Successful embryo implantation requires complex interactions between the uterus and embryo, including the establishment of maternal immunologic tolerance of fetal material. The maternal-fetal interface is dynamically populated by a wide variety of innate immune cells; however, the relevance of uterine DCs (uDCs) within the decidua to the success of implantation has remained unclear. In this issue of the *JCI*, Plaks et al. show, in a transgenic mouse model, that uDCs are essential for pregnancy, as their ablation results in a failure of decidualization, impaired implantation, and embryonic resorption (see the related article beginning on page 3954). Depletion of uDCs altered decidual angiogenesis, suggesting that uDCs contribute to successful implantation via their effects on decidual tissue remodeling, including angiogenesis, and independent of their anticipated role in the establishment of maternal-fetal tolerance.
Successful embryo implantation requires complex interactions between the uterus and embryo, including the establishment of maternal immunologic tolerance of fetal material. The maternal-fetal interface is dynamically populated by a wide variety of innate immune cells; however, the relevance of uterine DCs (uDCs) within the decidua to the success of implantation has remained unclear. In this issue of the JCI, Plaks et al. show, in a transgenic mouse model, that uDCs are essential for pregnancy, as their ablation results in a failure of decidualization, impaired implantation, and embryonic resorption (see the related article, doi:10.1172/JCI36682). Depletion of uDCs altered decidual angiogenesis, suggesting that uDCs contribute to successful implantation via their effects on decidual tissue remodeling, including angiogenesis, and independent of their anticipated role in the establishment of maternal-fetal tolerance.

Placental viviparity, a mode of reproduction during which nutrients are supplied to the embryo directly from the mother via the placenta, poses a number of challenges. The first is the requirement for coordinated development of maternal and fetal tissue, while the second, in mammals, demands maternal immunologic tolerance of the fetus, which expresses foreign transplantation antigens. This latter requirement poses a significant immunological challenge, because mechanisms of graft rejection need to be suppressed so as to avoid fetal loss, while at the same time, an adequate defense against pathogens must be maintained. Original proposals regarding how this balance is achieved suggested that the fetus is immunologically inert (1). But this contention was soon shown to be incorrect, and it is now appreciated that pregnancy involves complex immune regulation so as to prevent cytotoxic T cells from responding to fetal antigens, while simultaneously maintaining immunity at the maternal-fetal interface (1). In fact, early observations that the uterine environment is rich in hematopoietic growth factors/cytokines (whose expression in many cases is regulated by the ovarian sex steroid hormones 17β-estradiol and progesterone), coupled with the observation of the dynamic recruitment of diverse innate immune cells, led to the proposal that these immune cells play an important role in decidual and placental development (2, 3). Among the earliest growth factors expressed in the uterus are GM-CSF and CSF-1, which regulate the myeloid system blocks decidualization (4, 5). Levels of CSF-1 synthesized by the uterine epithelium are elevated at the time of implantation and continue to climb dramatically throughout the process of placentation (4). CSF-1 has been found in all mammalian species tested (3), and this growth factor is the major regulator of the mononuclear phagocytic lineage and controls macrophage proliferation, migration, viability, and function as well as having a significant role in DC development (6). Macrophages and DCs both accumulate after implantation around the decidua and in the uterus throughout pregnancy (7, 8). These antigen-presenting cells could be detrimental if they were to present fetal antigens to T cells, so the prevailing view is that these antigen-presenting cells are trophic and/or tolerogenic (9).

Ablation of uterine DCs blocks decidualization

The study by Plaks et al. (7) in this issue of the JCI reports that uterine DCs (uDCs) are

Uterine DCs are essential for pregnancy

Jeffrey W. Pollard

Department of Developmental and Molecular Biology, Department of Obstetrics and Gynecology and Women's Health, Center for the Study of Reproductive Biology and Women's Health, Albert Einstein College of Medicine, New York, New York, USA.
required for successful embryo implantation and decidualization in mice (Figure 1). The authors used a suicide gene ablation approach to specifically delete uDCs during embryo implantation in these animals. As part of this approach, the human diphtheria toxin receptor (DTR) was expressed from the CD11c promoter, which made cells expressing the receptor uniquely sensitive to diphtheria toxin (DT); mice do not have the DTR and are thereby resistant to DT. Since CD11c is restricted to DCs, these cells were rapidly ablated with little to no ablation of other hematologic cells. The ablation of uDCs during implantation resulted in a failure of decidualization and embryo resorption. This effect was specific to the uterus and did not involve the embryo, since uDC ablation also blocked decidualization in an artificially induced model of decidualization in the absence of the embryo. Furthermore, this was a local effect and not secondary to a systemic effect, as administration of DT to one uterine horn resulted in retarded decidualization, while the contralateral control horn was unaffected. In addition, uDC ablation resulted in failed decidualization in both allogeneic and syngeneic pregnancies. These data indicate that uDCs are essential to implantation and decidualization, and this requirement did not have an immunological component, but rather represented trophic activities of uDCs.

Decidual angiogenesis is regulated by uDCs

These studies raise the question, By what mechanisms do DCs affect decidualization? One of the earliest events in the decidual response is an increase in vascular permeability, induced by the rapid expression of the angiogenic factor VEGF upon embryo attachment to a suitably hormone-primed uterus. This is in fact the basis for the earliest test of implantation, called blue spotting, which is the result of extravasation of i.v. administered pontamine blue dye at these sites of vascular permeability immediately below the attached blastocyst. After this increase in vascular permeability, there is rapid decidual cell proliferation and decidual transformation of the underlying stroma, giving rise to epithelioid-type cells that surround the invading blastocyst. These cells form the primary decidual zone, which is in turn surrounded by a diploid secondary decidual zone (Figure 1). After the decidua is formed, there is extensive vascularization via sprouting of the uterine artery at the mesometrial side (site of future placenta), which results in the formation of very dilated vessels and the bathing of the implantation nodule with maternal blood. Using sophisticated dynamic macromolecular contrast-enhanced MRI-assisted studies following partial uDC ablation that allowed some decidual response compared with controls, Plaks et al. show that these early vascular events were significantly perturbed following uDC ablation (7). Indeed, the data suggest that uDC depletion delayed the angiogenic response, increased vascular permeability, and inhibited blood vessel maturation.

In mice, uDCs are restricted to the outer decidual zones (Figure 1) and are often found associated with blood vessels, consistent with a role in angiogenesis. Taking a
The development of the mesometrial decidua (16, 17). IL-15, expressed later, regulates the maturation of uNK cells that remodel the spiral arteries and are involved in placental angiogenesis, even though these cells are not essential for pregnancy, at least in mice (13, 18, 19). The current study by Plaks et al. identifies uDCs as another essential cell type in pregnancy by showing that they are necessary for decidual formation, in part through their effects on vascularization but also probably other actions directly on decidual cells. These trophic roles for recruited hematopoietic cells in decidual and placental development further reinforce the view that a major role of migratory hematopoietic cells of the innate immune system is in tissue development and these trophic functions are often sequestered in pathological contexts such as cancer (20).

Given these profound effects of uDC ablation on decidual angiogenesis (7), it is possible that perturbations in normal uDC activity could reduce the fitness of the fetus, for example in such conditions as preeclampsia, a major cause of low fetal birth weight as well as maternal and fetal morbidity in women. This condition is thought to result from limited trophoblastic invasion and poor decidual and placental vascularization and to be initiated early in fetal development. Indeed, ratios of circulating angiogenic and antiangiogenic factors are predictive of the onset of preeclampsia, with the serum concentration of sFLT1 being an important determining factor that predicts the preeclamptic condition (21). The new data reported in the study by Plaks et al. (7) indicating that uDCs are a major contributor to sFLT1 synthesis at the uteroplacental interface will now focus further research on the function of these cells and their possible involvement in the etiology of preeclampsia.

Acknowledgments
The author is the Louis Goldstein Swan Chair in Women’s Cancer Research, and his research is supported by NIH grants HD30820, HD050614, CA131270, and CA100324 and by a grant to the Cancer Center from the National Cancer Institute (P30-13330).

Address correspondence to: Jeffrey W. Pollard, Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Chanin 607, Bronx, New York 10461, USA. Phone: (718) 430-2090; Fax: (718) 430-8972; E-mail: pollard@aecom.yu.edu.
Tumor metabolism: cancer cells give and take lactate

Gregg L. Semenza

Vascular Program, Institute for Cell Engineering, Departments of Pediatrics, Medicine, Oncology, and Radiation Oncology, and McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

Tumors contain well-oxygenated (aerobic) and poorly oxygenated (hypoxic) regions, which were thought to utilize glucose for oxidative and glycolytic metabolism, respectively. In this issue of the JCI, Sonveaux et al. show that human cancer cells cultured under hypoxic conditions convert glucose to lactate and extrude it, whereas aerobic cancer cells take up lactate via monocarboxylate transporter 1 (MCT1) and utilize it for oxidative phosphorylation (see the related article, doi:10.1172/JCI36843). When MCT1 is inhibited, aerobic cancer cells take up glucose rather than lactate, and hypoxic cancer cells die due to glucose deprivation. Treatment of tumor-bearing mice with an inhibitor of MCT1 retarded tumor growth. MCT1 expression was detected exclusively in nonhypoxic regions of human cancer biopsy samples, and in combination, these data suggest that MCT1 inhibition holds potential as a novel cancer therapy.

The pioneering work of Peter Vaupel and his colleagues established that the partial pressure of oxygen (pO2) within human cancers is frequently much lower than that of the surrounding normal tissue and that intratumoral hypoxia is associated with an increased risk of local spread, metastasis, and patient mortality (1). Rakesh Jain’s laboratory demonstrated that in mouse tumor xenografts, the mean pO2 and pH declined as distance from the nearest blood vessel increased (2), reflecting the switch from oxidative to glycolytic metabolism that occurs in response to reduced O2 availability. This metabolic reprogramming is orchestrated by HIF-1 through the transcriptional activation of key genes encoding metabolic enzymes, including: LDHA, encoding lactate dehydrogenase A, which converts pyruvate to lactate (3); PDK1, encoding pyruvate dehydrogenase kinase 1, which inactivates the enzyme responsible for conversion of pyruvate to acetyl-CoA, thereby shunting pyruvate away from the mitochondria (4, 5); and BNIP3, which encodes a member of the BCL2 family that triggers selective mitochondrial autophagy (6) (Figure 1). In addition, HIF-1 transactivates GLUT1 (7) — which encodes a glucose transporter that increases glucose uptake to compensate for the fact that, compared with oxidative phosphorylation, glycolysis generates approximately 19-fold less ATP per mole of glucose — and genes encoding the glycolytic enzymes that convert glucose to pyruvate (3). The extracellular acidsosis associated with hypoxic tumor cells is due to both increased H+ production and increased H+ efflux through the HIF-1–mediated transactivation of: CA9, which encodes carbonic anhydrase IX (8); MCT4, which encodes monocarboxylate transporter 4 (9); and NHE1, which encodes sodium-hydrogen exchanger 1 (10).

Metabolic symbiosis

In this issue of the JCI, the elegant article by Sonveaux, Dewhirst, et al. makes a major contribution to the field of cancer biology (11).