An important interplay exists between specific viral respiratory infections and altered airway responsiveness in the development and exacerbations of asthma. However, the mechanistic basis of this interplay remains to be identified. This study addressed the hypothesis that rhinovirus (RV), the most common viral respiratory pathogen associated with acute asthma attacks, directly affects airway smooth muscle (ASM) to produce proasthmatic changes in receptor-coupled ASM responsiveness. Isolated rabbit and human ASM tissue and cultured ASM cells were inoculated with human RV (serotype 16) or adenovirus, each for 6 or 24 h. In contrast to adenovirus, which had no effect, inoculation of ASM tissue with RV induced heightened ASM tissue constrictor responsiveness to acetylcholine and attenuated the dose-dependent relaxation of ASM to beta-adrenoceptor stimulation with isoproterenol. These RV-induced changes in ASM responsiveness were largely prevented by pretreating the tissues with pertussis toxin or with a monoclonal blocking antibody to intercellular adhesion molecule-1 (ICAM-1), the principal endogenous receptor for most RVs. In extended studies, we found that the RV-induced changes in ASM responsiveness were associated with diminished cAMP accumulation in response to dose-dependent administration of isoproterenol, and this effect was accompanied by autologously upregulated expression of the Gi protein subtype, Galpha3, in the ASM. Finally, in separate experiments, we found that the RV-induced effects on ASM responsiveness were also accompanied by autologously induced upregulated […]

Find the latest version:

http://jci.me/4141-pdf
Mechanism of Rhinovirus-induced Changes in Airway Smooth Muscle Responsiveness

Hakon Hakonarson, Neil Maskeri, Carrie Carter, Richard L. Hodinka,* Donald Campbell,* and Michael M. Grunstein
Division of Pulmonary Medicine and *Division of Immunologic and Infectious Diseases, Joseph Stokes, Jr. Research Institute, The Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104

Abstract

An important interplay exists between specific viral respiratory infections and altered airway responsiveness in the development and exacerbations of asthma. However, the mechanistic basis of this interplay remains to be identified. This study addressed the hypothesis that rhinovirus (RV), the most common viral respiratory pathogen associated with acute asthma attacks, directly affects airway smooth muscle (ASM) to produce proasthmatic changes in receptor-coupled ASM responsiveness. Isolated rabbit and human ASM tissue and cultured ASM cells were inoculated with human RV (serotype 16) or adenovirus, each for 6 or 24 h. In contrast to adenovirus, which had no effect, inoculation of ASM tissue with RV induced heightened ASM tissue constriction responsiveness to acetylcholine and attenuated the dose-dependent relaxation of ASM to β-adrenoceptor stimulation with isoproterenol. These RV-induced changes in ASM responsiveness were largely prevented by pretreating the tissues with pertussis toxin or with a monoclonal blocking antibody to intercellular adhesion molecule-1 (ICAM-1), the principal endogenous receptor for most RVs. In extended studies, we found that the RV-induced changes in ASM responsiveness were associated with diminished cAMP accumulation in response to dose-dependent administration of isoproterenol, and this effect was accompanied by autologously upregulated expression of the G_{i} protein subtype, G_{i\alpha_{3}}, in the ASM. Finally, in separate experiments, we found that the RV-induced effects on ASM responsiveness were also accompanied by autologously induced upregulated mRNA and cell surface protein expression of ICAM-1. Taken together, these findings provide new evidence that RV directly induces proasthmatic phenotypic changes in ASM responsiveness, that this effect is triggered by binding of RV to its ICAM-1 receptor in ASM, and that this binding is associated with the induced endogenously upregulated expression of ICAM-1 and enhanced expression and activation of G_{i} protein in the RV-infected ASM. (J. Clin. Invest. 1998. 102:1732–1741.) Key words: airway smooth muscle • rhinovirus infection • β-adrenergic stimulation • intercellular adhesion molecule-1 • asthma

Introduction

It is clinically well established that most children and young adults who develop asthma have elevated serum IgE levels, a history of early viral respiratory infections, and exacerbations of their asthma by recurrent viral respiratory illnesses (1, 2). A transient airway hyperreactivity is also reported to occur in nonasthmatic subjects after infection with certain respiratory viral pathogens, notably including rhinovirus (RV), respiratory syncytial virus, and parainfluenza virus (3–7). While the basic mechanism(s) underlying this transient airway hyperreactivity or exacerbation of asthma symptoms remains to be established, recent evidence supports the general concept that the airway responses in asthma and to specific viral respiratory pathogens, including airways inflammation (8, 9), cytokine release (10, 11), and IgE production (12, 13), may share certain common mechanistic pathways. Moreover, within the broader context of the pathobiology of airway hyperreactivity and asthma, an important mechanistic association has been established between the presence of airway inflammation and the phenotypic changes in airway function that characterize the asthmatic state, including enhanced airway smooth muscle (ASM) constrictor responsiveness and impaired ASM relaxation responsiveness to β-adrenergic receptor stimulation (14–16). This association has been inferred from a host of clinical studies, as well as investigations incorporating various experimental animal models that express the proasthmatic phenotype. Accordingly, altered airway responsiveness has been reported after the administration of different proinflammatory agents into the lung including sensitizing antigens, ozone inhalation, activated leukocyte products, and chemotactic factors (17, 18), in addition to the instillation of various viral respiratory pathogens (19, 20). Collectively, these studies suggest a complex interrelationship between specific viral respiratory pathogens, activated inflammatory cells, airway epithelial cells, and altered ASM function.

Although the cellular and molecular mechanisms underlying the above fundamental changes in ASM responsiveness after viral respiratory infections remain largely unidentified, it is relevant to note that recent reports have demonstrated airway

1. Abbreviations used in this paper: ACh, acetylcholine; ASM, airway smooth muscle; CPE, cytopathic effects; GAPDH, glyceraldehyde phosphate dehydrogenase; HBSM, human bronchial smooth muscle; ICAM-1, intercellular adhesion molecule-1; PECAM-1, platelet endothelial cell adhesion molecule-1; PT, pertussis toxin; Rmax, maximum relaxation; RV, rhinovirus; SmBM, smooth muscle basal medium; Tmax, maximum contraction; TSM, tracheal smooth muscle.

Address correspondence to Michael M. Grunstein, M.D., Ph.D., Division of Pulmonary Medicine, The Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine, 34th Street and Civic Center Boulevard, Philadelphia, PA 19104. Phone: 215-590-3497; FAX: 215-590-1397; E-mail: grunstein@email.chop.edu

Received for publication 29 May 1998 and accepted in revised form 3 September 1998.

hyperresponsiveness to receptor-coupled constrictor agonists in both human (5–7, 20–23) and animal (24–29) airways that have been inoculated with specific viral respiratory pathogens. Moreover, impaired relaxation responsiveness to β-adrenergic receptor stimulation in proasthmatic isolated airways has also been observed in ASM tissues preconstricted with a muscarinic-cholinergic agonist or histamine, and not in tissues contracted with the non–receptor-coupled constrictor agent, KCl (30–33). Taken together, these findings suggest that the changes in ASM responsiveness in the proasthmatic state may be attributed to perturbations in certain key receptor-coupled transmembrane signal transduction processes that regulate ASM contraction and relaxation.

In light of the above considerations, together with our recent evidence implicating an induced autocrine role for the ASM itself in autologously producing its altered responsiveness in the proasthmatic atopic sensitized state (34), a phenomenon largely attributed to perturbed receptor/G protein–coupled transmembrane signaling (35, 36), this study addressed the hypothesis that specific viral respiratory pathogens can directly infect ASM and elicit proasthmatic perturbations in its agonist responsiveness. Accordingly, we examined whether RV, the most common viral respiratory pathogen associated with acute asthma attacks, induces changes in receptor-coupled ASM responsiveness and if this action of the respiratory viral pathogen on airway responsiveness is related to altered receptor/G protein–coupled transmembrane signaling in the ASM. The results provide new evidence demonstrating that (a) RV (serotype 16) can directly infect ASM and induce proasthmatic changes in ASM responsiveness, characterized by heightened constrictor responsiveness and impaired β-adrenergocoupled-mediated relaxation; (b) this effect is triggered by binding of RV to its intercellular adhesion molecule-1 (ICAM-1) receptor in ASM; and (c) the latter is coupled to the upregulated expression of ICAM-1 and enhanced expression and activation of G protein (notably, Goβγ), which produces inhibition of adenylate cyclase activity in the RV-infected ASM. Collectively, these new findings implicate an endogenous role for the ASM in autologously inducing proasthmatic changes in ASM responsiveness after RV infection.

Methods

Animals. Adult New Zealand White rabbits were used in this study approved by the Biosafety and Animal Research Committee of the Joseph Stokes Research Institute at Children’s Hospital of Philadelphia. The animals had no signs of respiratory disease for several weeks before the study.

Culture of respiratory viruses. Virus stock solutions were generated by infecting monolayer cultures of sensitive cell systems with freshly isolated respiratory viruses by the Clinical Virology Laboratory at the Children’s Hospital of Philadelphia, including human RV and adenovirus. In addition, human RV serotype 16 was purchased from the American Type Culture Collection (Rockville, MD) and cultured in the laboratory. Human embryonic lung fibroblasts (MRC-5) were used to culture the RV, and human carcinoma cells from lung (A549) were used to culture adenovirus. The cultures were grown in modified Eagle’s minimum essential medium supplemented with Earle’s balance salt solution, 1% L-glutamine, 7.5% FBS, Hepes buffer, and antimicrobial agents (5 μg/ml gentamicin, 10 μg/ml vancomycin, and 10 μg/ml amphotericin-B). When infection was notably advanced, as evidenced by obvious cytopathic effects (CPE), cell supernatants were harvested and frozen in aliquots (~2–4 × 10⁶ virus particles/aliquot) at −70°C, as previously described (37), for use in the experiments described below.

Detection of respiratory viruses in ASM cells. Rabbit ASM cells cultured in the laboratory (see below) were propagated in 16 × 125 mm sterile plastic tissue culture using RPMI 1640 medium supplemented with 20% FBS, 10% L-glutamine, Hepes buffer, 200 U/ml of penicillin, and 200 μg/ml of streptomycin. Confluent monolayers of ASM cells were then separately inoculated with stock solutions (~1 million virus particles/T₃₀ flask) of the above viruses. The culture tubes were maintained in slanted stationary racks at 33°C for 14 d and examined daily for viral-induced CPE, as demonstrated by the presence of various sizes of rounded refractile cells with lytic lesions. The cell culture supernatants were also salvaged at various times after infection and stored at −70°C for subsequent determination of viral content. Viral titers of the material used for infection and of the supernatants removed at the end of the infection period were also obtained to estimate the maximal amount of viral uptake that had occurred during the exposure period. Infection by adenovirus was confirmed using immunofluorescence staining of acetone-fixed infected cells, using mouse monoclonal antibodies directed against adenovirus, and a goat anti-mouse FITC conjugate. Due to the lack of commercially available antibodies to RV serotypes, detection of infection of the ASM cells with RV was confirmed by RT-PCR and Southern blotting. The PCR reactions were performed using cDNA reverse transcribed from total RNA isolated from ASM cells that were inoculated for 72 h with RV in the absence and presence of 1 h pretreatment with a monoclonal blocking antibody to ICAM-1 (4 μg/ml), using RV-specific primer pairs (i.e., 5-prime 5'-GACATTCTT-GTTTCCCC-3'; and 3-prime 5'-CGGACACCCAAGTAG-3') and a cDNA probe prepared by pooling, purifying, and sequencing the above PCR reactions.

Viral inoculation of ASM tissue. Our method for preparing rabbit ASM tissue has been described previously (36). In brief, after anesthesia with xylazine (10 mg/kg) and ketamine (50 mg/kg) the animals were killed with an intravenous overdose of pentobarbital (130 mg/kg). The tracheae were removed, cleaned of loose connective tissue, and divided into 6–8-mm ring segments. In comparable studies, human bronchial smooth muscle (HBSM) tissue was also obtained from patients undergoing lung resection for peripheral lung carcinoma and having no evidence of obstructive lung disease, as assessed by routine pulmonary function testing preoperatively. After lung resection, the specimens were macroscopically examined and, from tumor-free sites, bronchi (3–5 mm ID) from the third to fifth generation were dissected free from the surrounding parenchyma and sectioned into ring segments. Each alternate adjacent rabbit or human ASM ring segment was then incubated for 24 h at room temperature in Dulbecco’s modified Eagles medium in the absence and presence of maximum effective concentrations (~10⁷ virus particles/ml) of either RV, adenovirus, or heat-inactivated RV (i.e., 65°C for 1 h) for 90 min at the optimal replication temperature for each virus. The viral inoculation experiments were conducted in the absence and presence of 1-h pretreatment with monoclonal blocking antibodies to the adhesion molecules, ICAM-1 (4 μg/ml) or platelet endothelial cell adhesion molecule-1 (PECAM-1; 4 μg/ml). In separate experiments, the above viral inoculations were performed in the absence and presence of 1 h of pretreatment with pertussis toxin (PT, 100 ng/ml), as previously described in our laboratory (36). The tissues were aerated with a supplemental oxygen mixture (95% O₂/5% CO₂) throughout the incubation period and, thereafter, the tissues’ responsiveness to specific ASM constrictor and ASM relaxation agonists, second messenger accumulation, and G protein and ICAM-1 expression were examined, as described below.

Viral inoculation of cultured ASM cells. Rabbit ASM cells cultured in our laboratory have been characterized previously in detail with respect to their distinguishing morphological, histological, and immunological features (38). The cell isolation and subcultivation procedures were described previously (38). In brief, ASM cells were isolated from epithelium-denuded tracheal muscle from adult New...
Zalewski White rabbits. After digestion in F-12 containing 30 μg/ml protease, 55 μg/ml type IV collagenase, and 100 μg/ml trypsin inhibitor, the dissociated cells were centrifuged and resuspended in F-12 containing 10% FBS and 100 μg/ml of gentamicin sulfate. The cells were then inoculated in 100-mm tissue culture dishes and, after 4 wk, the cells had sufficiently proliferated to permit routine subcultivations. At weekly intervals, the subcultivated cells were suspended and then inoculated at a density of 10^4 cells/cm^2 in 75-cm^2 tissue culture flasks containing F-12 with 10% FBS and incubated at 37°C in a humidified atmosphere of 5% CO_2/95% air. When the cells were >90% confluent, the original culture medium was replaced with Ham’s F-12 for 24 h. The medium was then aspirated and the cells were inoculated, in separate experiments, with maximum effective concentrations (∼10^6 viral particles per 15 flask) of either RV, adenovirus, or heat-inactivated RV in 0.5 ml of culture media for 60 min at the optimal replication temperature for each virus in the absence and presence of a monoclonal blocking antibody to ICAM-1 (i.e., anti-ICAM-1 mAb). The cells were then washed once with fresh media and incubated at 37°C for various time points (i.e., 0, 3, 6, or 24 h). The cells were then prepared for detection of ICAM-1 mRNA and protein expression, as described below.

Pharmacodynamic measurements of ASM responsiveness. After incubation of the tissue preparations, each rabbit airway segment was set at 2.0 cm and subsequently assessed in the TSM segments by cumulative administration of the dose of isoproterenol producing 50% of Rmax (pD_2). The tissues were allowed to equilibrate in the organ baths been passively stretched to a tension of 8 g. cAMP measurements were expressed in units of picomoles per milligram of tissue membrane protein.

Determination of G protein expression. Expression of the inhibitory G protein and its α subunits was assayed by Western blot analysis of membrane protein samples isolated from both RV-treated (n = 4) and control (n = 4) rabbit TSM tissue. The membrane protein samples were prepared as follows: tracheal muscle was minced and homogenized using a Wheaton Dounce tissue grinder in 40 vol of 50 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA (pH 7.4) containing 1 mM phenylmethylsulfonyl fluoride, 5 μg/ml aprotinin, and 5 μg/ml leupeptin. Nuclei and large particulates were removed by centrifugation at 100,000 g for 5 min. The supernatant was then centrifuged at 100,000 g for 1 h to pellet the membrane fractions. The membrane pellet was resuspended in the same Tris-EDTA buffer, and the protein concentration was measured using the Lowry assay. Equivalent amounts (30–50 μg) of membrane protein were fractionated in 11% SDS-polyacrylamide gels followed by transfer to nitrocellulose membranes. The membranes were then blotted overnight at room temperature in 25 mM Tris-HCl (pH 7.5), 150 mM NaCl, and 0.05% Tergitol NP-40 containing 5% nonfat milk. The rabbit polyclonal anti-G_i-common, G_α_s, G_α_o, and G_α_k, antibodies were diluted at 1:1,000, 1:500, 1:500, and 1:500, respectively, and were incubated for 2 h at room temperature. The G_i-common antisem recognizes G_α_s, G_α_o, and G_α_k equivalently (40). The primary G protein antibodies were the generous gift of Dr. David Manning (University of Pennsylvania). All primary and secondary antibody incubations and washes were done in 25 mM Tris-HCl (pH 7.5), 150 mM NaCl, and 0.05% NP-40 containing 0.5% nonfat milk. The G proteins were detected using enhanced chemiluminescence (Amersham, Arlington Heights, IL) after a 1-h incubation with a 1:3,000 dilution of an anti-rabbit horseradish peroxidase–linked secondary antibody and subsequent exposure to autoradiography film. Expression levels of common and specific G_α_i-subunit proteins were quantitated using laser densitometry (Bio-Rad, Hercules, CA).

Determination of ICAM-1 expression in rabbit ASM cells by RT-PCR and Southern blot analysis. Total RNA was isolated from rabbit ASM cells in the absence and presence of exposure of the cells to RV for the various time points using the modified acid guanidium thiocyanate phenol-chloroform extraction method to include proteinase K (in 0.5% SDS) digestion of protein in the initial RNA pellet (41). The concentration of each RNA sample was then determined spectrophotometrically. This procedure consistently yielded 15–20 μg of intact RNA per T-75 flask of ASM cells. To analyze the mRNA expression of ICAM-1, we used a RT-PCR protocol and ICAM-1 primers based on the published sequences of the human ICAM-1 gene, and included the following primer set: 5'-GAGCTGTTTGAGAA-CACCTC-3' and 5'-TCACACTCTACGTACCTC-3'. Rabbit specific α-actin primers, 5'-CAGCATCAAGAGAAGCTG-3' and 5'-CTAGAAGCATTTGGTGAC-3' (19 mers), based on the published sequence of the rabbit α-actin gene, were used to control for the transcription level of each sample. cDNA was synthesized using 2.5 μg of total RNA isolated from cells after 0, 3, 6, and 24 h of exposure to RV or media alone. The cDNA was primed with oligo(dT)12-18 and 2 μl of cDNA was used for each PCR reaction. The cycling profile used was as follows: denaturation: 95°C for 1 min; annealing: 56°C for 1.0 min; and extension: 72°C for 1 min and 34 cycles for the
ICAM-1 gene, and 24 cycles for the a-actin gene. The number of cycles was determined to be in the linear range of the PCR products. Equal aliquots of each PCR reaction were then run on a 1.2% agarose gel and subsequently transferred to a Zeta-probe membrane overnight in 0.4 M NaOH. After capillary transfer, the DNA was immobilized by UV cross-linking using a Stratagene UV Crosslinker 2400 at 120,000 J/cm² (Stratagene, La Jolla, CA). Prehybridization in a Techne hybridization oven was conducted for 2–3 h at 42°C in 50% formamide, 7% (wt/vol) SDS, 0.25 M NaCl, 0.12 M Na₂HPO₄ (pH 7.2), and 1 mM EDTA. Hybridization was for 20 h at 42°C in the same solution. The ICAM-1 and a-actin DNA levels were assayed by Southern blot analysis using 32P-labeled probes, including the human-specific 3.3-kb ICAM-1 probe (American Type Culture Collection) and 32P-labeled random primer reactions, and an a-actin probe prepared by polymerase chain reaction (PCR) of the a-actin PCR fragments and purifying them from a 1.2% agarose gel using Qiagen II agarose gel extraction kit and then sequencing. Washes were as follows: 1 × 15 min in 2× SSC, 0.1% SDS; 1 × 15 min in 0.1× SSC, 0.1% SDS both at room temperature, and 2 × 15 min at 50°C in 0.1× SSC, 0.1% SDS. Southern blots were quantified by direct measurements of radioactivity in each band using a PhosphorImager (Molecular Dynamics, Sunnyvale, CA).

Determination of ICAM-1 expression in human ASM cells by Northern blot analysis. Total RNA was isolated from cultured human ASM cells, as described above. 15 µg of total RNA was fractionated in 1% agarose, 2.2 M formaldehyde denaturing gels, from cells initially maintained in SmBM media in the absence and presence of 0, 3, 6, and 24 h of exposure to RV. After capillary transfer to Zeta-probe membranes (Bio-Rad) in 10× SSC (1× SSC = 0.15 M sodium citrate), RNA was immobilized by UV cross-linking using a Stratagene UV Crosslinker 2400 at 120,000 µJ/cm². Prehybridization in a hybridization oven was conducted for 2–3 h at 42°C in 50% formamide, 7% (wt/vol) SDS, 0.25 M NaCl, 0.12 M Na₂HPO₄ (pH 7.2), and 1 mM EDTA. Hybridization was for 20–22 h at 42°C in the same solution. The ICAM-1 mRNA levels were examined by Northern blot analysis using the human-specific 3.3-kb ICAM-1 probe, as described above. A human-specific probe was used for constitutively expressed glyceraldehyde phosphate dehydrogenase (GAPDH) was used as a control for RNA loading.

Determination of ICAM-1 expression in ASM cells and tissue by Western blot analysis. Expression of the cell surface adhesion molecule, ICAM-1, was assayed by Western blot analysis of membrane protein samples isolated from rabbit ASM tissue and human ASM cells in the absence and presence of a 24-h exposure to RV. The membrane protein samples were prepared as described above, and the membrane pellet was resuspended in Tris-EDTA buffer and the protein concentration was measured using the Lowry assay. Equivalent amounts (30 µg) of membrane protein were fractionated in 11% SDS-polyacrylamide gels followed by transfer to nitrocellulose membranes. The membranes were then blotted overnight in 25 mM Tris-HCl (pH 7.5), 150 mM NaCl, and 0.05% Tergitol NP-40 containing 5% nonfat milk, as described previously (36). The mouse anti-human ICAM-1 antibody used was diluted 1:500 and was then incubated for 1 h at room temperature. All primary and secondary antibody incubations and washes were done in 25 mM Tris-HCl (pH 7.5), 150 mM NaCl, and 0.05% NP-40 containing 0.5% nonfat milk. The ICAM-1 level was detected using enhanced chemiluminescence after a 1-h incubation with a 1:1,000 dilution of an anti-mouse horseradish peroxidase–linked secondary antibody and subsequent exposure to autoradiography film. Expression levels of ICAM-1 protein were quantitated using laser densitometry (Bio-Rad).

Determination of ICAM-1 expression in ASM cells by flow cytometry. ICAM-1 cell surface protein expression was also examined in the cultured rabbit ASM cells using a Coulter EPICS Elite flow cytometer (Coulter EPICS Division, Hialeah, FL) equipped with a 5 W argon laser operated at 488 nm and 300 mW output. Fluorescence signals were accumulated as two-parameter fluorescence histograms with both percent positive cells and mean channel fluorescence being recorded. Cells treated for 24 h in the absence and presence of either RV or adenovirus (see above) were carefully washed and then resuspended in PBS buffer, dispersed by pipetting and orbital shaking, and then stained with a mouse anti-human monoclonal antibody to ICAM-1. To examine for nonspecific binding, the primary antibody was replaced by IgGs of the same isotype, following the manufacturer’s protocol, using mouse IgG1 as a negative control. After serial washing, the cells were stained with FITC-conjugated goat anti-mouse secondary antibody. The antibody-stained cells were then evaluated by flow cytometry and analyzed using the Elite Immuno 4 statistical software (Coulter EPICS Division). Fluorescence intensities were expressed as percent positive cells, including mean channel fluorescence.

Statistical analysis. Unless otherwise indicated, results are expressed as mean ± SE values. Statistical analysis was performed by means of the two-tailed paired Student’s t test. P < 0.05 was considered significant.

Reagents. The human ICAM-1, rabbit a-actin, and RV-specific primers were obtained from Integrated DNA Technologies Inc. (Coralville, IA). ACh, isoproterenol hydrochloride, and ICAM-1 and PE-CAM-1 antibodies were obtained from Sigma Chemical Co. (St. Louis, MO). All drug concentrations are expressed as final bath concentrations. Isoproterenol and ACh were made fresh for each experiment, dissolved in normal saline to prepare 10⁻⁴ M and 10⁻³ M solutions, respectively. The human tissue was provided by the Cooperative Human Tissue Network which is funded by the National Cancer Institute.

Results

RV-induced changes in ASM responsiveness. Detection of infection of ASM cells by adenovirus was confirmed by evidence of CPE on days 7 and 14 after inoculation, using immunofluorescence staining of acetone-fixed infected cells with a mouse monoclonal antibody directed against adenovirus and a goat anti–mouse FITC conjugate (Fig. 1A). Due to the lack of commercially available antibodies to RV serotypes, as shown in Fig. 1B, infection of ASM cells with RV-16 was confirmed by RT-PCR and Southern blotting using RV-specific primer pairs (see Methods), and a CDNA probe prepared by purifying and sequencing the above PCR reactions. Moreover, in substantiating the specificity of the latter effect of RV exposure, in separate experiments, we found that pretreatment of ASM with a monoclonal blocking antibody to ICAM-1, the key cell surface receptor for the vast majority of RVs, prevented ASM infectivity by the virus (Fig. 1B).

To examine the effects of viral infection on ASM responsiveness, in an initial series of experiments, airway constrictor and relaxation responses were separately examined in isolated TSM segments that were exposed to RV, adenovirus, or vehicle alone in the absence and presence of blockade of ICAM-1 with a monoclonal blocking antibody (anti-ICAM-1 mAb). In comparable experiments, we also used a monoclonal blocking antibody to PECAM-1 (anti-PECAM-1 mAb), the latter serving as a negative control. As shown in Fig. 2, relative to tissues incubated with control medium alone (open circles), the maximum contraction (Tmax) responses to ACh were significantly enhanced in TSM that were exposed to RV (filled circles). Accordingly, the mean ± SE Tmax values amounted to 100.5 ± 4.4 and 155.6 ± 21.2 g/g TSM wt in the control and RV-exposed tissues, respectively (P < 0.01); and the corresponding pD₂o (i.e., −log ED₅₀) values averaged 4.39 ± 0.05 and 5.03 ± 0.20 −log M, respectively (P < 0.05). Moreover, it should be noted that these induced augmented constrictor responses to ACh were
largely prevented in the RV-exposed tissues that were pre-
treated with anti–ICAM-1 mAb (Fig. 2, open squares),
wherein the mean 6 SE Tmax and pD 50 values amounted to
119.6 6 14.9 g/g TSM wt and 4.43 6 0.07 log M, respectively.
There were no significant differences between the latter values
and the corresponding determinations made in control tissues.
In contrast to RV, exposure of ASM to adenovirus had no ef-
tect on the tissues’ constrictor responsiveness to ACh (data not
shown). Furthermore, in contrast to anti–ICAM-1 mAb, ad-
ministration of anti–PECAM-1 mAb had no appreciable effect
on the enhanced constrictor responsiveness to ACh obtained
in RV-exposed TSM (data not shown).

In separate studies, during comparable levels of initial sus-
tained ACh-induced contractions in RV-exposed and control
airway segments, averaging ~45% of Tmax, administration of
the RV-exposed ASM. Accordingly, the mean Rmax values
for isoproterenol amounted to 54.06±5.87% in the RV-exposed
Fig. 3, filled circles) tissues, compared with 69.12±4.85% in
the control (open circles) TSM (P < 0.05); and the correspond-

Figure 1. (A) Demonstration of viral antigen to adenovirus in rabbit
ASM cells cultured in supplemented Eagle’s minimum essential me-
dium. Experimental cells (passages 6–8) were stained with virus-spe-
cific antibodies on day 7 of infection (see Methods). Note that viral
antigen to adenovirus was readily detectable in infected cells which
demonstrated classical CPE, as evidenced by the various sizes of
rounded refractile cells with characteristic lytic lesions. (B) Southern
blot of RV mRNA expression in rabbit ASM cells. Total RNA was
isolated from cells inoculated for 72 h in the absence (–) and pres-
ence of RV exposure with (+) and without (+) pretreatment with
an anti–ICAM-1 mAb. RNA isolated from RV stock solution was
used as a positive control (RV cDNA). The blot was probed with a se-
quenced 32P-labeled cDNA probe prepared from pooled purified RT-
PCR reactions for the RV gene. Note that in contrast to lack of ex-
pression in control (–) cells, RV mRNA expression was induced in
RV-infected ASM cells at 72 h (+), and the latter was inhibited in the
presence of anti–ICAM-1 mAb (+*).

Figure 2. Comparison of constrictor dose–response relationships to
ACh in control (open circles) and RV-exposed ASM in the absence
(filled circles) and presence (open squares) of an anti–ICAM-1 mAb.
Data are means±SE values. Note that both the Tmax and pD50 values
to ACh are significantly enhanced (P < 0.01 and P < 0.05, re-
spectively) in tissues exposed to RV, and that these effects of RV are
largely inhibited in the presence of anti–ICAM-1 mAb.

Figure 3. Comparison of relaxation response curves to isoproterenol
in control (open circles) and RV-exposed ASM in the absence
(filled circles) and presence (open squares) of an anti–ICAM-1 mAb.
Data are means±SE values. Note that both the Rmax and pD50 values to
isoproterenol are significantly attenuated (P < 0.05 and P < 0.05, re-
spectively) in RV-exposed ASM, and that these effects of RV are
largely inhibited in the presence of anti–ICAM-1 mAb.
ing pD50 values averaged 6.42±0.12 and 6.82±0.12 –log M, respectively (P < 0.05). As further depicted in Fig. 3 (open squares), the attenuated isoproterenol-induced relaxation responses were largely ablated in the RV-exposed TSM which were pretreated with anti–ICAM-1 mAb, wherein the mean Rmax value for isoproterenol amounted to 71.65±1.78% and the corresponding pD50 value averaged 6.89±0.05 –log M. There were no significant differences in either the Rmax or pD50 values between the control and RV-exposed tissues in the presence of anti–ICAM-1 mAb. In contrast to RV, exposure of ASM to adenovirus or initial heat inactivation of RV had no effect on the tissues’ relaxant responsiveness to isoproterenol (data not shown). Moreover, in contrast to the action of anti–ICAM-1 mAb, administration of anti–PECAM-1 mAb to RV-exposed TSM had no effect on their impaired relaxation responses to isoproterenol (data not shown).

Altered cAMP accumulation in RV-exposed TSM. In light of the above observations, in comparable experiments, we examined whether the above attenuated isoproterenol-induced relaxation responses obtained in RV-exposed TSM were associated with altered β-adrenoceptor–coupled stimulation of cAMP accumulation, the key intracellular second messenger associated with ASM relaxation. Accordingly, the dose-dependent effects of isoproterenol on cAMP accumulation were compared in RV-exposed and control TSM segments. The mean (±SE) resting (baseline) levels of cAMP were similar in unstimulated control and RV-exposed TSM, averaging 5.5±1.2 and 7.6±1.4 pmol/mg protein, respectively. In contrast, the peak increases in cAMP accumulation, determined at 1 min after each administered dose of isoproterenol, were significantly reduced in the RV-exposed tissues, as exemplified by a representative experiment comparing isoproterenol-induced cAMP accumulation in paired control and RV-exposed TSM (Fig. 4). Similar results were obtained in the other experiments (n = 4), wherein the collective mean maximal increases in cAMP accumulation in response to 10⁻⁵ M isoproterenol amounted to 2.45- and 1.45-fold above their respective baseline values in the control and RV-exposed TSM, respectively (P < 0.05).

Altered G protein expression and function in RV-exposed TSM. Given the above findings, together with our recent evidence that enhanced G protein expression and action underlies the attenuated relaxation responsiveness to isoproterenol in TSM passively sensitized with human atopic asthmatic serum (36), in separate experiments, we examined whether a similar mechanism pertains to our observed attenuated relaxation responses to isoproterenol in RV-exposed tissues. Accordingly, in initial pharmacodynamic studies, we investigated the effects of pretreatment of control and RV-exposed TSM with PT, which ADP-ribosylates Gi protein. Relative to control TSM, wherein PT had no effect, the Rmax and pD50 for isoproterenol were significantly enhanced in PT-treated versus untreated RV-exposed TSM (Fig. 5). Thus, the Rmax and pD50 values obtained in untreated RV-exposed tissues amounted to 36.02±7.13% and 6.17±0.19 –log M, respectively, compared with 68.15±4.2% and 6.42±0.07 –log M, respectively (P < 0.05), in the RV-exposed TSM that were pretreated with PT (Fig. 5). Of note, there were no differences in either the Rmax or pD50 values between control tissues (i.e., 74.78±11.24% and 6.53±0.17 –log M, respectively) and the RV-exposed tissues that were pretreated with PT. Thus, the attenuated isoproterenol-mediated TSM relaxation responses in RV-exposed tissues were ablated in the presence of PT, implicating a role for altered Gi protein–coupled function in mediating the impaired relaxation responses to β-adrenoceptor stimulation in RV-exposed TSM.

In view of the above pharmacodynamic evidence, we next examined whether the expression of Gi and its isoforms is modulated in plasma membranes isolated from RV-exposed TSM. Relative to controls, Western immunoblot analyses of

![Figure 4. Comparison of isoproterenol-stimulated cAMP generation in paired control (open bars) and RV-exposed (hatched bars) TSM. Basal levels of cAMP were similar in both tissue groups, whereas the cAMP responses to isoproterenol stimulation were significantly reduced in the RV-exposed TSM. Data are means±SE values.](image)

![Figure 5. Comparison of relaxation response curves to isoproterenol in control (open circles) and RV-exposed ASM in the absence (filled circles) and presence (open squares) of PT. Data are means±SE values. Note that PT significantly enhanced both the Rmax (P < 0.05) and pD50 (P < 0.05) values to isoproterenol in RV-exposed ASM, and there were no differences in either the Rmax or pD50 values between control and RV-exposed tissues that were pretreated with PT.](image)
mRNA expression in cultured HBSM cells that were exposed to RV, both at 6 and 24 h, whereas expression of ICAM-1 mRNA was significantly enhanced in cells that were exposed to RV. The results were obtained by Northern blot analysis of ICAM-1, was essentially unaltered in control cells. Qualitatively similar results were obtained by Northern blot analysis of ICAM-1 mRNA expression in human ASM cells in the absence (−) and presence (+) of RV, 15 μg of RNA was loaded in each lane and run on a 1% agarose, 2.2% formaldehyde denaturing gel. Note that in contrast to unaltered GAPDH expression, ICAM-1 mRNA expression was upregulated at 6 and 24 h in cells that were exposed to RV.

Altered ICAM-1 expression in RV-exposed ASM. To the extent that RV-16 is a member of the major receptor group of RVs (constituting > 90% of RVs) which are known to exert their action by binding to their cell surface receptor, ICAM-1, we next examined whether ASM cells express ICAM-1 and whether expression of the latter is altered in the presence of RV. Accordingly, in initial studies, using RT-PCR and ICAM-1 specific primers, cDNA was reverse transcribed from total RNA isolated from rabbit ASM cells, primed with oligo(dT), and Southern blots were probed with a human cDNA probe specific for ICAM-1 (see Methods). A 415-bp α-actin probe was also used to control for gel loading, and the signals for the ICAM-1 and α-actin PCR products were quantified using a PhosphorImager. As demonstrated in Fig. 7, in contrast to the unaltered constitutive expression of α-actin, the ICAM-1 signal was significantly enhanced in cells that were exposed to RV, both at 6 and 24 h, whereas expression of ICAM-1 mRNA was essentially unaltered in control cells. Qualitatively similar results were obtained by Northern blot analysis of ICAM-1 mRNA expression in cultured HBSM cells that were exposed to RV versus cell culture media alone (controls), as depicted in Fig. 8. Here, it should be noted that, in contrast to unaltered expression in control cells, the expression of ICAM-1 mRNA was significantly upregulated in the RV-exposed ASM cells for up to 24 h, whereas the mRNA levels for the constitutively expressed gene, GAPDH, were unaltered.

In extending the above observations, we subsequently examined whether HBSM cells express ICAM-1 on their cell surface, and whether the latter expression is modulated in the presence of RV. In one series of experiments, using Western blot analysis, we found that HBSM cells expressed ICAM-1 protein and that, in contrast to its unaltered expression in control cells, 24-h inoculation of cells with RV produced significantly enhanced expression of ICAM-1 protein, as exemplified in Fig. 9. Furthermore, in another complimentary series of experiments, we examined for altered ICAM-1 cell surface protein expression in cultured rabbit ASM cells after 24 h of inoculation with either RV or adenovirus. In concert with the above observations, our results demonstrated that, relative to control cells, ICAM-1 cell surface protein expression was significantly enhanced after 24 h of inoculation with RV (Fig. 10). Contrasting these results obtained with RV, inoculation of cells with adenovirus had no detectable effect on ICAM-1 expression (data not shown). Thus, taken together, these findings demonstrating enhanced ICAM-1 expression in RV-exposed ASM cells parallel the above observations implicating a role for ICAM-1 in mediating RV-induced changes in ASM responsiveness.
Airway Smooth Muscle Cells

A. no rhinovirus

B. with rhinovirus

Figure 10. Representative flow cytometric analysis of ICAM-1 cell surface expression in control and RV-exposed ASM cells. Rabbit ASM cells were inoculated in serum-free media in the absence (A) and presence (B) of RV. The cells were stained with a mouse anti-human monoclonal antibody specific for ICAM-1. The levels of nonspecific background staining were measured by staining with FITC-conjugated isotype control IgG antibody (left histogram). Goat anti-mouse FITC-conjugated secondary antibody was used for detection of the signals. Note that relative to control cells (A) which demonstrated 32% positive staining for ICAM-1, cells treated with RV (B) demonstrated 69% positive staining for ICAM-1. In contrast, adenovirus had no effect on ICAM-1 expression (data not shown).

Discussion

Viral respiratory infections are associated with acute episodes of wheezing and asthma exacerbations throughout childhood. Beyond infancy, RV represents the predominant common cold virus that has been implicated in triggering acute wheezing in children and young adults. In this connection, it is relevant to note that RV infection has also been associated with elevation of serum total IgE levels (12, 13), increases in airway reactivity (5–7, 21–24), and increased eosinophil influx into the respiratory tract (4). A priori, when taken together, these effects of RV infection closely parallel the known proinflammatory changes in airway function observed in atopic asthma and, hence, suggest that a potentially important common mechanism underlies the perturbed airway function seen both in asthma and after RV infection. This study was designed, in part, to elucidate this mechanism. The results provide new evidence demonstrating that: (a) in contrast to adenovirus which has no effect, inoculation of naive ASM tissue with RV induces heightened ASM constrictor responsiveness and attenuated β-adrenoceptor–mediated ASM relaxation; (b) these RV-induced changes in ASM responsiveness are largely prevented by pretreating the tissues with PT or with a monoclonal blocking antibody to ICAM-1; (c) the RV-induced changes in ASM responsiveness are associated with attenuated cAMP accumulation in response to isoproterenol; (d) the latter is associated with the upregulated expression and action of the G i protein subtype, G iα3, in ASM; and (e) the above RV-induced changes in ASM responsiveness and G i protein expression are accompanied by enhanced expression of ICAM-1, the principal receptor counterligand for RV.

Consistent with the above consideration of a potential common mechanism underlying the changes in airway function found in asthma and after RV infection, our present observations demonstrated that the altered ASM responsiveness seen in RV-exposed tissues was associated with perturbed receptor–coupled transmembrane signaling. In this regard, our present findings closely resemble those recently reported in isolated rabbit ASM passively sensitized with human atopic asthmatic serum, wherein we found that the induced proinflammatory cytokines affecting ASM transmembrane signaling. This possibility remains to be systematically investigated.

Apart from the effect of PT, our present observations demonstrated that the RV-induced changes in ASM responsiveness were also largely prevented by pretreating the tissues with anti–ICAM-1 mAb (Figs. 2 and 3). This finding implicates a role for ICAM-1 in mediating the RV-induced changes in ASM responsiveness. While more recently identified as the principal receptor for the vast majority (i.e., > 90%) of RV subtypes (42, 43), ICAM-1 has been identified previously as the counterreceptor ligand for the β2 integrin, lymphocyte function-associated antigen (LFA-1; CD11a/CD18). Accord- ingly, the binding of ICAM-1 to LFA-1, wherein expression of the latter is confined to leukocytes, has been demonstrated in a wide variety of cellular interactions, including T lymphocyte antigen-specific responses, leukocyte binding to endothelium, and emigration of leukocytes into inflammatory sites (44–47). In this context, the above role of ICAM-1 activation has been proposed in mediating the airway eosinophilia and hyperresponsiveness found in a primate model after chronic antigen challenge, as both the eosinophil influx and airway hyperresponsiveness were attenuated by administration of an anti–ICAM-1 antibody (48–50). Whereas the latter study implicated a role for ICAM-1 activation that is coupled to eosinophil influx in mediating changes in airway responsiveness, in a more recent study conducted on antigen-sensitized brown-Norway rats, an
anti-ICAM-1 antibody was found to reduce the airway constrictor hyperresponsiveness without producing a concomitant decrease in airway inflammation (51). Thus, although ICAM-1 activation may contribute to the development of airway hyperresponsiveness, the mechanism underlying this phenomenon may not be completely dependent on inflammatory cell influx. Indeed, in this regard, cell surface expression of ICAM-1 has been identified in a variety of cell types, including certain airway structural cells and smooth muscle cells (52–54). Moreover, expression of ICAM-1 on lung stromal cells and epithelial cells was found to be upregulated after exposure of asthmatic subjects to allergen (55, 56), and ICAM-1 expression was also reportedly increased in bronchial microvascular endothelial cells isolated from asthmatic individuals (57).

In light of the above evidence, our present observations, which demonstrate that RV-induced changes in ASM responsiveness are associated with ICAM-1 receptor activation and its upregulated expression in isolated ASM, suggest an important role for direct ICAM-1 activation on the surface of ASM cells in autologously mediating RV-induced changes in ASM responsiveness. The latter notion is consistent with the emerging general concept that, notwithstanding the established roles of infiltrating inflammatory cells and altered airway epithelial cell function in the pathogenesis of asthma, the ASM itself constitutes an autologously regulated system which, when activated in the sensitized state (e.g., after RV infection or atopic sensitization), induces its autologous expression of specific cell surface proteins (e.g., ICAM-1), as well as the autocrine release and action of specific cytokines (34), which lead to proinflammatory perturbations in ASM responsiveness. Furthermore, in relation to this concept, insofar as ICAM-1 activation is also crucial for immune effector cell mobilization, our finding of RV-induced upregulated ICAM-1 expression in ASM supports the notion of coexisting ICAM-1–coupled autologous mechanisms mediating both altered ASM responsiveness and localized airway inflammation in RV-infected ASM.

In conclusion, this study examined the role and mechanism of action of RV infection in isolated ASM on its agonist-mediated constrictor and relaxant responsiveness. The results demonstrated that: (a) inoculation of ASM with RV induces enhanced ASM constrictor responsiveness to ACh and impairs β-adrenoceptor–mediated ASM relaxation; (b) these effects of RV on ASM responsiveness are largely prevented by pretreating the ASM with PT, or with a monoclonal blocking antibody to ICAM-1; (c) the RV-induced changes in ASM responsiveness are associated with attenuated β-adrenoceptor–mediated stimulation of cAMP accumulation; (d) the latter is related to RV-induced upregulated expression of the G protein subtype, Gβ5α; and (e) the above changes in ASM responsiveness and G protein expression are accompanied by RV-induced enhanced expression and action of ICAM-1 in ASM. Given the well-established clinical significance of RV infection in the pathogenesis of altered airway reactivity and asthma, the above findings of this study identify the important role and mechanism by which the ASM autologously induces its state of altered responsiveness after infection with RV.

Acknowledgments

The authors thank J. Grunstein, S. Chang, and S. Ling for their expert technical assistance, and Margaret Brown for assistance in typing the manuscript.

This work was supported in part by National Heart, Lung and Blood Institute grants HL-31467 and HL-58245, a Parker B. Francis Fellowship Award, and an Institutional Developmental Fund Award from the Joseph Stokes, Jr. Research Institute of the Children’s Hospital of Philadelphia.

References