AMP-activated protein kinase regulates CO2-induced alveolar epithelial dysfunction in rats and human cells by promoting Na,K-ATPase endocytosis

István Vadász,1,2 Laura A. Dada,1 Arturo Briva,1,3 Humberto E. Trejo,1 Lynn C. Welch,1 Jiwang Chen,1 Péter T. Tóth,4 Emilia Lecuona,1 Lee A. Witters,5 Paul T. Schumacker,6 Navdeep S. Chandel,1 Werner Seeger,2 and Jacob I. Szajder1

1Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA. 2Department of Internal Medicine, University of Giessen Lung Center, Justus Liebig University, Giessen, Germany. 3Departamento de Fisiopatología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay. 4Department of Pharmacological and Physiological Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA. 5Departments of Medicine and Biochemistry, Dartmouth Medical School, and Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA. 6Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.

Introduction
Regulation of CO2 elimination is essential for the maintenance of cellular homeostasis (1). In mammals, the lung disposés of the excess CO2 produced by the body, and in several lung diseases the alveolar epithelium, the site of CO2 elimination, is exposed to hypercapnia. For example, in patients with exacerbation of chronic obstructive pulmonary disease, it is not uncommon to observe hypercapnia. For example, in patients with exacerbation of chronic obstructive pulmonary disease, it is not uncommon to observe hypercapnia. For example, in patients with exacerbation of chronic obstructive pulmonary disease, it is not uncommon to observe hypercapnia. For example, in patients with exacerbation of chronic obstructive pulmonary disease, it is not uncommon to observe hypercapnia. For example, in patients with exacerbation of chronic obstructive pulmonary disease, it is not uncommon to observe hypercapnia. For example, in patients with exacerbation of chronic obstructive pulmonary disease, it is not uncommon to observe hypercapnia. For example, in patients with exacerbation of chronic obstructive pulmonary disease, it is not uncommon to observe hypercapnia. For example, in patients with exacerbation of chronic obstructive pulmonary disease, it is not uncommon to observe hypercapnia. For example, in patients with exacerbation of chronic obstructive pulmonary disease, it is not uncommon to observe hypercapnia. For example, in patients with exacerbation of chronic obstructive pulmonary disease, it is not uncommon to observe hypercapnia. For example, in patients with exacerbation of chronic obstructive pulmonary disease, it is not uncommon to observe hypercapnia. For example, in patients with exacerbation of chronic obstructive pulmonary disease, it is not uncommon to observe hypercapnia. For example, in patients with exacerbation of chronic obstructive pulmonary disease, it is not uncommon to observe hypercapnia. For example, in patients with exacerbation of chronic obstructive pulmonary disease, it is not uncommon to observe hypercapnia. For example, in patients with exacerbation of chronic obstructive pulmonary disease, it is not uncommon to observe hypercapnia. For example, in patients with exacerbation of chronic obstructive pulmonary disease, it is not uncommon to observe hypercapnia. For example, in patients with exacerbation of chronic obstructive pulmonary disease, it is not uncommon to observe hypercapnia.

Hypercapnia (elevated CO2 levels) occurs as a consequence of poor alveolar ventilation and impairs alveolar fluid reabsorption (AFR) by promoting Na,K-ATPase endocytosis. We studied the mechanisms regulating CO2-induced Na,K-ATPase endocytosis in alveolar epithelial cells (AECs) and alveolar epithelial dysfunction in rats. Elevated CO2 levels caused a rapid activation of AMP-activated protein kinase (AMPK) in AECs, a key regulator of metabolic homeostasis. Activation of AMPK was mediated by a CO2-triggered increase in intracellular Ca2+ concentration and Ca2+/calmodulin-dependent kinase kinase-β (CaMKK-β). Chelating intracellular Ca2+ or abrogating CaMKK-β function by gene silencing or chemical inhibition prevented the CO2-induced AMPK activation in AECs. Activation of AMPK or overexpression of constitutively active AMPK was sufficient to activate PKC-ζ and promote Na,K-ATPase endocytosis. Inhibition or downregulation of AMPK via adenoviral delivery of dominant-negative AMPK-α1 prevented CO2-induced Na,K-ATPase endocytosis. The hypercapnia effects were independent of intracellular ROS. Exposure of rats to hypercapnia for up to 7 days caused a sustained decrease in AFR. Pretreatment with a β-adrenergic agonist, isoproterenol, or a cAMP analog ameliorated the hypercapnia-induced impairment of AFR. Accordingly, we provide evidence that elevated CO2 levels are sensed by AECs and that AMPK mediates CO2-induced Na,K-ATPase endocytosis and alveolar epithelial dysfunction, which can be prevented with β-adrenergic agonists and cAMP.

Nonstandard abbreviations used: Ad-CA–AMPK-α, adenovirus expressing constitutively active variants of AMPK-α; AEC, alveolar epithelial cell; AFR, alveolar fluid reabsorption; AICAR, 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside; AMPK, AMP-activated protein kinase; ATIII, alveolar epithelial type II (cell); BAPTA-AM, 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid-acetoxy methyl ester; BBr, β-bromo-CA-MP; [Ca2+]i, intracellular Ca2+; CaMKK-β, Ca2+/calmodulin-dependent kinase kinase-β; DN–AMPK-α, adenovirus expressing a dominant-negative variant of AMPK-α; ENaC, epithelial Na+ channel; MPP, myelin basic protein.

Conflict of interest: These authors have declared that no conflict of interest exists.

Under physiological conditions the alveolo-capillary barrier function ensures optimal gas exchange while keeping the alveoli free of edema (8, 9). Active Na+ transport and alveolar fluid reabsorption (AFR), major functions of the alveolar epithelium, are regulated mostly by apical Na+ channels and the basolateral Na,K-ATPase (8, 9). A decrease in the number of Na,K-ATPase molecules at the plasma membrane results in inhibition of Na+ transport, with a subsequent inhibition of alveolar fluid clearance (9–14). We and others have previously reported that the Na,K-ATPase endocytosis is triggered by the phosphorylation of its α subunit at serine 18 by PKC-ζ (10, 15). Thus regulation of the Na,K-ATPase endocytosis represents an important mechanism that maintains optimal alveolar epithelial function. The AMP-activated protein kinase (AMPK) has been proposed as a metabolic sensor and in response to metabolic or nonmetabolic stress activates energy-generating pathways while downregulating energy-consuming events, thereby promoting cell adaptation to stress (16). AMPK is a Ser/Thr kinase that is ubiquitously expressed and highly conserved phylogenetically, with orthologs in plants and yeast (17). In the mammalian epithelium, AMPK has been reported to inhibit the epithelial Na+ channel (ENaC) and the cystic fibrosis...
transmembrane conductance regulator Cl− channel (18, 19). Also, a recent study reported that pharmacological activation of AMPK reduces ouabain-sensitive Na+ transport in cultured epithelial cells, suggesting a role for AMPK in Na,K-ATPase regulation (20).

We have recently observed that exposing the alveolar epithelium to high concentrations of CO2 impaired AFR by promoting Na,K-ATPase endocytosis from the plasma membrane of rat alveolar epithelial type II (ATII) cells (21). In the present study, we provide evidence that a short-term elevation in pCO2 activates AMPK in a Ca2+/calmodulin-dependent kinase-β-dependent (CaMKK-β-dependent) manner in alveolar epithelial cells (AECs), leading to activation of PKC-ζ and thereby promoting Na,K-ATPase endocytosis and thus impairing fluid reabsorption, a major function of the alveolar epithelium. The inhibition of AFR was ameliorated by the β-adrenergic agonist, isoproterenol.

Results

High CO2 levels activate AMPK in AECs. To determine whether AMPK was activated by high pCO2 or by the hypercapnia-associated acidosis, we assessed the phosphorylation of AMPK-α subunit, which reflects the activation status of AMPK (22). Exposure of ATII cells to elevated CO2 levels (60–120 mmHg at a pH of 7.4) for 5 min led to a concentration-dependent phosphorylation of AMPK at Thr172 (Figure 1A). The AMPK activation by high CO2 levels was transient (Figure 1B) and returned to baseline values after 20 min of CO2 exposure (data not shown). Although AMPK was not stimulated by 60 mmHg CO2 within 5 min as with higher pCO2, a significant stimulation of AMPK was found when ATII cells were exposed to 60 mmHg CO2 for 10–20 min, and similarly to cells exposed to higher CO2 levels, AMPK activity returned to baseline levels after 30 min (data not shown). In contrast, when ATII cells were exposed to extracellular acidosis but normal CO2 levels (pH 7.2 and 40 mmHg), AMPK phosphorylation was not observed (Figure 1A). Since maximal activation of AMPK was achieved at approximately 120 mmHg of CO2 at normal pH, the subsequent experiments with high CO2 were performed under these conditions.

CO2-induced Na,K-ATPase endocytosis is mediated by AMPK. We have recently observed that hypercapnia leads to AFR impairment and promotes Na,K-ATPase endocytosis from the plasma membrane to the intracellular compartments in AECs (21, 23). To determine whether activation of AMPK was required for the hypercapnia-induced Na,K-ATPase endocytosis, we assessed plasma membrane Na,K-ATPase protein abundance in ATII cells exposed to high CO2 in the presence of the AMPK inhibitor compound C. Exposure of cells to 120 mmHg CO2 decreased the plasma membrane Na,K-ATPase α1 protein abundance by approximately 45% without affecting the total Na,K-ATPase cell pools. This effect was prevented by pretreatment of the cells with compound C (Figure 2A). Moreover, when ATII cells were infected with an adenovirus expressing a dominant-negative variant of AMPK-α1 (DN-AMPK-α1), endocytosis of the Na,K-ATPase α1 subunit was prevented (in contrast to ATII cells infected with the null (Ad-null) virus; Figure 2B). To determine whether activation of AMPK was sufficient to promote Na,K-ATPase endocytosis, ATII cells were exposed to the AMPK activator 5-aminoimidazole-4-carboxamide ribofuranoside (AICAR), which resulted in a decreased number of Na,K-ATPase molecules at the plasma membrane without affecting total cell Na,K-ATPase levels (Figure 2C). Furthermore, in ATII cells infected with an adenovirus expressing the constitutively active variant of AMPK-α (Ad-CA–AMPK-α), a dose-dependent reduction in the number of Na,K-ATPase molecules in the plasma membrane occurred (Figure 2D).

ROS play a key signaling role in hypoxia-induced activation of PKC-ζ, leading to Na,K-ATPase endocytosis and degradation (10, 24–26). We determined whether high CO2 increased the production of ROS in rat ATII cells. Neither cytosolic nor mitochondrial ROS were increased by incubating AECs to elevated pCO2 (Supplemental Figure 1, A and B; supplemental material available online with this article; doi:10.1172/JCI29723DS1), in contrast to hypoxia, in which intracellular ROS were increased (Supplemental Figure 1C). Furthermore, pretreatment of ATII cells with the ROS scavenger Eukarion 134 did not prevent the high pCO2-induced Na,K-ATPase endocytosis but inhibited the H2O2-induced downregulation of Na,K-ATPase (Supplemental Figure 1D). These data suggest that ROS do not participate in the high pCO2-induced Na,K-ATPase endocytosis.
AMPK activates PKC-ζ in AECs. We and others have previously reported that PKC-ζ phosphorylation of Na,K-ATPase leads to its endocytosis (10, 13, 15), and thus we examined whether PKC-ζ was a downstream target of AMPK. Exposure of ATII cells to elevated CO₂ levels resulted in PKC-ζ activation, measured by a PKC-ζ kinase assay (Figure 3A), and translocation to the membrane fraction (Figures 3, C and D). Furthermore, the AMPK activator AICAR increased AMPK phosphorylation (data not shown) and led to PKC-ζ translocation (Figure 3B). The CO₂-induced PKC-ζ translocation was prevented by compound C, or DN–AMPK-α1 overexpression (Figure 3, C and D). In contrast, preincubation of AECs with a high dose of bisindolylmaleimide I, with a myristoylated peptide inhibitor of PKC-ζ, or with adenovirus-mediated overexpression of DN–PKC-ζ did not prevent the CO₂-induced AMPK activation (Figure 3, E and F), suggesting that AMPK acts upstream of PKC-ζ in the CO₂-induced signaling cascade.

Intracellular Ca²⁺ and CaMKK-β mediate the high CO₂-induced activation of AMPK. We investigated whether Ca²⁺ signaling was involved in the AMPK activation upon exposure of AECs to high CO₂ levels. Switching the perfusion of Fura-2 acetoxymethyl ester–loaded (Fura-2/AM–loaded) ATII cells from media with 40–120 mmHg pCO₂ resulted in a rapid and transient increase in intracellular Ca²⁺ ([Ca²⁺]i) concentration (Figure 4A). Chelation of intracellular Ca²⁺ with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid–acetoxymethyl ester (BAPTA-AM) prevented the high CO₂-induced phosphorylation of AMPK at Thr172 (Figure 4B), suggesting that intracellular Ca²⁺ was involved in the signaling cascade initiated by high pCO₂. Two upstream kinases of AMPK have been identified in...
mammals, the protein kinase LKB1 and CaM KK-β, both of which phosphorylate AMPK at Thr172 (27). While CaM KK-β is expressed in both primary rat ATII and human epithelial A549 cells, LKB1 is found in rat ATII cells but not in A549 cells (Figure 5C), confirming previous reports that A549 cells lack LKB1 (28, 29). Exposing either cell type to high CO₂ levels resulted in similar activation of AMPK (Figure 5, A and B), suggesting a role for CaM KK-β. Furthermore, preincubation of either primary rat ATII or A549 cells with STO-609, a CaM KK-α and -β inhibitor, decreased baseline phosphorylation of AMPK at Thr172, and high pCO₂ did not increase AMPK phosphorylation (Figure 5, A and B). To confirm that CaM KK-β was the kinase upstream of AMPK during hypercapnia, a siRNA approach was utilized to knock down CaM KK-β expression in A549 cells. Silencing of CaM KK-β was confirmed by immunoblot, as illustrated in Figure SD. Incubation of A549 cells with the CaM KK-β siRNA decreased the protein content by approximately 82% as compared with the control with the scrambled siRNA sequence. Similar to the effects of STO-609, baseline AMPK phosphorylation was barely detectable and remained unchanged upon exposure to high pCO₂ (Figure SD).

Role of AMPK in hypercapnia-induced inhibition of AFR. To investigate whether AMPK mediated the hypercapnia-induced impairment of AFR, rat lungs were exposed to high pCO₂ in the presence of the AMPK inhibitor compound C or vehicle alone. Consistent with our findings in ATII cells, the CO₂-induced impairment of AFR was prevented in rat lungs pretreated with compound C (Figure 6A), without any effect on the passive movement of solutes (Figure 6B). Furthermore, when animals were infected with DN–AMPK-α1 adenoviruses and rat lungs were exposed to 40 or 120 mmHg CO₂ for 30 min, overexpression of DN–AMPK-α1 prevented compound C-induced impairment of AFR, without any effect on the passive movement of solutes (Figure 6C). Histological examination of the rat lungs 7 days after infection with null or DN–AMPK-α1 adenoviruses revealed no injury compared with sham-treated lungs, as previously reported (30, 31). In these lungs, overexpression of DN–AMPK-α1 was observed throughout the alveolar epithelium, as assessed by immunohistochemistry and Western blot analysis of peripheral lung tissue (Figure 6, E and F).
Long-term exposure of rats to hypercapnia impairs AFR. We measured AFR in rats maintained in an atmosphere that consisted of 10% CO\textsubscript{2}, 21% O\textsubscript{2}, and balanced N\textsubscript{2} for up to 7 days, as described in Methods. As shown in Figure 7A, AFR was markedly reduced (similar to 1 hour of ex vivo hypercapnia) after 3 and 7 days of exposure to high CO\textsubscript{2} levels, without deleterious effects on passive movement of small solutes across the alveolar epithelium (Figure 7B). In line with these findings, exposure of isolated ATII cells to prolonged high CO\textsubscript{2} resulted in a sustained decrease of plasma membrane Na,K-ATPase protein abundance (Figure 7C), suggesting that even though the activation of AMPK is transient, the downstream effects on Na,K-ATPase and AFR inhibition are sustained.

β-adrenergic receptor agonist and a cAMP analog ameliorate the hypercapnia-induced inhibition of AFR. To investigate whether β-adrenergic receptor and cAMP activation could prevent or overcome the hypercapnia-induced impairment of AFR, rat lungs were exposed to high pCO\textsubscript{2} in the presence of isoproterenol or 8-bromo-cAMP (8Br). Importantly, either pretreatment with isoproterenol or 8Br significantly ameliorated the hypercapnia-induced reduction of AFR (Figure 8, A and B) without effecting changes on passive movement of small solutes (data not shown). Moreover, when lungs were first exposed to hypercapnia and then treated with isoproterenol, there was an amelioration of the hypercapnia-induced impairment of AFR (Figure 8C).

Discussion
Here we provide evidence that AECs sense elevated CO\textsubscript{2} levels, resulting in very rapid activation of AMPK. The signaling cascade initiated

Na,K-ATPase protein abundance (Figure 7C), suggesting that even though the activation of AMPK is transient, the downstream effects on Na,K-ATPase and AFR inhibition are sustained.

β-adrenergic receptor agonist and a cAMP analog ameliorate the hypercapnia-induced inhibition of AFR. To investigate whether β-adrenergic receptor and cAMP activation could prevent or overcome the hypercapnia-induced impairment of AFR, rat lungs were exposed to high pCO\textsubscript{2} in the presence of isoproterenol or 8-bromo-cAMP (8Br). Importantly, either pretreatment with isoproterenol or 8Br significantly ameliorated the hypercapnia-induced reduction of AFR (Figure 8, A and B) without effecting changes on passive movement of small solutes (data not shown). Moreover, when lungs were first exposed to hypercapnia and then treated with isoproterenol, there was an amelioration of the hypercapnia-induced impairment of AFR (Figure 8C).
by high pCO₂ is Ca²⁺ dependent and involves CaMKK-β. Activation of AMPK leads to PKC-ζ activation, which triggers the endocytosis of the Na,K-ATPase from the plasma membrane and results in AFR inhibition, an important function of the alveolar epithelium.

The concept of CO₂ sensing was first reported in plants, which regulate CO₂ uptake from the atmosphere during photosynthesis to maintain adequate carbon import, where as a consequence of specific signaling events, stomatal opening or closing is regulated by CO₂ levels (32, 33). A CO₂ sensor has also been proposed in Drosophila melanogaster as well as some fungal pathogens, which are exposed to dramatically different CO₂ concentrations during infections and are able to adapt very rapidly to approximately 150-fold increases in CO₂ levels (34). Furthermore, central and peripheral chemoreception of CO₂ in mammalian neurons, such as specialized brainstem neurons and the carotid body glomus cells, were described several decades ago (reviewed in refs. 35, 36). It has also been proposed that CO₂ and pH may independently modulate the activity of carotid body glomus cells in rabbits (37). In contrast, the mechanisms by which nonexcitable mammalian cells sense and respond to high CO₂ levels have not been elucidated.

Here we report that elevated CO₂ levels activate AMPK very rapidly and independently of pH (Figure 1, A and B). Once activated, AMPK upregulates energy-generating pathways while inhibiting energy-consuming events, thereby promoting cellular adaptation to stressful conditions (16). Since membrane transport processes consume a large proportion of cellular ATP, we reasoned that stimuli-activating AMPK may lead to the downregulation of Na,K-ATPase (38). Indeed, AMPK has been reported to inhibit the ion transporters ENaC and cystic fibrosis transmembrane conductance regulator Cl⁻ channel in the mammalian epithelium (18, 19). Furthermore, in a recent study, pharmacological activation of AMPK resulted in a significant decrease of amiloride- and ouabain-sensitive transepithelial Na⁺ transport across H441 cell monolayers (20). We used a specific inhibitor of AMPK and a genetic approach to knock down AMPK function, both of which prevented the CO₂-induced Na,K-ATPase endocytosis (Figure 2, A and B). Importantly,
the overexpression of DN–AMPK-α in the alveolar epithelium prevented the hypercapnia-induced impairment of AFR (Figure 6). Although we cannot exclude that the AMPK-α2 subunit may also participate in the CO₂-induced signaling pathway, it appears that the AMPK-α1 subunit plays a prominent role in the signaling initiated by high pCO₂ levels.

Since we have previously described that the endocytosis of the Na,K-ATPase requires phosphorylation of the Na⁺ pump at Ser18 by PKC-ζ (10, 21), we hypothesized that PKC-ζ might be regulated by AMPK. CO₂ caused time-dependent PKC-ζ activation, which was prevented by pharmacological inhibitors or genetic modulation of AMPK activity (see Figure 3). In contrast, inhibition of PKC-ζ had no effect on AMPK activation upon CO₂ stimulation (Figure 3, E and F). We also found that treatment of ATII cells with AICAR, a chemical activator of AMPK, resulted in PKC-ζ activation (Figure 3B), similar to the effects of high pCO₂ (10, 21). For example, AICAR treatment or overexpression of DN–AMPK-α also resulted in Na,K-ATPase endocytosis in AECs (Figure 2, C and D), suggesting that activation of AMPK is not only necessary for the high CO₂-induced endocytosis of the Na,K-ATPase, but that it is sufficient to downregulate the Na⁺ pump. Collectively, these data suggest that activation of AMPK by CO₂ resulted in downregulation of the Na,K-ATPase via PKC-ζ phosphorylation of the Na⁺ pump. Interestingly, exposure of AECs to hypoxia or thrombin also promotes Na,K-ATPase endocytosis by the action of PKC-ζ (10, 13), and both have been recently proposed as potent activators of AMPK (41, 42). Thus it is possible for AMPK to be the common pathway in response to multiple stimuli that regulate the Na,K-ATPase in the alveolar epithelium.

ROS have been reported to act as intracellular messengers and activate PKC-ζ (10, 43), and recently it has been suggested that CO₂ may interact with ROS (44). However, we did not observe changes in intracellular ROS, nor in the cytosolic or mitochondrial compartments when AECs were exposed to high CO₂ levels. Furthermore, pretreatment of cells with the antioxidant Eukarion 134 had no effect on the CO₂-induced endocytosis of Na,K-ATPase from the plasma membrane. Thus we reason that the CO₂-induced and PKC-ζ-mediated effects on the Na,K-ATPase were independent of ROS, which is distinct from previously reported stimuli that impair Na,K-ATPase function via PKC-ζ phosphorylation in the alveolar epithelium (10, 13, 45).

In mammals, LKB1 and CaMKK-β have been identified as upstream kinases of AMPK, since both kinases can phosphorylate Thr172 and thus activate AMPK (22, 27, 46–49). While phosphorylation of Thr172 by CaMKK-β is independent of AMP levels and is triggered by a rise in intracellular Ca²⁺ (29, 42, 47, 48, 52), we found that exposing AECs to high pCO₂ initiated a rapid and transient influx of Ca²⁺ into the cells (Figure 4A) and that AMPK activation by high CO₂ concentrations was prevented by the intracellular Ca²⁺-chelating agent, BAPTA-AM (Figure 4B), suggesting that the CO₂-induced signaling pathway was dependent upon intracellular Ca²⁺. Since CaMKK-β-mediated stimulation of AMPK required an increase in intracellular Ca²⁺ levels, we hypothesized that CaMKK-β may be the upstream kinase induced by high pCO₂. Indeed, the CaMKK inhibitor STO-609 decreased the baseline AMPK activity and prevented activation of the AMPK upon high CO₂ exposure in ATII cells (Figure 5A).

Moreover, identical experiments performed in human epithelial
The hypercapnia-induced impairment of AFR in rat lung is ameliorated by isoproterenol and 8Br. (A) Isolated rat lungs were perfused for 1 h with 40 mmHg CO₂ in the absence (Ctrl) and then for 1 h in the presence of isoproterenol (1 μM, ISO), after which perfusion was switched to approximately 60 mmHg CO₂ in the continuous presence of isoproterenol, and AFR was measured as described in the supplemental material. Bars represent the mean ± SEM. n = 5. **P < 0.01. (B) Isolated rat lungs were perfused for 1 h with 40 mmHg CO₂ in the absence and then for 1 h in the presence of 8Br (100 μM), after which perfusion was switched to approximately 60 mmHg CO₂ in the continuous presence of 8Br, and AFR was measured as indicated above. Bars represent the mean ± SEM. n = 5. **P < 0.01. (C) Isolated rat lungs were perfused for 1 h with 40 mmHg CO₂ and then perfusion was switched to approximately 60 mmHg CO₂ for 1 h in the absence and then for 1 h in the presence of isoproterenol (1 μM). AFR was measured as described in the supplemental material. Bars represent the mean ± SEM. n = 5. **P < 0.01.

A549 cells, which lack LKB1 (28, 29) but express CaMKK-β, and in ATII cells, which express both kinases, revealed a comparable activation of AMPK by CO₂. Similarly, pretreatment with the CaMKK inhibitor prevented AMPK activation by high CO₂ in A549 cells (Figure 5B), and when these cells were transfected with siRNA to silence CaMKK-β, both baseline and high CO₂-induced activity of AMPK were nearly undetectable (Figure 5D). It has been well established that activation of AMPK is transient in CaMKK-β-mediated responses and returns to baseline levels when the intracellular Ca²⁺ levels fall (42, 47, 53), while AMPK activation via LKB1 (which appears to be constitutively active) is rather sustained (46). Consistent with other CaMKK-β–dependent responses, activation of AMPK by elevated CO₂ levels was also rapid and transient. These data suggest that the high CO₂-induced activation of AMPK was mediated by CaMKK-β independently of LKB1 signaling. Interestingly, the CO₂-sensitive brainstem neurons and glomus cells also adapt to hypercapnia via an increase in [Ca²⁺]i (37, 54, 55), thus it is possible that CaMKK-β and AMPK are also involved in CO₂ sensing in excitable cells.

We present evidence that in AECs, high pCO₂ levels increase the [Ca²⁺]i, which results in activation of CaMKK-β, leading to AMPK activation. The elevation of intracellular Ca²⁺ levels can regulate a broad spectrum of cellular processes through precise spatial and temporal regulation of the Ca²⁺ signal (56–58). There are many examples of different cell types that utilize distinct signaling mechanisms to increase intracellular Ca²⁺ in a stimulus-specific manner (58). For example, in fetal AECs, elevation of intracellular Ca²⁺ by β-adrenergic receptor activation stimulation leads to the activation of the amiloride-sensitive, nonselective cation channel, which contributes to the clearance of lung fluid (59, 60), whereas, as we demonstrate in this manuscript, during hypercapnia, increased [Ca²⁺], activates CaMKK-β and AMPK, leading to Na,K-ATPase downregulation and inhibition of AMPK. These contrasting effects of Ca²⁺ signaling might be attributed to alternative sources of Ca²⁺ and/or the compartmentalized location and strength of the signal. The source of Ca²⁺ in the high pCO₂ response warrants further studies.

An important function of the alveolar epithelium is to maintain optimal gas exchange. Thus to keep the alveoli “dry” and exchange O₂ and CO₂, AECs reabsorb the fluid that moves into the airspaces. This is achieved largely by the activity of ENaC and the Na,K-ATPase, contributing to active Na⁺ transport across the alveolar epithelium (8, 9). We observed that hypercapnia impaired AFR by inhibiting Na,K-ATPase function. Importantly, hypoxia also diminishes AFR by downregulating both ENAC (61, 62) and Na,K-ATPase (10, 63). Thus both hypercapnia and hypoxia, the 2 key components of acute respiratory failure, have deleterious effects on alveolar epithelial function and thereby might impair the resolution of pulmonary edema and thus the recovery of patients with acute lung injury (64). Importantly, both the β-adrenergic agonist isoproterenol and the cAMP analog 8Br ameliorated the deleterious effects of hypercapnia on AFR. Indeed, β-adrenergic receptor agonists and cAMP are emerging as exciting new avenues for the management of patients with acute lung injury (65). These agents have been shown to overcome or prevent the effects of experimental acid-induced lung injury (66), hydrostatic edema (67), ventilator-associated lung injury (68), and hypoxia (11, 61, 62).

We have also performed studies to address the effects of prolonged hypercapnia on alveolar epithelial function, as a prolonged exposure would more accurately mimic clinical situations. We have found that both short- and long-term hypercapnia (at levels similar to those observed in patients with chronic obstructive pulmonary disease and permissive hypercapnia) resulted in comparable alveolar epithelial dysfunction (see Figure 7). These data suggest that hypercapnia may contribute to disease states in patients with increased CO₂ levels.

In summary, we provide evidence that AECs sense elevated CO₂ levels, initiating an intracellular Ca²⁺–dependent signaling pathway that involves the activation of CaMKK-β, AMPK, and PKCζ, triggering the endocytosis of Na,K-ATPase molecules and thus impairing AFR, an essential function of the alveolar epithelium. These results are of particular pathophysiological significance, given that the mammalian alveolar epithelium is the site of CO₂ elimination. Further studies are warranted to elucidate the mechanisms by which the alveolar epithelium is affected by hypercapnia in patients with lung disease.
Methods

Reagents. All cell culture reagents were from Mediatech Inc. 2Na was from GE Healthcare. 1-H-menthol was from PerkinElmer. The myristoylated PKC-ζ peptide inhibitor was from Bioment International. BAPTA-AM was from Sigma-Aldrich. siRNA against CaMKK-β was from Qiagen. Lipo- fectamine RNAiMAX and Opti-MEM I reduced serum medium were from Invitrogen. The inhibitor of CaMKK, STO-609, was from Calbiochem. A monoclonal antibody directed against the Na,K-ATPase α₁ subunit (clone 464.6) and myelin basic protein (MBP) were from Upstate Biotechnology. Antibodies against PKC-ζ, GFP, and LKB1 (Ley37D/G6) were from Santa Cruz Biotechnology Inc. All other primary antibodies were from Cell Signaling. Secondary goat anti-mouse HRP was from Bio-Rad, and goat anti-rabbit HRP was from Cell Signaling. All other chemicals were purchased from Calbiochem.

Animals. Pathogen-free adult male Sprague-Dawley rats were from Harlan. Animals were provided with food and water ad libitum, were maintained on a 12-hour light/12-hour dark cycle and were handled according to NIH guidelines and the Northwestern University Animal Care and Use Committee–approved experimental protocols.

Isolation and culture of AECs. Type II AECs were isolated from the lungs of Sprague-Dawley rats weighing 200–225 g, as previously described (31). The day of isolation and plating was designated culture day 0. All experiments were conducted on days 2 or 3. A549 cells (ATCC, CCL 185) were grown in DMEM supplemented with 10% fetal bovine serum and 100 U/ml penicillin, 100 μg/ml streptomycin. Experiments were performed on subconfluent monolayers of A549 cells. All cells were incubated in a humidified atmosphere of 5% CO₂/95% air at 37°C.

CO₂ and CO₂ exposure. For the different experimental conditions, initial solutions were prepared with DMEM-Ham’s F-12 medium-Tris base (3:1:0.5) containing 10% fetal bovine serum with 100 U/ml penicillin, and 100 μg/ml streptomycin. The buffering capacity of the media was modified by changing its initial pH with Tris base in order to obtain a pH of 7.4 at the various CO₂ levels (pCO₂ of 40, 60, 80, and 120 mmHg). In some experiments, modeling extracellular acidosis, an initial pH of 6.8 was used, resulting in a final pH of 7.2 and a pCO₂ of 40 mmHg. The desired CO₂ and pH levels were achieved by equilibrating the media overnight in a humidified chamber (C-Chamber, Biospherix Ltd.). The C-Chamber’s atmosphere was controlled with a PRO-CO₂ Carbon Dioxide controller (Biospherix). In this chamber, cells were exposed to the desired pCO₂ while maintaining 21% O₂ balanced with N₂. Prior to and after CO₂ exposure, pH, pCO₂, and pO₂ levels in the media were measured using a Stat Profile pHOx blood gas analyzer (Nova Biomedical). Experiments were started by replacing culture media with the CO₂-equilibrated media and incubating in the C-Chamber for the desired time. Normoxic conditions were consistent over the course of all experiments.

Adenoviral infection of ATII cells. Day 2 ATII cells, plated on 60-mm cell culture dishes were incubated with Ad-null (20 or 50 pfu/cell) or with an Ad-DN kinase-dead (K45R) variant of the AMPK-α₁ subunit (Ad-DN-AMPK-α₁; 20 pfu/cell) (70) or with a constitutively active AMPK-ε variant (Ad-CA-AMPK-ε), in which Thr172 was substituted with aspartate in the truncated 1-312 AMPK-α subunit (a generous gift from Kenneth Walsh, Boston University, Boston, Massachusetts, USA; 2, 10, or 50 pfu/cell) (71) or with an adenovirus expressing a DN PKC-ζ (Ad-DN–PKC-ζ; Cell Biolabs) for 2–4 h in 500 μl DMEM. After the 2- to 4-h incubation period, 1.5 ml of DMEM supplemented with 10% fetal bovine serum, 100 U/ml penicillin, and 100 μg/ml streptomycin was added to the cell culture plates, and experiments were performed 24 h later.

Transfection of A549 cells with siRNA. A549 cells were plated in 60-mm cell culture dishes and transfected with 60 pmol siRNA duplex using Lipofectamine RNAiMAX (Invitrogen) as recommended by the manufacturer, and experiments were performed 48 h later. The following siRNA were applied to target CaMKK-β: 5′-CGAUGUCUACUCUGGUGUAAdTdT-3′ and 5′-AACGAGAGUACAGCGCG-3′ (sense and antisense, respectively). As a nonsilencing negative control, 5′-UUCUCGAGUGCGUACGUGdT- dT-3′ (sense) and 5′-ACGGUCAGGUGCGAGAAdTdT-3′ (antisense) were applied (all from Qiagen).

Biotinylation of cell surface proteins. Cells were labeled for 20 min using 1 mg/ml EZ-link NHS-SS-biotin (Pierce Biotechnology), and surface proteins were pulled down with streptavidin-Sepharose beads (Pierce Biochemical), as previously described (10, 72, 73). Proteins were analyzed by SDS-PAGE and Western blot.

Western blot analysis. Protein concentration was quantified by Bradford assay (Bio-Rad), and proteins were resolved in 10%–15% polyacrylamide gels. Thereafter, proteins were transferred to nitrocellulose membranes (Optitran; Schleider & Schuell) using a semi-dry transfer apparatus (Bio-Rad). Incubation with specific antibodies was performed overnight at 4°C. Blots were developed with a chemiluminescence detection kit (Perkin-Elmer), as recommended by the manufacturer. The bands were quantified by densitometric scanning (Image J 1.29X; NIH).

Cell fractionation. Cells were exposed to 40 or 120 mmHg CO₂ at 37°C for 5 min, placed on ice, and washed twice with ice-cold PBS. Cells were scraped in homogenization buffer (1 mM EDTA, 1 mM EGTA, 10 mM Tris-HCl, pH 7.5, 1 μg/ml leupeptin, 100 μg/ml TPCK, and 1 mM PMSF) and homogenized. Homogenates were centrifuged at 500 g to discard nuclei and debris, and the supernatant was centrifuged at 100,000 g for 1 h at 4°C. The pellet containing the crude membrane fraction was resuspended in homogenization buffer supplemented with 1% Triton X-100 and centrifuged at 100,000 g for 30 min at 4°C. The supernatant was designated the 1% Triton X-100–soluble membrane fraction (74).

PKC-ζ kinase assay. PKC-ζ activity was measured as previously described (75). Briefly, cell lysates were obtained after exposure to CO₂ and PKC-ζ was immunoprecipitated by incubating overnight approximately 500 μg protein with 5 μl PKC-ζ antibody (Santa Cruz Biotechnology Inc.). Immuno- complexes were pulled down with 50 μl Protein A/G agarose beads and then washed in lysis buffer. The immunoprecipitates were incubated with 2 μg MBP, 10 μCi [γ-32P]-ATP, 100 μM ATP for 30 min at 30°C in 35 mM Tris, pH 7.5, 10 mM MgCl₂, 5 mM EGTA, 1 mM CaCl₂, and 10 mM β-glycer- olrophosphate. The reactions were stopped by adding SDS sample buffer and boiling the samples. The proteins were separated by SDS-PAGE, and radiolabeled MBP was detected by autoradiography.

Measurement of intracellular Ca²⁺. The ATII cells were loaded with Fura-2/AM (Invitrogen), which was used as a fluorescence indicator of intracellular-free Ca²⁺ levels. Dye loading was performed in the standard buffer solution at pH 7.3 and supplemented with 2 μM Fura-2/AM. Cells were incubated with the dye-loading solution for 30 min at room temperature in the dark and further incubated for 30 min at room temperature to complete deesterification of the dye. Free Ca²⁺ concentrations were measured by digital video microfluorimetry using an intensified CCD camera coupled to the microscope. Fura-2 dye was excited through 340-nm and 380-nm interference filters and further incubated for 30 min at 30°C in 35 mM Tris, pH 7.5, 10 mM MgCl₂, 5 mM EGTA, 1 mM CaCl₂, and 10 mM β-glycerolrophosphate. The reactions were stopped by adding SDS sample buffer and boiling the samples. The proteins were separated by SDS-PAGE, and radiolabeled MBP was detected by autoradiography.
conventional F340/F380 ratio (the ratio of the Fura-2 fluorescence intensities measured at wavelengths of 340 nm and 380 nm).

Adenoviral infection of rats. Rats were anesthetized with 40 mg/kg nembutal i.p. and orally intubated with a 14-gauge plastic catheter prior to adenoviral infection. Three experimental groups were studied: sham-surfaceant (n = 5), Ad-null (n = 5), and Ad-DN–AMPK-ε1 (n = 5). A mixture of adenovirus (4 × 109 PFU) in a 50% surfactant (Forest Laboratories Inc.), 50% dialysis buffer vehicle was administered in 4 aliquots of 250 μL. Rats were rotated 90° between intubations given at 5-min intervals. Immediately after instillation, a forced exhalation was achieved by circumferential compression of the thorax (31). Compression was relinquished after endotracheal instillation of 250 μL of virus/vehicle followed by 500 μL of air. Rats were allowed to recover before extubation. Infected animals were maintained in separate isolator cages for 7 days prior to conducting experiments, as described previously (30, 31).

Long-term exposure of rats to hypercapnia. Pathogen-free male Sprague-Dawley rats (300–325 g) were maintained in a continuously monitored Biospherix A Chamber for 3 or 7 days. The chamber atmosphere was controlled with a ProxOx model C-21 O2/CO2 controller combination (Biospherix) at 10% CO2, 21% O2, with a temperature of 23–26°C and a relative humidity between 40% and 50%, and animals were allowed access to food and water ad libitum. No animals developed appreciable distress and were monitored visually by the investigators 3 times daily (at 8 am, 12 pm, and 7 pm). The arterial pCO2 in the animals exposed to CO2 for 7 days was 74 ± 6 mmHg. All experiments were approved by the Northwestern University Animal Care and Use Committee.

Isolated perfused rat lung model. The isolated lung preparation has been previously described in detail (12). A brief description of this methodology is provided in Supplemental Data. During hypercapnia, pCO2 was 69 ± 4 mmHg, resulting in a pH of 7.26 ± 0.02. The pO2 was constant in all experimental groups (160 ± 4 mmHg).

