Supplementary Figure 1.

Lyssenko et al.

A

PPARG P12A

PA/AA

r=0.62

PP

r=0.57

B

Log AUC ins$_{OGTT}$

Log GIP 120 min (pg/ml)
Supplementary Figure 2.

Lyssenko et al.
Supplementary Figure 1. (A) Correlation between the area under the insulin curve during oral (OGTT) and intravenous (IVGTT) glucose tolerance test according to PPARG P12A polymorphism (Botnia cohort, N=403). (B) Correlation between 2hr GIP (pg/ml) and glucagon (pg/ml) concentrations (Botnia PPP cohort, N=78). Blue lines represent non-risk PA/AA and red lines risk PP genotype carriers of PPARG P12A polymorphism.

Supplementary Figure 2. Acute insulin response to arginine at 28 mmol/l of glucose in carriers of TCF7L2 haplotypes of SNPs rs7903146 and rs1088540: HapA (CCAA and/or CCAG), Hap AB (CTAG) and the two HapB possibilities (CTGG and TTGG) in subjects with IGT/T2D. Bars represent mean ± SE.
Supplementary information.

Supplementary Table 1A. Risk of developing T2D according to TCF7L2 rs7903146 and rs12255372 in the prospective studies.

<table>
<thead>
<tr>
<th>SNP</th>
<th>Genotypes</th>
<th>Converters n (%)</th>
<th>Non-converters n (%)</th>
<th>OR (95%CI) P</th>
<th>Converters n (%)</th>
<th>Non-converters n (%)</th>
<th>OR (95%CI) P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>n (%)</td>
<td>n (%)</td>
<td></td>
<td>n (%)</td>
<td>n (%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Malmoe Prospective study</td>
<td></td>
<td>Botnia Prospective Study</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs7903146</td>
<td>CC</td>
<td>637 (45.9)</td>
<td>3102 (56.2)</td>
<td>1</td>
<td>82 (54.7)</td>
<td>1603 (64.4)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td>634 (45.6)</td>
<td>2051 (37.1)</td>
<td>1.57 (1.37-1.80)</td>
<td>10 x 10^-11</td>
<td>58 (38.7)</td>
<td>796 (32.0)</td>
</tr>
<tr>
<td></td>
<td>TT</td>
<td>118 (8.5)</td>
<td>368 (6.7)</td>
<td>1.47 (1.15-1.89)</td>
<td>0.002</td>
<td>10 (6.7)</td>
<td>92 (3.7)</td>
</tr>
<tr>
<td></td>
<td>CC vs. CT/TT</td>
<td>752 (54.1)</td>
<td>2419 (43.8)</td>
<td>1.58 (1.38-1.81)</td>
<td>5 x 10^-12</td>
<td>68 (45.3)</td>
<td>888 (35.6)</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>870 (31.3)</td>
<td>2787 (25.2)</td>
<td>1.35 (1.23-1.48)</td>
<td>1.4 x 10^-11</td>
<td>78 (26.0)</td>
<td>980 (19.7)</td>
</tr>
<tr>
<td>rs12255372</td>
<td>GG</td>
<td>596 (44.8)</td>
<td>2803 (53.2)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GT</td>
<td>616 (46.2)</td>
<td>2073 (39.4)</td>
<td>1.42 (1.23-1.63)</td>
<td>8.3 x 10^-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TT</td>
<td>120 (9.0)</td>
<td>392 (7.4)</td>
<td>1.44 (1.13-1.84)</td>
<td>0.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GG vs. GT/TT</td>
<td>736 (55.3)</td>
<td>2465 (46.8)</td>
<td>1.42 (1.24-1.62)</td>
<td>2.1 x 10^-7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>856 (32.0)</td>
<td>2857 (27.1)</td>
<td>1.27 (1.16-1.40)</td>
<td>2.7 x 10^-7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Supplementary Table 1B. The combination of alleles of TCF7L2 SNPs rs7903146 and rs1088540 in the Botnia study.

<table>
<thead>
<tr>
<th>rs1088540</th>
<th>rs7903146</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td></td>
</tr>
<tr>
<td>CT</td>
<td></td>
</tr>
<tr>
<td>TT</td>
<td></td>
</tr>
<tr>
<td>GG</td>
<td></td>
</tr>
<tr>
<td>GA</td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>rs7903146</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs1088540</td>
<td>CC</td>
</tr>
<tr>
<td></td>
<td>CT</td>
</tr>
<tr>
<td></td>
<td>TT</td>
</tr>
<tr>
<td>GG</td>
<td>128</td>
</tr>
<tr>
<td>GA</td>
<td>653</td>
</tr>
<tr>
<td>AA</td>
<td>869</td>
</tr>
<tr>
<td>CT</td>
<td>248</td>
</tr>
<tr>
<td>GA</td>
<td>587</td>
</tr>
<tr>
<td>AA</td>
<td>2</td>
</tr>
</tbody>
</table>

The T allele of rs7903146 and G allele of rs1088540 are in almost complete LD ($D' = 0.99$, $r^2 = 1$).

Supplementary Table 1C. Risk of developing T2D according to TCF7L2 SNPs rs7903146 and rs1088540 haplotypes in the Botnia prospective study.

<table>
<thead>
<tr>
<th>Haplotypes</th>
<th>Genotypes</th>
<th>Converters n (%)</th>
<th>Non-converters n (%)</th>
<th>OR (95%CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>HapA</td>
<td>CCAA/CCAG</td>
<td>79 (53.7)</td>
<td>1437 (59.2)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>HapAB</td>
<td>CTAG</td>
<td>35 (23.8)</td>
<td>552 (22.7)</td>
<td>1.22 (0.80-1.86)</td>
<td>0.4</td>
</tr>
<tr>
<td>HapB</td>
<td>CTGG</td>
<td>21 (14.3)</td>
<td>225 (9.3)</td>
<td>1.62 (0.97-2.72)</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>TTGG</td>
<td>10 (6.8)</td>
<td>87 (3.6)</td>
<td>3.02 (1.47-6.18)</td>
<td>0.003</td>
</tr>
<tr>
<td>Neither A nor B</td>
<td>CCGG</td>
<td>2 (1.4)</td>
<td>126 (5.2)</td>
<td>0.30 (0.07-1.24)</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.73 (0.48-1.10)</td>
<td>0.13</td>
</tr>
<tr>
<td>HapA vs others</td>
<td></td>
<td>118 (78.1)</td>
<td>1989 (81.8)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The combination of allele C of SNP rs7903146 and allele A of rs10885406 was designated Hap A, the combination of alleles C or T of rs7903146 and A from rs10885406 Hap AB and combination of T allele of rs7903146 and G allele of rs10885406 as Hap B.
Supplementary Table 2A. Insulin secretion during OGTT according to TCF7L2 rs7903146 genotypes in the Malmo and Botnia prospective studies.

<table>
<thead>
<tr>
<th></th>
<th>Malmo</th>
<th></th>
<th>Botnia</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CC</td>
<td>CT</td>
<td>TT</td>
<td>CT/TT</td>
</tr>
<tr>
<td>Age (yrs)</td>
<td>46.5±5.8 (3739)</td>
<td>46.5±5.8 (2685)</td>
<td>46.0±5.9 (486)</td>
<td>46.4±5.8 (3171)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>24.5±3.5 (3737)</td>
<td>24.5±3.4 (2685)</td>
<td>24.4±3.3 (486)</td>
<td>24.5±3.4 (3170)</td>
</tr>
<tr>
<td>Fasting glucose</td>
<td>4.9±0.5 (3739)</td>
<td>4.9±0.5 (2685)</td>
<td>4.9±0.5 (486)</td>
<td>4.9±0.5 (3171)</td>
</tr>
<tr>
<td>(mmol/l)</td>
<td>24.2</td>
<td>24.5</td>
<td>24.4</td>
<td>24.5</td>
</tr>
<tr>
<td>2hr glucose</td>
<td>5.8±1.5 (2249)</td>
<td>5.8±1.5 (1613)</td>
<td>5.9±1.6 (275)</td>
<td>5.8±1.5 (1888)</td>
</tr>
<tr>
<td>(mmol/l)</td>
<td>24.2</td>
<td>24.5</td>
<td>24.4</td>
<td>24.5</td>
</tr>
<tr>
<td>Insulinogenic index</td>
<td>10.2±5.3 (557)</td>
<td>9.2±5.5 (413)</td>
<td>9.5±4.9 (68)</td>
<td>9.3±5.5 (481)</td>
</tr>
<tr>
<td>(mU/mmol)</td>
<td>24.2</td>
<td>24.5</td>
<td>24.4</td>
<td>24.5</td>
</tr>
<tr>
<td>Disposition index</td>
<td>8.1±6.2 (557)</td>
<td>7.2±5.4 (413)</td>
<td>7.1±6.2 (68)</td>
<td>7.1±5.5 (481)</td>
</tr>
<tr>
<td>(mU/l²)</td>
<td>24.2</td>
<td>24.5</td>
<td>24.4</td>
<td>24.5</td>
</tr>
<tr>
<td>HOMA (mmol · mU/l²)</td>
<td>1.9±1.5 (840)</td>
<td>2.1±2.9 (592)</td>
<td>2.2±2.2 (104)</td>
<td>2.1±2.8 (696)</td>
</tr>
<tr>
<td>Leptin (µg/l)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Men</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Women</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NGT</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Age (yrs)</td>
<td>45.4±5.3 (2863)</td>
<td>45.4±5.2 (2003)</td>
<td>44.9±5.2 (352)</td>
<td>45.3±5.2 (2355)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>24.2±3.3 (2862)</td>
<td>24.2±3.2 (2003)</td>
<td>24.2±3.1 (351)</td>
<td>24.2±3.2 (2354)</td>
</tr>
<tr>
<td>Fasting glucose</td>
<td>4.8±0.4 (2863)</td>
<td>4.8±0.4 (2003)</td>
<td>4.8±0.4 (352)</td>
<td>4.8±0.4 (2355)</td>
</tr>
<tr>
<td>(mmol/l)</td>
<td>24.2</td>
<td>24.5</td>
<td>24.4</td>
<td>24.5</td>
</tr>
<tr>
<td>2hr glucose</td>
<td>5.0±1.0 (1515)</td>
<td>5.0±1.0 (1054)</td>
<td>5.0±1.0 (169)</td>
<td>5.0±1.0 (1223)</td>
</tr>
<tr>
<td>(mmol/l)</td>
<td>24.2</td>
<td>24.5</td>
<td>24.4</td>
<td>24.5</td>
</tr>
<tr>
<td>Insulinogenic index</td>
<td>10.4±5.3 (420)</td>
<td>9.5±5.4 (289)</td>
<td>9.8±4.7 (42)</td>
<td>9.5±5.3 (331)</td>
</tr>
<tr>
<td>(mU/mmol)</td>
<td>24.2</td>
<td>24.5</td>
<td>24.4</td>
<td>24.5</td>
</tr>
<tr>
<td>Disposition index</td>
<td>8.9±6.5 (420)</td>
<td>7.9±5.6 (289)</td>
<td>8.3±7.1 (42)</td>
<td>8.0±5.8 (331)</td>
</tr>
<tr>
<td>(mU/l²)</td>
<td>24.2</td>
<td>24.5</td>
<td>24.4</td>
<td>24.5</td>
</tr>
<tr>
<td>HOMA (mmol · mU/l²)</td>
<td>1.6±1.2 (620)</td>
<td>2.0±3.2 (415)</td>
<td>1.9±1.9 (71)</td>
<td>2.0±3.0 (486)</td>
</tr>
<tr>
<td>Leptin (µg/l)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IFG/IGT</td>
<td>Age (yrs)</td>
<td>BMI (kg/m²)</td>
<td>Fasting glucose (mmol/l)</td>
<td>2hr glucose (mmol/l)</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-------------</td>
<td>--------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>50.3±5.9 (876)</td>
<td>25.4±3.9 (875)</td>
<td>5.2±0.5 (876)</td>
<td>7.3±1.1 (734)</td>
</tr>
<tr>
<td></td>
<td>49.9±6.0 (682)</td>
<td>25.5±3.7 (682)</td>
<td>5.2±0.5 (682)</td>
<td>7.3±1.2 (559)</td>
</tr>
<tr>
<td></td>
<td>48.9±6.4 (134)</td>
<td>24.9±3.8 (134)</td>
<td>5.3±0.5 (134)</td>
<td>7.4±1.3 (106)</td>
</tr>
<tr>
<td></td>
<td>49.7±6.1 (816)</td>
<td>25.4±3.7 (816)</td>
<td>5.2±0.5 (816)</td>
<td>7.3±1.2 (665)</td>
</tr>
<tr>
<td></td>
<td>48.9±12.9 (396)</td>
<td>27.2±4.6 (395)</td>
<td>6.0±0.6 (395)</td>
<td>7.9±1.4 (392)</td>
</tr>
<tr>
<td></td>
<td>49.1±13.1 (231)</td>
<td>27.5±4.1 (228)</td>
<td>6.0±0.6 (229)</td>
<td>8.1±1.4 (222)</td>
</tr>
<tr>
<td></td>
<td>48.0±15.0 (29)</td>
<td>25.6±4.2 (29)</td>
<td>5.9±0.7 (29)</td>
<td>8.2±1.6 (29)</td>
</tr>
<tr>
<td></td>
<td>49.0±13.3 (26)</td>
<td>27.3±4.2 (257)</td>
<td>6.0±0.6 (258)</td>
<td>8.1±1.4 (251)</td>
</tr>
</tbody>
</table>

*P=0.002 between CC, CT and TT; and P=0.0006 between CC vs. CT/TT
bP=0.02 between CC, CT and TT; and P=0.005 between CC vs. CT/TT
cP=0.02 between CC, CT and TT; and P=0.006 between CC vs. CT/TT
dP=0.02 between CC vs. CT/TT
eP=0.004 between CC, CT and TT
fP=0.006 between CC, CT and TT; and P=0.002 between CC vs. CT/TT
gP=1.9x10⁻⁵ between CC, CT and TT; and P=2.6x10⁻⁵ between CC vs. CT/TT
hP=0.02 between CC, CT and TT
iP=0.005 between CC, CT and TT; and P=0.006 between CC vs. CT/TT
jP=0.006 between CC, CT and TT; and P=0.004 between CC vs. CT/TT
kP=0.02 between CC, CT and TT; and P=0.009 between CC vs. CT/TT
lP=0.006 between CC, CT and TT; and P=0.03 between CC vs. CT/TT
Supplementary Table 2B. Insulin secretion during OGTT according to TCF7L2 haplotypes of rs7903146 and rs10885406 in the Botnia prospective study at baseline.

<table>
<thead>
<tr>
<th></th>
<th>HapA</th>
<th>HapAB</th>
<th>HapB</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (yrs)</td>
<td>45.1±13.6 (1453)</td>
<td>44.9±13.8 (555)</td>
<td>45.9±14.0 (330)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>25.7±4.2 (1449)</td>
<td>25.8±3.7 (553)</td>
<td>25.5±4.2 (326)</td>
</tr>
<tr>
<td>Fasting P-glucose (mmol/l)</td>
<td>5.5±0.6 (1453)</td>
<td>5.6±0.6 (555)</td>
<td>5.6±0.6 (330)</td>
</tr>
<tr>
<td>2hr P-glucose (mmol/l)</td>
<td>6.1±1.5 (1413)</td>
<td>6.3±1.5 (536)</td>
<td>6.4±1.6 (323)</td>
</tr>
<tr>
<td>Insulinogenic index (mU/mmol)</td>
<td>5.4±4.3 (1395)</td>
<td>5.0±3.9 (527)</td>
<td>5.2±3.9 (315)</td>
</tr>
<tr>
<td>Disposition index (mU²/l²)</td>
<td>4.8±3.7 (1395)</td>
<td>4.4±3.6 (527)</td>
<td>4.6±3.6 (315)</td>
</tr>
<tr>
<td>HOMA (mmol · mU/l²)</td>
<td>1.3±1.0 (1453)</td>
<td>1.3±0.8 (555)</td>
<td>1.4±1.0 (330)</td>
</tr>
<tr>
<td>Leptin (µg/l)</td>
<td>Men: 4.7±3.1 (285)</td>
<td>5.3±3.9 (136)</td>
<td>5.6±3.4 (53)</td>
</tr>
<tr>
<td></td>
<td>Women: 15.8±10.1 (318)</td>
<td>18.0±12.4 (103)</td>
<td>17.0±12.7 (74)</td>
</tr>
<tr>
<td>NGT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (yrs)</td>
<td>43.6±13.7 (1107)</td>
<td>43.6±13.9 (405)</td>
<td>44.2±14.1 (240)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>25.2±3.9 (1103)</td>
<td>25.2±3.5 (403)</td>
<td>24.9±3.7 (236)</td>
</tr>
<tr>
<td>Fasting P-glucose (mmol/l)</td>
<td>5.4±0.5 (1107)</td>
<td>5.4±0.5 (405)</td>
<td>5.4±0.5 (240)</td>
</tr>
<tr>
<td>2hr P-glucose (mmol/l)</td>
<td>5.6±1.0 (1069)</td>
<td>5.7±1.0 (389)</td>
<td>5.7±1.0 (233)</td>
</tr>
<tr>
<td>Insulinogenic index (mU/mmol)</td>
<td>5.3±4.2 (1058)</td>
<td>5.0±4.0 (383)</td>
<td>5.3±3.9 (228)</td>
</tr>
<tr>
<td>Disposition index (mU²/l²)</td>
<td>5.2±3.8 (1058)</td>
<td>4.8±3.9 (383)</td>
<td>5.2±3.8 (228)</td>
</tr>
<tr>
<td>HOMA (mmol · mU/l²)</td>
<td>1.2±0.7 (1107)</td>
<td>1.2±0.6 (405)</td>
<td>1.2±0.9 (240)</td>
</tr>
<tr>
<td>Leptin (µg/l)</td>
<td>Men: 4.4±3.2 (199)</td>
<td>4.5±2.6 (90)</td>
<td>5.5±3.7 (38)</td>
</tr>
<tr>
<td></td>
<td>Women: 14.0±7.7 (232)</td>
<td>16.3±10.5 (75)</td>
<td>15.1±9.4 (52)</td>
</tr>
<tr>
<td>IFG/IGT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (yrs)</td>
<td>49.9±12.3 (346)</td>
<td>48.4±13.1 (150)</td>
<td>50.6±12.8 (90)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>27.2±4.6 (346)</td>
<td>27.2±3.8 (150)</td>
<td>27.2±4.8 (90)</td>
</tr>
<tr>
<td>Fasting P-glucose (mmol/l)</td>
<td>6.0±0.6 (346)</td>
<td>6.0±0.6 (150)</td>
<td>6.0±0.6 (90)</td>
</tr>
<tr>
<td>2hr P-glucose (mmol/l)</td>
<td>7.9±1.4 (344)</td>
<td>8.0±1.3 (147)</td>
<td>8.3±1.5 (90)</td>
</tr>
<tr>
<td>Insulinogenic index (mU/mmol)</td>
<td>5.6±4.5 (337)</td>
<td>4.9±3.7 (144)</td>
<td>4.7±4.1 (87)</td>
</tr>
<tr>
<td>Disposition index (mU²/l²)</td>
<td>3.5±3.1 (337)</td>
<td>3.3±2.3 (144)</td>
<td>3.0±2.2 (87)</td>
</tr>
<tr>
<td>HOMA (mmol · mU/l²)</td>
<td>1.9±1.4 (346)</td>
<td>1.7±1.1 (150)</td>
<td>1.9±1.3 (90)</td>
</tr>
<tr>
<td>Leptin (µg/l)</td>
<td>Men: 5.4±2.6 (69)</td>
<td>7.0±5.2 (46)</td>
<td>5.7±2.7 (15)</td>
</tr>
<tr>
<td></td>
<td>Women: 20.6±13.7 (86)</td>
<td>22.7±15.7 (28)</td>
<td>21.6±17.7 (22)</td>
</tr>
</tbody>
</table>
Data are mean ± SD.
Hap A=allele C of rs7903146 and allele A of rs10885406
Hap AB=alleles C or T of rs7903146 and allele A of rs10885406
Hap B= T allele of rs7903146 and G allele of rs10885406
a \(P < 0.04 \) between HapA, HapAB and HapB
b \(P = 0.0004 \) between HapA, HapAB and HapB
c \(P = 0.04 \) HapA vs. HapB
Supplementary Table 3. Insulin secretion during glucose arginine stimulation test according to TCF7L2 rs7903146 genotypes and haplotypes of SNPs rs7903146 and rs10885406.

<table>
<thead>
<tr>
<th></th>
<th>rs7903146</th>
<th>Haplotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NGT</td>
<td>HapA</td>
</tr>
<tr>
<td>Age (yrs)</td>
<td>63.1 ± 7.3</td>
<td>61.5 ± 8.7</td>
</tr>
<tr>
<td></td>
<td>(51)</td>
<td>(28)</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>27.1 ± 3.6</td>
<td>24.9 ± 3.7</td>
</tr>
<tr>
<td></td>
<td>(51)</td>
<td>(28)</td>
</tr>
<tr>
<td>E8G basal</td>
<td>5.4 ± 0.5</td>
<td>5.3 ± 0.7</td>
</tr>
<tr>
<td>(mU/l)</td>
<td>(51)</td>
<td>(29)</td>
</tr>
<tr>
<td>AIR (mmol/l)</td>
<td>36.3 ± 19.1</td>
<td>33.1 ± 16.3</td>
</tr>
<tr>
<td></td>
<td>(47)</td>
<td>(23)</td>
</tr>
<tr>
<td>**AIR2 (mmol/l)</td>
<td>110.9 ± 67.0</td>
<td>106.4 ± 55.6</td>
</tr>
<tr>
<td></td>
<td>(47)</td>
<td>(23)</td>
</tr>
<tr>
<td>**AIR3 (mmol/l)</td>
<td>148.0 ± 81.1</td>
<td>136.7 ± 75.1</td>
</tr>
<tr>
<td></td>
<td>(47)</td>
<td>(23)</td>
</tr>
<tr>
<td>E8G basal</td>
<td>2.8 ± 0.3</td>
<td>2.7 ± 0.3</td>
</tr>
<tr>
<td>(mg.lbm⁻¹.min⁻¹)</td>
<td>(25)</td>
<td>(13)</td>
</tr>
<tr>
<td>AIR (mmol/l)</td>
<td>5.3 ± 2.3</td>
<td>6.3 ± 2.3</td>
</tr>
<tr>
<td></td>
<td>(35)</td>
<td>(18)</td>
</tr>
</tbody>
</table>

Data mean ± SD.

Hap A = allele C of rs7903146 and allele A of rs10885406
Hap AB = alleles C or T of rs7903146 and allele A of rs10885406
Hap B = T allele of rs7903146 and G allele of rs10885406

*P<0.05 between CC, CT/TT carriers; and for comparison between HapA, HapAB and HapB

*P<0.01 between CC, CT/TT carriers
Supplementary Table 4. Estimates of incretin effect from insulin response to OGTT and IVGTT according to TCF7L2 rs7903146 genotypes and haplotypes in the Botnia study.

<table>
<thead>
<tr>
<th>rs7903146 Haplotypes</th>
<th>CC</th>
<th>CT</th>
<th>TT</th>
<th>CT/TT</th>
<th>HapA</th>
<th>HapAB</th>
<th>HapB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (yrs)</td>
<td>45.6±12.6 (373)</td>
<td>47.6±12.8 (211)</td>
<td>48.0±14.1 (23)</td>
<td>47.7±12.9 (234)</td>
<td>45.5±12.5 (342)</td>
<td>46.8±13.9 (142)</td>
<td>49.2±11.4 (83)</td>
</tr>
<tr>
<td>BMI</td>
<td>25.8±3.8 (373)</td>
<td>26.1±4.0 (211)</td>
<td>25.3±3.4 (23)</td>
<td>26.0±3.9 (234)</td>
<td>25.8±3.8 (342)</td>
<td>26.0±4.0 (142)</td>
<td>25.8±3.5 (83)</td>
</tr>
<tr>
<td>Fasting glucose (mmol/l)</td>
<td>5.4±0.7 (374)</td>
<td>5.5±0.6 (211)</td>
<td>5.4±0.5 (23)</td>
<td>5.5±0.6 (234)</td>
<td>5.4±0.7 (342)</td>
<td>5.6±0.6 (142)</td>
<td>5.4±0.6 (83)</td>
</tr>
<tr>
<td>2-hr glucose (mmol/l)</td>
<td>6.0±1.7 (373)</td>
<td>6.0±1.6 (210)</td>
<td>6.2±1.5 (23)</td>
<td>6.0±1.6 (233)</td>
<td>6.0±1.6 (343)</td>
<td>6.1±1.6 (141)</td>
<td>5.9±1.6 (83)</td>
</tr>
<tr>
<td>Incretin effect</td>
<td>47.6±7.3292.6 (364)</td>
<td>5989.8±3997.6 (206)</td>
<td>5006.6±2099.7 (23)</td>
<td>5609.2±3855.6 (229)</td>
<td>5577.7±3241.7 (335)</td>
<td>6113.6±4304.9 (137)</td>
<td>5102.9±2619.6 (83)</td>
</tr>
<tr>
<td>BMI</td>
<td>1068.4±707.0 (251)</td>
<td>1146.5±774.7 (145)</td>
<td>921.0±381.8 (16)</td>
<td>1124.1±747.3 (161)</td>
<td>1061.9±707.2 (228)</td>
<td>1169.4±777.7 (95)</td>
<td>1010.2±657.0 (60)</td>
</tr>
<tr>
<td>Fasting glucose (mmol/l)</td>
<td>6.1±3.1 (245)</td>
<td>5.5±2.4 (142)</td>
<td>5.2±1.5 (16)</td>
<td>5.5±2.3 (158)</td>
<td>6.2±3.2 (223)</td>
<td>5.5±2.2 (92)</td>
<td>5.6±2.5 (60)</td>
</tr>
<tr>
<td>Incretin effect</td>
<td>79.7±9.8 (245)</td>
<td>78.8±8.3 (142)</td>
<td>78.8±7.0 (16)</td>
<td>78.8±8.1 (158)</td>
<td>79.9±8.8 (223)</td>
<td>79.0±8.1 (92)</td>
<td>78.7±8.6 (60)</td>
</tr>
</tbody>
</table>

Normoglycemia (FPG <5.4 mmol/l)

Age (yrs)	43.7±12.6 (189)	47.2±12.4 (91)	47.9±16.0 (10)	47.3±12.7 (101)	43.7±12.5 (175)	46.0±13.1 (61)	49.4±12.4 (38)
BMI	25.2±3.4 (189)	25.1±3.9 (91)	25.2±2.9 (10)	25.1±3.8 (101)	25.2±3.4 (175)	25.3±4.1 (61)	24.6±3.3 (38)
Fasting glucose (mmol/l)	4.9±0.3 (190)	5.0±0.3 (91)	5.0±0.3 (10)	5.0±0.3 (101)	4.9±0.3 (176)	5.0±0.3 (61)	4.9±0.3 (38)
Incretin effect	1517.0±3259.6 (185)	5611.6±4709.2 (88)	5444.7±2282.5 (10)	5594.6±4514.0 (98)	5149.3±3257.7 (172)	6143.4±5572.9 (58)	4799.8±2076.4 (38)
BMI	1115.7±788.8 (109)	1038.4±891.2 (55)	814.6±292.4 (6)	1016.4±852.4 (61)	1112.3±796.1 (99)	1189.0±1043.9 (36)	756.3±346.2 (24)
Fasting glucose (mmol/l)	5.5±2.9 (108)	6.0±3.0 (54)	5.3±1.1 (6)	5.9±2.8 (60)	5.6±3.0 (98)	5.6±2.6 (35)	6.4±3.2 (24)
Incretin effect	77.3±10.4 (108)	79.6±8.9 (54)	80.4±4.2 (6)	79.7±8.5 (60)	77.3±10.7 (98)	78.7±8.3 (35)	80.9±8.9 (24)

Hyperglycemia (FPG >5.4 mmol/l)

Age (yrs)	47.6±12.3 (184)	47.9±13.2 (120)	48.1±13.0 (13)	47.9±13.1 (133)	47.5±12.2 (167)	47.3±14.6 (80)	49.1±10.7 (45)
BMI	26.4±4.0 (184)	26.9±3.8 (120)	25.4±3.9 (13)	26.7±3.9 (133)	26.5±4.1 (167)	26.6±3.9 (80)	26.7±3.5 (45)
Fasting glucose (mmol/l)	6.0±0.4 (184)	5.9±0.4 (120)	5.7±0.3 (13)	5.9±0.4 (133)	6.0±0.4 (167)	6.0±0.5 (80)	5.8±0.4 (45)
2-hr glucose (mmol/l)	6.6±1.6 (183)	6.3±1.6 (120)	6.8±1.5 (13)	6.4±1.6 (133)	6.6±1.6 (167)	6.6±1.6 (80)	6.3±1.5 (45)
Incretin effect	6023.0±3274.8 (179)	6112.9±3376.6 (118)	4±669.6±1972.8 (13)	5969.7±3287.6 (131)	6029.8±3172.2 (163)	6113.8±3114.7 (78)	5359.0±3002.8 (45)
BMI	1032.2±637.6 (142)	1212.6±691.1 (90)	984.9±428.2 (10)	1189.8±671.3 (100)	1023.2±631.1 (129)	1163.5±570.8 (58)	1179.5±758.4 (36)
Fasting glucose (mmol/l)	6.7±3.2 (137)	5.3±2.0 (88)	5.1±1.7 (10)	5.2±1.9 (98)	6.7±3.2 (125)	5.4±2.0 (56)	5.0±1.8 (36)
Incretin effect	81.5±8.9 (137)	78.4±7.9 (88)	77.8±8.4 (10)	78.3±7.9 (98)	81.8±8.6 (125)	79.1±8.0 (56)	77.3±8.2 (36)
Data mean ± SD. Fasting glycemia was based upon median of fasting p-glucose (FPG) = 5.4 mmol/l. Incretin effect = \(100\% \times \frac{\text{AUC}_{\text{ins OGGT}} - \text{AUC}_{\text{ins IVGTT}}}{\text{AUC}_{\text{ins OGGT}}}\).

\[\text{aP=0.04 between CC, CT and TT carriers and P=0.01 for CC vs CT/TT carriers}\]
\[\text{bP=0.0004 between CC, CT and TT carriers and P=8.8e-05 for CC vs CT/TT carriers}\]
\[\text{cP=0.01 between CC, CT and TT carriers and P=0.003 for CC vs CT/TT carriers}\]
\[\text{dP=0.03 between HapA, HapAB and HapB}\]
\[\text{eP=0.02 between HapA, HapAB and HapB; P=0.002 for HapA vs HapB}\]
\[\text{fP=0.03 between HapA, HapAB and HapB}\]
\[\text{gP=0.0003 between HapA, HapAB and HapB; P=0.001 for HapA vs HapB}\]
\[\text{hP=0.004 between HapA, HapAB and HapB; P=0.005 for HapA vs HapB}\]
Supplementary Table 5. Glucagon and GIP concentrations during OGTT according to TCF7L2 rs7903146 from the Botnia study.

<table>
<thead>
<tr>
<th></th>
<th>CC</th>
<th>CT</th>
<th>TT</th>
<th>CT/TT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>148</td>
<td>137</td>
<td>21</td>
<td>158</td>
</tr>
<tr>
<td>Age (yrs)</td>
<td>52.8 ± 11.7</td>
<td>53.3 ± 10.3</td>
<td>53.2 ± 9.9</td>
<td>53.3 ± 10.2</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>26.7 ± 3.9</td>
<td>26.3 ± 3.6</td>
<td>27.6 ± 5.9</td>
<td>26.4 ± 4.0</td>
</tr>
<tr>
<td>Fasting glucose (mmol/l)</td>
<td>5.1 ± 0.5</td>
<td>5.2 ± 0.6</td>
<td>5.0 ± 0.4</td>
<td>5.2 ± 0.5</td>
</tr>
<tr>
<td>2 hr glucose (mmol/l)</td>
<td>4.9 ± 1.2</td>
<td>4.8 ± 1.2</td>
<td>5.0 ± 1.2</td>
<td>4.8 ± 1.2</td>
</tr>
<tr>
<td>HOMA (mmol · mU/l²)</td>
<td>1.6 ± 1.7</td>
<td>1.3 ± 0.7</td>
<td>1.3 ± 0.8</td>
<td>1.3 ± 0.8</td>
</tr>
<tr>
<td>Fasting glucagon (pg/ml)</td>
<td>80.0 ± 24.8</td>
<td>79.1 ± 29.6</td>
<td>73.6 ± 35.0</td>
<td>78.4 ± 30.3</td>
</tr>
<tr>
<td>2 hr glucagon (pg/ml)</td>
<td>74.0 ± 23.3</td>
<td>72.8 ± 27.3</td>
<td>71.7 ± 24.1</td>
<td>72.7 ± 26.8</td>
</tr>
<tr>
<td>Fasting GIP (pg/ml)</td>
<td>34.0 ± 3.8 (28)</td>
<td>42.6 ± 5.1 (29)</td>
<td>35.1 ± 3.0 (21)</td>
<td>39.5 ± 3.3 (50)</td>
</tr>
<tr>
<td>2hr GIP (pg/ml)</td>
<td>172.4 ± 12.2 (28)</td>
<td>179.4 ± 19.1 (29)</td>
<td>225.8 ± 19.6 (21)</td>
<td>198.9 ± 14.0 (50)</td>
</tr>
</tbody>
</table>

Data mean ± SD.
Supplementary Table 6. Univariate correlations between *TCF7L2* and insulin gene mRNA as well as (total) amount of insulin and glucagon secretion in human islets.

<table>
<thead>
<tr>
<th></th>
<th>TCF7L2 gene expression (p-value;N)</th>
<th>Insulin gene expression (p-value;N)</th>
<th>Glucagon (p-value;N)</th>
<th>Insulin (p-value;N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCF7L2 gene</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>expression</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulin gene</td>
<td>0.76 (0.001;15)</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>expression</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucagon</td>
<td>0 (1;13)</td>
<td>0.18 (0.55;13)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Insulin</td>
<td>0.26 (0.4;12)</td>
<td>-0.14 (0.67;12)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SI</td>
<td>-0.63 (0.02;13)</td>
<td>-0.35 (0.24;13)</td>
<td>0.10 (0.70;15)</td>
<td>-0.48 (0.08;14)</td>
</tr>
</tbody>
</table>

SI = Stimulation Index estimates glucose-stimulated insulin release after normalization for total insulin content.