activation of calca2+/calmodulin-dependent protein kinase type iv/Gr. j. biol. chem. 271:21542–21548.

35. solomou, e.e., juang, y.t., and tsokos, g.c. 2001. protein kinase c-theta participates in the activation of cyclic AMP-responsive element-binding protein and its subsequent binding to the –180 site of the il-2 promoter in normal human t lymphocytes. j. immunol. 166:5656–5674.