Congenital myasthenias (CMs) arise from defects in neuromuscular junction–associated proteins. Deciphering the molecular bases of the CMs is required for therapy and illuminates structure-function relationships in these proteins. Here, we analyze the effects of a mutation in 1 of 4 homologous subunits in the AChR from a CM patient, a Leu to Pro mutation at position 42 of the δ subunit. The mutation is located in a region of contact between subunits required for rapid opening of the AChR channel and impedes the rate of channel opening. Substitutions of Gly, Lys, or Asp for δL42, or substitutions of Pro along the local protein chain, also slowed channel opening. Substitution of Pro for Leu in the ε subunit slowed opening, whereas this substitution had no effect in the β subunit and actually sped opening in the α subunit. Analyses of energetic coupling between residues at the subunit interface showed that δL42 is functionally linked to αT127, a key residue in the adjacent α subunit required for rapid channel opening. Thus, δL42 is part of an intersubunit network that enables ACh binding to rapidly open the AChR channel, which may be compromised in patients with CM.
Congenital myasthenia–related AChR δ subunit mutation interferes with intersubunit communication essential for channel gating

Xin-Ming Shen,1 Taku Fukuda,1 Kinji Ohno,1 Steven M. Sine,2 and Andrew G. Engel1

1Muscle Research Laboratory, Department of Neurology, 2Receptor Biology Laboratory, Department of Physiology and Biomedical Engineering, and Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA.

Congenital myasthenias (CMs) are inherited disorders caused by defects in neuromuscular junction–associated proteins (1). These include choline acetyltransferase (2); the collagenic tail subunit of endplate (EP) acetylcholinesterase (AChE) (3, 4); the AChR (5); the cytoplasmic protein rapsyn, which concentrates AChR at the crests of the junctional folds (6); the muscle-specific receptor tyrosine kinase (MuSK) (7), which activates rapsyn; the muscle-intrinsic protein neuromuscular junctional AChE (8); and the muscle-specific subunit containing the AChR from a CM patient (9). The authors have declared that no conflict of interest exists.

Introduction
Congenital myasthenias (CMs) are inherited disorders caused by defects in neuromuscular junction–associated proteins (1). These include choline acetyltransferase (2); the collagenic tail subunit of endplate (EP) acetylcholinesterase (AChE) (3, 4); the AChR (5); the cytoplasmic protein rapsyn, which concentrates AChR at the crests of the junctional folds (6); the muscle-specific receptor tyrosine kinase (MuSK) (7), which activates rapsyn; the muscle-intrinsic protein neuromuscular junctional AChE (8); and the muscle-specific subunit containing the AChR from a CM patient (9). The authors have declared that no conflict of interest exists.

Nonstandard abbreviations used: α-βδε, α-bungarotoxin; CM, congenital myasthenia; EP, endplate; EPP, EP potential; MEPC, miniature EP current; MEPP, miniature EP potential; Popen, channel open probability.

Conflict of interest: The authors have declared that no conflict of interest exists.

Characteristics of CM syndrome patient. A 20-year-old woman had moderately severe to severe myasthenic symptoms since birth, no anti-AChR antibodies, and a 34%–71% decremental response of the compound muscle action potential on repetitive stimulation of motor nerves at 2 Hz. She responded poorly to pyridostigmine alone but improved markedly after the addition of 3,4-diaminopyridine. A similarly affected sibling died at age 11 months.

While substantial evidence shows that this intrasubunit transition zone couples agonist binding with channel opening (reviewed in refs. 13, 14), less is known about how the 2 α subunits interact with adjacent subunits to enable channel opening. A recent study, however, demonstrated a functional linkage essential for channel opening between Y127 in the α subunits and A41 in the δ subunit and the equivalent A39 in the ε subunit (15). Whether other residues of the δ and ε subunits contribute to the intersubunit link is not known, and to date no naturally occurring mutations have been detected in any intersubunit link of the AChR.

We here trace the cause of CM to 2 heteroallelic mutations in genes encoding the AChR δ subunit, δI58K and δL42P. We find that δI58K prevents expression of the AChR on the cell surface, whereas δL42P permits expression but causes abnormally brief channel openings, thus determining the phenotype. We show that the principal effect of δL42P is to reduce the rate of opening of the AChR channel, reducing its gating efficiency. Although the other AChR subunits contain Leu at positions equivalent to δL42, substitution of Pro for the equivalent Leu in the δ subunit augments rather than impedes channel gating, whereas substitution in the β subunit has no effect, demonstrating that δL42 contributes to channel gating in a subunit-specific manner. Finally, we show that the functional consequences of δL42P depend on αY127 of the juxtaposed α subunit, indicating that the mutation hinders an intersubunit interaction essential for efficient gating.

Results
Characteristics of CM syndrome patient. A 20-year-old woman had moderately severe to severe myasthenic symptoms since birth, no anti-AChR antibodies, and a 34%–71% decremental response of the compound muscle action potential on repetitive stimulation of motor nerves at 2 Hz. She responded poorly to pyridostigmine alone but improved markedly after the addition of 3,4-diaminopyridine. A similarly affected sibling died at age 11 months.
for AChR, detected with peroxidase-labeled muscle fibers, was abnormal, with numerous small EP regions distributed over a 2- to 4-fold increased span of the muscle fiber surface (Figure 2), in contrast to the typical pretzel-shaped distribution. The reaction for AChR, detected in cryostat sections with rhodamine-labeled -bgt sites per EP was decreased to 16% of normal (Table 2). In vitro microelectrode studies of intercostal muscle EPs showed that quantal release by nerve impulse was normal. The miniature EP potential (MEPP) and current (MEPC) amplitudes were reduced to 6% and 10% of normal, respectively (Table 2).

Mutation analysis. To determine the molecular basis of the phenotypic abnormalities, we sequenced each AChR subunit gene. This revealed 3 heterozygous mutations in the δ subunit gene CHRND: 125T→C, predicting a Leu to Pro mutation at codon 42 (δL42P) in the β1 strand of the subunit; 173T→A, predicting an Ile to Lys mutation at codon 58 (δI58K) in the β3 strand; and 277G→C, predicting a Val to Leu mutation at codon 93 (δV93L) in the β4 strand (Figure 4A). δL42 and δV93L are conserved across AChR δ subunits of different species; I58 is conserved in δ subunits of mammals and in human ε and γ subunits (Figure 3A). None of the mutations was present in 200 normal alleles of 100 unrelated subjects. Family analysis indicated that each mutation was recessive; the paternal allele harbored δI58K and δV93L; the maternal allele harbored δL42P (Figure 4B).

Expression studies in HEK cells. To assess pathogenicity of the observed mutations, we engineered each mutation into the human δ subunit and cotransfected cDNAs encoding either mutant or wild-type δ subunits with complimentary wild-type α, β, and ε subunits in HEK cells. To assess expression of the AChR on the cell surface, we measured binding of [125I]-bgt to intact cells (Figure 5). Compared with the wild-type AChR, expression was slightly enhanced by δV93L but was reduced to 37% by δL42P and to 5% by δI58K. We also omitted the δ subunit cDNA from the transfection and measured α-bgt binding. The resulting δ-omitted receptors (αβε) yielded 5% of the wild-type binding capacity, indicating δI58K was a null mutation (Figure 5A). Surface expression of the double mutant δI58K+V93L AChR was similar to that of the δI58K AChR, indicating δV93L did not mitigate the effects of δI58K (Figure 5A).

To gain further insight into why δI58K prevents AChR expression, we monitored the ability of the mutant δ subunit to form a complex with the wild-type α subunit. Compared with the total toxin-binding capacity of the wild-type αδ dimer expressed in HEK cells, the capacity of cells expressing the mutant dimer was reduced to 15%. This reduced capacity was similar to that obtained for HEK cells expressing only the wild-type α subunit (Figure 5B), indicating that δI58K either prevents association of the α and δ subunits, an early step in assembly of the pentameric receptor (16), or that the δ subunit harboring δI58K is not expressed.

Activation kinetics of the δL42P mutant. The safety margin of neuromuscular transmission depends crucially on the ability of nerve-released ACh to rapidly and efficiently activate AChR channels. To determine whether δL42P or δV93L affect the kinetics of AChR activation, we recorded single channel currents elicited by a limit-
ing low concentration of ACh (50 nM) from HEK cells expressing wild-type or mutant AChRs (Figure 6). The resulting channel openings appeared either as isolated openings or as several openings in quick succession, called bursts, the durations of which provide an indirect measure of the rate of decay of the postsynaptic current. After constructing duration histograms of the bursts and fitting sums of exponentials to them, we found 2 components of bursts for the δL42P AChR and 3 components for the wild-type AChR (Figure 6). For the δL42P AChR, the mean duration of the longest component of bursts was 0.76 ms, much briefer than the corresponding value of 3.3 ms for the wild-type AChR, while that for the δV93L AChR was mildly prolonged (Table 3). Because δL58K is a null mutation and δV93L is not pathogenic, δL42P determined the phenotype, which resulted from a change in one or more elementary steps in the activation process.

To identify elementary kinetic steps in AChR activation altered by the δL42P mutant, we recorded single-channel currents over a range of ACh concentrations and constructed histograms of the resulting open and closed dwell times (see Methods). For both wild-type and δL42P AChRs, the closed-duration histograms exhibited several exponential components that shifted from long to brief durations, with increasing ACh concentrations (Figure 7, A and B). However, for the δL42P AChR, the shift toward brief closed durations was significantly less, and at a saturating concentration of ACh, closed durations remained prolonged. For both AChRs, the ACh-dependent shift toward brief closed durations is a hallmark of a process driven by binding of ACh. However, for the δL42P AChR, the prolonged closed durations at a saturating concentration of ACh indicated a significant slowing of the final isomerization step that opened the channel. Open-duration histograms changed little across the range of ACh concentrations but were uniformly briefer for the δL42P mutant than for the wild-type AChR, indicating that the mutation destabilized the open state.

To quantify changes in elementary rate constants underlying activation of the δL42P AChR, we fitted a scheme (Figure 8) to the single-channel closed and open dwell times elicited by the entire range of ACh concentrations displayed in Figure 7. This scheme depicts AChR activation as the reversible binding of 2 molecules of agonist to the AChR in the resting, closed state, followed by reversible formation of the open state. At high concentrations, ACh blocks the open channel to form a nonconducting blocked state.

For both wild-type and mutant δL42P AChRs, probability density functions computed from the fitted rate constants describe the dwell time distributions for the entire range of ACh concentrations. The analysis provides estimates of rate constants for ACh association and dissociation and opening and closing of the channel (Table 4). The most significant effects of δL42P were an 8-fold decrease of the channel opening rate constant and a 1.4-fold increase of the channel closing rate constant; the ratio of the 2 rate constants gives the diliganded channel gating equilibrium constant \(\theta_2 \), which decreases 12.5-fold, indicating reduced gating efficiency.

Rate constants underlying ACh association and dissociation were modestly affected by the mutation, with rate constants for ACh dissociation (\(k_1 \) and \(k_2 \)) slowed, suggesting modest enhancement of ACh affinity. Although the estimate of \(k_1 \) was well defined, the estimate of \(k_2 \) showed a larger error, preventing a concrete conclusion regarding a change in ACh affinity.

The fitted rate constants in Table 4 allow calculation of the channel open probability (\(P_{open} \)) as a function of ACh concentration. For the δL42P receptor, the \(P_{open} \) increased more gradually and plateaued at a lower ACh concentration than for the wild-type AChR (Figure 7C). The fitted rate constants in Table 4 can be used to predict the mean duration of bursts according to \((1 + \beta_2 / k_2) / \theta_2 \); this yields a value of 0.7 ms, which agrees closely with the independently determined burst duration of 0.76 ms recorded in presence of 50 nM ACh (Table 3). The decrease of the burst duration predicts an abnormally fast decay of synaptic currents typical of the fast-channel myasthenic syndrome (1).

The fitted rate constants also predict the probability that a diliganded channel will open following an impulse of nerve-released ACh according to \(\beta_2 / (\beta_2 + k_2) \), which returns a value of 0.84 for the wild-type AChR and 0.53 for the δL42P AChR, predicting a reduced peak of the synaptic response.

To summarize, patch-clamp analyses of the kinetic properties of the δL42P AChR revealed reduced gating efficiency, abnormally

Table 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Patient</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nerve terminal area ((\mu m^2))</td>
<td>3.28 ± 0.40 (27)</td>
<td>3.88 ± 0.39 (63)</td>
</tr>
<tr>
<td>Postsynaptic area ((\mu m^2))</td>
<td>6.13 ± 0.42 (27)</td>
<td>10.60 ± 0.79 (39)</td>
</tr>
<tr>
<td>Normalized postsynaptic membrane length ((\mu m/\mu m^2))</td>
<td>4.07 ± 0.20 (27)</td>
<td>5.83 ± 0.25 (47)</td>
</tr>
<tr>
<td>Normalized AChR-reactive membrane lengthc</td>
<td>1.00 ± 0.138 (16)</td>
<td>3.01 ± 0.11 (85)</td>
</tr>
</tbody>
</table>

Values indicate mean ± SEM; numbers in parentheses represent number of EP regions. More than one region can occur at an EP. *\(k_1 \) < 0.001. †Calculated as postsynaptic membrane length divided by postsynaptic area. ‡Calculated as AChR-reactive postsynaptic membrane length (\(\mu m \)) divided by length of primary synaptic cleft (\(\mu m \)).
brief channel opening events, and a decreased probability that the channel will open in response to nerve-released ACh.

Other substitutions of δL42. δL42P introduces a Pro residue in the lower third of its constituent β1 strand (Figure 1). The β1 strand is part of an antiparallel β sheet stabilized by interstrand hydrogen bonds, and introduction of a Pro prevents formation of 1 interstrand hydrogen bond. To determine whether the mutation effects were Pro-specific, and thus the result of removal of a hydrogen bond, we replaced the Leu in δ codon 42 by a small and flexible Gly and the oppositely charged residues Lys and Asp (all 3 mutations enable formation of interstrand hydrogen bonds). For each mutation, bursts of channel openings were abnormally brief (Table 3), and the channel gating equilibrium constant was decreased 12- to 25-fold, mainly due to decrease of the channel opening rate constant β2 (Table 4). Thus, the attenuated gating by δL42P was not Pro specific and not due to removal of a hydrogen bond stabilizing the local β sheet; instead, the decrease of channel gating likely stemmed from a local structural disturbance at the δ/α subunit interface, or in the hydrophobic core of the δ subunit, or both.

Pro substitution of residues aligning with δL42 in other subunits. To determine whether the effects of δL42P are subunit specific, we mutated the corresponding Leu to Pro in the ε, α, and β subunits and recorded single-channel currents elicited by a range of ACh concentrations. Mutation of the ε subunit decreased the mean duration of the major long component of bursts by approximately 50% (Figure 6 and Table 3), reduced P-open to a lesser extent than mutation of the δ subunit (Figure 7C), and attenuated the channel gating equilibrium constant 4-fold (Table 4). Mutation of the β subunit had a minor effect on mean burst duration (Table 3) but had no effect on P-open (Figure 7C) or on the channel gating equilibrium constant (Table 4). In striking contrast, mutation of the α subunit prolonged the mean duration of the longest component of bursts approximately 4 fold (Figure 6 and Table 3). The overall results indicate that although Leu is conserved and present at positions equivalent to δL42 in the other 3 subunits, the functional contributions of Leu depend on the subunit.

Pro mutations of residues adjacent to δL42. To determine whether the effects of the δL42P mutation were specific to its position in the local β strand, we performed Pro scanning mutagenesis of 2 residues upstream and 2 residues downstream of δL42. We found that each mutation significantly reduced the mean duration of the major long component of bursts, showing the greatest decrease

Table 2
In vitro microelectrode and α-bgt binding studies

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Patient</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>mA</td>
<td>32 ± 5 (17)</td>
<td>31 ± 1 (190)</td>
</tr>
<tr>
<td>MEPP amplitude (mV)</td>
<td>0.067 ± 0.011 (17)</td>
<td>1.00 ± 0.025 (165)</td>
</tr>
<tr>
<td>MEPC amplitude (nA)</td>
<td>0.44 ± 0.064 (11)</td>
<td>3.95 ± 0.10 (79)</td>
</tr>
<tr>
<td>[125I]α-bgt binding sites/EP</td>
<td>2.06 × 10^6</td>
<td>12.82 ± 0.79 × 10^6 (13)</td>
</tr>
</tbody>
</table>

Values indicate mean ± SEM. Measurements were taken at 29 ± 0.5°C for MEPP and EPP recordings and at 22 ± 0.5°C for MEPC recordings. Numbers in parenthesis indicate number of subjects for [125I]α-bgt binding sites/EP and number of EPs for other measurements. mA is the quantal content of the EPP at 1 Hz stimulation corrected for resting membrane potential of –80 mV, nonlinear summation, and non-Poisson release. Estimated by dividing the corrected EPP amplitude by m and correcting for a fiber diameter of 50 μm. Estimated by dividing the EP current amplitude by m.

Figure 4
Mutation analysis. (A) Multiple sequence alignments of the β1, β2, and β4 strands of AChR subunits. L42 is conserved in all human AChR subunits and in δ subunits of all species. Note the δL42P, δI58K, and δV93L in the β1, β2, and β4 strands, respectively. (B) Family analysis. The parents and 2 sisters (all heterozygous for δL42P; half-shaded symbols) of the proposita (closed circle; arrow) were asymptomatic.
with δN41P (Table 3). Thus, over a span of 4 consecutive residues within the lower β1 strand of the δ subunit, substitution of Pro attenuates receptor activation.

Mutant cycle analysis. The δL42P mutation is located near the region of contact between the α and δ subunits (Figure 9A), suggesting that the mutation may alter intersubunit communication essential for rapid channel gating. In fact, a recent study showed that residues in this region, αY127 in the 2 α subunits and δN41 and εN39 in the opposing δ and ε subunits, are required for rapid channel gating, and further, that the functional contributions of each residue depend on the partner residue (15). This residue interdependence was quantified in terms of free energy of interresidue coupling using the method of mutant cycle analysis (See Methods and refs. 17, 18). The presence of δL42P adjacent to δN41 suggests that the patient mutation impedes channel opening by disrupting intersubunit communication mediated by δN41 and αY127. Thus, to determine whether the functional consequences of δL42P depend on αY127 we used mutant cycle analysis. To generate the mutant cycle, we measured the diliganded channel gating equilibrium constant, θn, for each receptor species, computed the free energy of gating according to \(-RT\ln θn\) (where R is the gas constant and T is the absolute temperature), and generated a 2-dimensional mutant cycle composed of gating free energies for wild-type, δL42P/εL40P, αY127T, and δL42T/εL40P (Figure 9B). For this mutant cycle, the interresidue coupling free energy of 3.9 kcal/mol exceeded the thermal free energy (RT, 0.58 kcal/mol), and approached the value of 5.8 kcal/mol obtained for the previously described mutant cycle composed of the mutations αY127T, δN41A, and εN39A. The observation of a large interresidue coupling energy alone does not necessarily mean the residues under analysis couple through direct contact. In fact, δL42 does not directly contact αY127, but rather the adjacent residue, δN41, does. Thus, δL42P likely alters the local protein backbone so that interaction between δN41 and αY127 is weakened.

To further examine the structural origin of the large coupling free energy, we cast 3 more 2-dimensional mutant cycles (Figure 9, C–E). The mutant cycles δY127/δL42P (Figure 9C) and αY127/εL40P (Figure 9D) exhibited approximately equal coupling free energies of 2.2 and 1.6 kcal/mol, respectively. Thus, at both the α–δ and α–ε subunit interfaces, these residue pairs were required for rapid channel gating; the sum of coupling energies for the 2 cycles was 3.8 kcal/mol, which approached the coupling energy for the overall cycle encompassing residues at both binding sites, indicating that the 2 subunit interfaces contribute independently to

Table 3

<table>
<thead>
<tr>
<th>AChR</th>
<th>τ1 (α)</th>
<th>τ2 (δ)</th>
<th>τ3 (ε)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type</td>
<td>0.04 ± 0.002 (0.24 ± 0.02)</td>
<td>0.47 ± 0.06 (0.21 ± 0.03)</td>
<td>3.31 ± 0.12 (0.58 ± 0.04)</td>
</tr>
<tr>
<td>δL42P</td>
<td>0.18 ± 0.04 (0.69 ± 0.02)</td>
<td>0.76 ± 0.23 (0.31 ± 0.02)</td>
<td>4.83 ± 0.44 (0.52 ± 0.07)</td>
</tr>
<tr>
<td>δV93L</td>
<td>0.12 ± 0.04 (0.14 ± 0.02)</td>
<td>1.41 ± 0.30 (0.4 ± 0.05)</td>
<td>2.27 ± 0.08 (0.21 ± 0.03)</td>
</tr>
<tr>
<td>δL42G</td>
<td>0.07 ± 0.01 (0.55 ± 0.06)</td>
<td>0.38 ± 0.02 (0.42 ± 0.08)</td>
<td>3.31 ± 0.03 (0.27 ± 0.04)</td>
</tr>
<tr>
<td>δL42D</td>
<td>0.16 ± 0.02 (0.73 ± 0.04)</td>
<td>0.63 ± 0.31 (0.27 ± 0.04)</td>
<td>2.05 ± 0.54 (0.24 ± 0.02)</td>
</tr>
<tr>
<td>δL42K</td>
<td>0.08 ± 0.01 (0.56 ± 0.03)</td>
<td>0.43 ± 0.02 (0.44 ± 0.03)</td>
<td>12.98 ± 0.90 (0.36 ± 0.06)</td>
</tr>
<tr>
<td>εL40P</td>
<td>0.06 ± 0.01 (0.31 ± 0.03)</td>
<td>0.23 ± 0.04 (0.59 ± 0.03)</td>
<td>1.71 ± 0.14 (0.1 ± 0.01)</td>
</tr>
<tr>
<td>βL40P</td>
<td>0.48 ± 0.10 (0.50 ± 0.10)</td>
<td>2.27 ± 0.08 (0.50 ± 0.10)</td>
<td>1.67 ± 0.58 (0.41 ± 0.05)</td>
</tr>
<tr>
<td>αL40P</td>
<td>0.11 ± 0.03 (0.22 ± 0.07)</td>
<td>12.98 ± 0.90 (0.36 ± 0.06)</td>
<td>2.05 ± 0.54 (0.15 ± 0.03)</td>
</tr>
</tbody>
</table>

Twenty-one patches for wild-type, 5 for δV93L, 4 for βL40P and αL40P, multiple combined patches for δS40P, and 3 patches for all other AChRs were analyzed. Values indicate means ± SEM. τ1 and α indicate time constants and fractional histogram areas. ACh = 50 nM; membrane potential = –80 mV; bandwidth = 11.7 kHz. A–C Not detected at 3, 2, and 1 patches, respectively.
rapid and efficient channel gating. The mutant cycle δL42P/εL40P revealed a low coupling energy of 0.7 kcal/mol, indicating δL42P and εL40P are independent in contributing to gating (Figure 9E). Thus, although δL42P and εL40P are independent, their contributions to channel gating depend on the juxtaposed αY127 of the neighboring α subunit.

Discussion

We identify 3 mutations in the AChR δ subunit from a patient with moderately severe to severe myasthenic symptoms since birth. One mutation, δV93L has no appreciable kinetic effects and allows for robust AChR expression in HEK cells. The second mutation on the same allele, δI58K, prevents expression of the AChR.
of ACh is reduced by approximately 60% relative to that at normal EPs. The amplitude of the synaptic response is additionally curtailed by reduced expression of the δL42P AChR and by the simplified junctional folds that decrease the input resistance of the post-synaptic membrane (19). Thus, the safety margin of neuromuscular transmission is compromised by the combined effects of EP AChR deficiency, altered EP geometry, reduced opening probability of the available AChRs, and abnormally fast decay of the synaptic current.

We also find that the consequences of δL42P are not Pro specific because substitution with oppositely charged Asp and Lys residues, or with the small and flexible Gly residue, has similar kinetic effects. Pro substitutions along the local protein chain (δN41, δI43, and δS44) mimic the effects of δL42P, indicating that a span of at least 4 residues in the β1 strand of the δ subunit is critical for maintaining rapid and efficient gating. Mutation of residues that align with δL42 in the ε, β, and α subunits impede, fail to alter, or enhance gating. Therefore, the effects of the mutation are subunit specific. Finally, using mutant cycle analysis, we show that δL42 and εL40 contribute to an intersubunit linkage required for rapid and efficient channel gating. The δL42P patient mutation likely causes a local structural perturbation that alters the intersubunit linkage of the adjacent δN41 with the juxtaposed εY127.

Although the identified Leu in the β1 strand is conserved at equivalent positions of the α, β, ε, and δ subunits, their contributions to AChR activation are subunit specific and have different functional consequences. These differences, in turn, may owe to the presence of different residues in the vicinity of the equivalent Leu residues in the different subunits. L42 in the δ subunit and

Table 4

<table>
<thead>
<tr>
<th>AChR</th>
<th>k_{r1}</th>
<th>k_{r-1}</th>
<th>K_{d1}μM</th>
<th>K_{d2}μM</th>
<th>β_1</th>
<th>α_1</th>
<th>β_2</th>
<th>α_2</th>
<th>k_{r3}</th>
<th>k_{r4}</th>
<th>K_{d} μM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type</td>
<td>98 ± 7</td>
<td>1,817 ± 185</td>
<td>19 ± 2</td>
<td>86 ± 186</td>
<td>10,449 ± 16</td>
<td>121 ± 2</td>
<td>191 ± 16</td>
<td>3,052 ± 276</td>
<td>0.06</td>
<td>56,290 ± 1,500</td>
<td>2,223 ± 6</td>
</tr>
<tr>
<td>δL42P</td>
<td>193 ± 51</td>
<td>139 ± 66</td>
<td>0.7 ± 362</td>
<td>96 ± 37</td>
<td>6,070 ± 334</td>
<td>2,214 ± 37</td>
<td>6,919 ± 37</td>
<td>0.06</td>
<td>6,770 ± 146</td>
<td>3,015 ± 37</td>
<td>2 ± 6</td>
</tr>
<tr>
<td>δL42G</td>
<td>101 ± 29</td>
<td>115 ± 48</td>
<td>1 ± 502</td>
<td>5 ± 12</td>
<td>10,525 ± 760</td>
<td>0.01</td>
<td>4,740 ± 85</td>
<td>11,150 ± 39</td>
<td>7</td>
<td>58,090 ± 4,340</td>
<td></td>
</tr>
<tr>
<td>δL42D</td>
<td>80 ± 16</td>
<td>20 ± 8</td>
<td>0.3 ± 336</td>
<td>4 ± 6</td>
<td>9,990 ± 538</td>
<td>0.01 ± 11</td>
<td>5,820 ± 118</td>
<td>3,140 ± 30</td>
<td>2 ± 3</td>
<td>144,440 ± 5,250</td>
<td></td>
</tr>
<tr>
<td>δL64</td>
<td>671 ± 63</td>
<td>4,540 ± 641</td>
<td>7 ± 18</td>
<td>293 ± 670</td>
<td>13,390 ± 727</td>
<td>0.08</td>
<td>13,080 ± 312</td>
<td>6,065 ± 113</td>
<td>2 ± 1</td>
<td>71,280 ± 8,190</td>
<td></td>
</tr>
<tr>
<td>εL40P</td>
<td>199 ± 32</td>
<td>595 ± 162</td>
<td>3 ± 434</td>
<td>5 ± 24</td>
<td>8,520 ± 182</td>
<td>0.06</td>
<td>6,815 ± 235</td>
<td>3,510 ± 21</td>
<td>6 ± 3</td>
<td>114,670 ± 8,850</td>
<td></td>
</tr>
<tr>
<td>βL40P</td>
<td>229 ± 33</td>
<td>1,313 ± 207</td>
<td>6 ± 7</td>
<td>159 ± 754</td>
<td>21,710 ± 1,200</td>
<td>0.01</td>
<td>28,240 ± 1,200</td>
<td>11,066 ± 50</td>
<td>26 ± 2</td>
<td>103,260 ± 7,670</td>
<td></td>
</tr>
<tr>
<td>αY127T</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>182 ± 2</td>
<td>3,568 ± 46</td>
<td>0.05 ± 1</td>
</tr>
<tr>
<td>αY127T + δL42P</td>
<td>150 ± 39</td>
<td>1,182 ± 393</td>
<td>8 ± 22</td>
<td>195 ± 1,330</td>
<td>12,160 ± 779</td>
<td>0.003</td>
<td>13,674 ± 23</td>
<td>7,540 ± 74</td>
<td>0.16 ± 1</td>
<td>67,221 ± 4,129</td>
<td></td>
</tr>
<tr>
<td>αY127T + εL40P</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>50 ± 9</td>
<td>4,900 ± 348</td>
<td>98 ± 4</td>
<td>10,050 ± 20</td>
<td>0.01</td>
<td>707 ± 20</td>
<td>3,735 ± 51</td>
<td>0.19 ± 2</td>
</tr>
<tr>
<td>δL42P + εL40P</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>368 ± 38</td>
<td>1,225 ± 141</td>
<td>3 ± 11</td>
<td>10,240 ± 11</td>
<td>5,965 ± 53</td>
<td>0.15 ± 1</td>
<td>61,360 ± 5,850</td>
<td></td>
</tr>
<tr>
<td>αY127T + δL42P + εL40P</td>
<td>82 ± 8</td>
<td>189 ± 56</td>
<td>2 ± 55</td>
<td>368 ± 1,710</td>
<td>12,060 ± 45</td>
<td>0.22</td>
<td>8,460 ± 104</td>
<td>45,990 ± 33</td>
<td>2 ± 1</td>
<td>76,890 ± 8,050</td>
<td></td>
</tr>
</tbody>
</table>

Rate constants are in μM/s for association rate constants and U/s for all others. The dissociation constants, K_r, and K_d are the ratios of k_{-r}/k_r. The channel gating equilibrium constants, θ_1 and θ_2, are the ratios of the opening to closing rate constants, β_r/α_r and β_r/α_r, respectively.
L40 in the ε subunit are each adjacent to the key Asn residue that spans the subunit interface (see Figure 9A) and mediates intersubunit interactions with αY127 that are essential for rapid and efficient channel gating (15). None of the other subunit interfaces contain a Tyr/Asn linkage, suggesting the lower β1 strands of the α, δ, and ε subunits contribute uniquely to channel gating.

To our knowledge, before the current study, it was not known whether residues at equivalent positions at the 3 subunit interfaces not involved in ligand binding contribute to channel gating. However, by examining the equivalent Leu residue in the α subunit, we find that the non-ligand binding interfaces between the α and ε subunits and between the α and β subunits contribute to channel gating, but in a novel manner; the mutation εL40P enhances rather than attenuates channel gating. Thus, residue differences at these non-ligand binding interfaces emerge as candidates for intersubunit linkages required for channel gating and await further investigation.

Methods

Muscle specimens. Intercostal muscle specimens were obtained intact from origin to insertion from patient and control subjects without muscle disease undergoing thoracic surgery. All human studies were in accordance with the guidelines of, and were approved by, the Institutional Review Board of the Mayo Clinic. Each patient provided informed consent to participate in the study.

AChR and ACh were detected in cryostat sections by 2-color fluorescence (20). EPs were localized for EM and analyzed by the established methods (21). Peroxidase-labeled α-bgt was used for the ultrastructural localization of AChR (22). The number of AChRs per EP was measured with [125I]α-bgt (23).

Electrophysiology of muscle specimens. Recordings of EP potentials (EPPs) and EP currents (EPCs) and estimates of the number of transmitter quanta released by nerve impulse were performed as described elsewhere (23, 24), except that the amplitude of the MEPPs and MEPCs were estimated from the quantal components of the EPP and EPC, respectively (25).

Mutation analysis. We directly sequenced AChR α, β, δ, and ε subunit genes using genomic DNA. The mutations were traced with allele-specific PCR in family members and in 200 normal alleles of 100 unrelated controls.

Construction and expression of wild-type and mutant AChRs. Sources of human α, β, ε, and δ subunit cDNAs were as previously described (26). All 4 cDNAs were subcloned into the CMV-based expression vector pRBG4 for expression in HEK 293 cells (26). The artificial mutations were engineered into wild-type AChR subunit cDNAs in pRBG4 using the QuikChange Site-Directed Mutagenesis Kit (Stratagene). The presence of each mutation and absence of unwanted mutations was confirmed by sequencing the entire inserts. HEK cells were transfected with plasmids comprised of pRBG4-α, -β, -δ, and -ε, and pEGFP-N1 in a ratio of 2:1:1:1:1, using FuGENE6 transfection reagent (Roche). α-bgt binding measurements. The total number of [125I]α-bgt sites on the surface of transfected HEK cells were determined as described elsewhere (26).

Patch-clamp recordings and single-channel kinetic analysis. Recordings were obtained in the cell-attached configuration at a membrane potential of −80 mV at 22°C and with bath and pipette solutions containing (in mM): KCl, 142; NaCl, 5.4; CaCl2, 1.8; MgCl2, 1.7; HEPES, 10, pH 7.4 (26). Single-channel currents were recorded using an Axopatch 200A amplifier (Axon Instruments) at a bandwidth of 50 kHz, digitized at 5-μs intervals using a
ACh concentrations were fitted simultaneously. Data were obtained over a range of Ach concentrations from 10 to 300 μM for wild-type and εγ1277/εL40P AChR, from 100 to 1,000 μM for εγ1277/εL40P AChR, and from 3 to 1,000 μM for other AChRs; 1,562–11,250 (mean, 4,800) events were analyzed for each ACh concentration. The final set of rate constants was checked by superimposing probability density functions calculated from the rate constants on the experimental dwell time histograms and by the ability of the rate constants to predict burst length at low ACh concentrations (32, 33).

\[\Delta G = -RT \ln \left(\frac{\Delta \theta^0}{\theta} \right) \]

\[\Delta \theta^0 = \frac{\Delta G_{X+} - \Delta G_{XY} + \Delta G_{X} + \Delta G_{Y}}{2} \]

\[\Delta \theta = \frac{\Delta G_{X+} - \Delta G_{XY} - \Delta G_{X} - \Delta G_{Y}}{2} - \ln \left(\frac{\theta(X)}{\theta(Y)} \right) \]

\[\theta \text{ is the measured channel gating equilibrium constant for wild-type (W) and mutant (X, Y) AChRs.} \]

Received for publication November 19, 2007, and accepted in revised form February 13, 2008.

Address correspondence to: Andrew G. Engel, Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA. Phone: (507) 284-5102; Fax: (507) 284-5831; E-mail: age@mayo.edu.

Taku Fukuda’s present address is: First Department of Internal Medicine, Nagasaki University Hospital, Nagasaki, Japan.

Kinji Ohno’s present address is: Department of Neurogenetics, Nagoya University Graduate School of Medicine, Nagoya, Japan.

syndromes. II. A syndrome attributed to abnormal interaction of acetylcholine with its receptor. Muscle Nerve. 16:1293–1301.