Reduced levels of neurotransmitter-degrading enzyme PRCP promote obesity

Richard D. Palmiter

Commentary

The level of neurotransmitters present in the synaptic cleft is a function of the delicate balance among neurotransmitter synthesis, recycling, and degradation. While much is known about the processes controlling neurotransmitter synthesis and release, the enzymes that degrade peptide neurotransmitters are poorly understood. A new study in this issue of the *JCI* reveals the important role of neuropeptide degradation in regulating obesity (see the related article beginning on page 2291). Wallingford et al. provide evidence that, in mice, the enzyme prolylcarboxypeptidase (PRCP) degrades α-melanocyte-stimulating hormone (α-MSH) to an inactive form that is unable to inhibit food intake. Their studies indicate that PRCP expression promotes obesity, while inhibitors of the enzyme counteract obesity.

Find the latest version:

http://jci.me/40001/pdf
tion pour la Recherche Médicale, the European Union, Institut National du Cancer, and Agence Nationale pour la Recherche.

Address correspondence to: Guido Kroemer, INSERM, U848, Institut Gustave Roussy, Pavillon de Recherche 1, 39 rue Camille-Dessoulin, F-94805 Villejuif, France. Phone: 33-1-42-11-60-46; Fax: 33-1-42-11-60-47; E-mail: kroemer@igr.fr.

sion and subversion of pattern-recognition recep-
tice-MSH) to an inactive form that is unable to
growth by polyinosinic-polycytidylic acid/cationic
4. Salaun, B., Lebecque, S.J., Matikainen, S., Rimoldi,
D., and Romero, P. 2007. Toll-like receptor 3 ex-
pressed by melanoma cells as a target for thera-
cancerous skin lesions and skin cancer. Expert Opin.
Pharmacother. 1:1743–1755.
6. Andre, F., et al. 2006. Toll-like receptor 3 expres-
sion and subversion of pattern-recognition recep-
sion and subversion of pattern-recognition recep-
ticotropic hormone; MC4R, melanocortin 4 re-
ceptor; LPA, lysophosphatidic acid; MC4R, melan-
ocortin 4 receptor; POMC, pro-opiomelanocortin; PRCP, prolylcarboxypeptidase.

Conflict of interest: The author has declared that no conflict of interest exists.

Nonstandard abbreviations used: ACTH, adrenocor-
ticotrophic hormone; MC4R, melanocortin 4 receptor; α-MSH, α-melanocyte-stimulating hormone; POMC, pro-opiomelanocortin; PRCP, prolylcarboxypeptidase.

Citation for this article: J Clin. Invest. 119:2130–2133 (2009). doi:10.1172/JCI40001.

Reduced levels of neurotransmitter-degrading enzyme PRCP promote obesity

Richard D. Palmiter

Howard Hughes Medical Institute and Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, Washington, USA.

The level of neurotransmitters present in the synaptic cleft is a function of the delicate balance among neurotransmitter synthesis, recycling, and de-
gradation. While much is known about the processes controlling neurotransmitter synthesis and release, the enzymes that degrade peptide neurotrans-
mitters are poorly understood. A new study in this issue of the JCI reveals the important role of neuropeptide degradation in regulating obesity (see the related article beginning on page 2291). Wallingford et al. provide evidence that, in mice, the enzyme prolylcarboxypeptidase (PRCP) degrades α-mela-
nocteyte–stimulating hormone (α-MSH) to an inactive form that is unable to inhibit food intake. Their studies indicate that PRCP expression promotes obesity, while inhibitors of the enzyme counteract obesity.

Neurons in the arcuateregion of the hypothalamus that make the polypeptide hormone precursor pro-opiomelanocortin (POMC)are very important for body weight regulation, as revealed by the dra-
matic development of obesity after selective

inactivation of the neuronal POMC gene in mice (1) and the presence of POMC muta-
tions in humans with severe early-onset obesity (2). POMC is proteolytically pro-
ceeded into a number of physiologically important peptides, including endorphins, adrenocorticotropic hormone (ACTH), and α-melanocyte–stimulating hormone (α-MSH). The loss of α-MSH production by POMC-deficient neurons is primarily responsible for the resultant obesity (3). The 13-amino-acid peptide α-MSH (referred to as α-MSH[1-13]) acts on the postsynaptic melanocortin 4 receptor (MC4R) in many brain

regions to suppress appetite and stimulate metabolism (Figure 1). Failure of α-MSH[1-13] signaling due to mutations in the MC4R gene represents the most common form of genetically inherited human obesity (4).

The activity of POMC neurons and the synthesis of POMC are stimulated by hormones such as leptin and insulin and inhibited by fasting (5–7). Signaling by POMC neurons is kept in check by neighboring neurons that make neuropeptide Y (NPY), agouti-related protein (AgRP), and GABA (Figure 1). The hormones and neurotransmitters that regulate these two populations of hypothalamic neurons have been studied extensively during the last 15 years (5–7). Whereas the events that lead up to activation of MC4R by α-MSH[1-13] are well known, virtually noth-
ing is known about how α-MSH[1-13] activity is terminated. The extent of MC4R activa-
tion, and hence the extent of appetite loss, will be determined by the rate of α-MSH[1-13] release from POMC neurons and the rate at which it is degraded or otherwise cleared from the synaptic space. A seminal paper

commentaries
by Wallingford et al., reported in this issue of the JCI, provides the first insights into how α-MSH\textsubscript{1–13} is inactivated (8).

Proteolytic processing of POMC

A brief overview of how α-MSH\textsubscript{1–13} is created from POMC (4, 9) facilitates appreciation of the mechanism of its inactivation reported by these authors (Figure 2). POMC is cleaved at dibasic residues by proconvertase 1 (PC1), resulting in the release of ACTH\textsubscript{1–39} from the middle of the POMC precursor molecule. ACTH\textsubscript{1–39} is further cleaved by PC2 at a tetradecapeptide sequence to generate ACTH\textsubscript{1–17}. The basic residues at the C-terminus (Lys-Lys-Arg) are removed by carboxypeptidase E, and the newly exposed C-terminal glycine is converted to an amide by peptidyl α-amidating monoxygenase (PAM) to yield desacetyl-α-MSH\textsubscript{1–13}, which is then acetylated on the N-terminal serine residue, resulting in the formation of mature, active α-MSH\textsubscript{1–13}. All of these processing events occur during transit of the POMC precursor through the regulated secretory pathway in hypothalamic neurons so that vesicles containing mature, active α-MSH\textsubscript{1–13} can be released when POMC neurons are activated. Deficits in these processing enzymes also lead to obesity, at least in part because of inadequate α-MSH\textsubscript{1–13} production (10–12).

Wallingford et al. (8) now show that α-MSH\textsubscript{1–13} is inactivated by removal of the amidated C-terminal valine residue. The enzyme involved in this inactivation is prolylcarboxypeptidase (PRCP) (Figure 2). This serine protease was discovered more than 40 years ago because of its ability to convert the vasoconstrictor angiotensin II to angiotensin\textsubscript{1–7}, which counteracts vasoconstriction (13). Later, PRCP was shown...
to activate the coagulation-related protein prekallikrein—an early step in the production of the vasodilator bradykinin (14). The current study by Wallingford et al. (8) shows that this enzyme is also expressed in the brain, where it plays an important role in determining neuropeptide levels. Their studies began with a C57BL/6 mouse strain that carries a small region of chromosome 7 from a BALB/c strain. Those mice were significantly leaner compared with C57BL/6 mice without the BALB/c chromosomal segment (15), prompting further investigation as to the gene(s) in that chromosomal interval that contribute to the lean phenotype. Further studies determined that the relevant BALB/c region on chromosome 7 includes only 4 protein-encoding genes; of those genes, Pref was the likely candidate, given previous reports of a link between Prcp and metabolic syndrome (16). Sequencing revealed no polymorphisms within any of the coding regions of the 4 genes, but there was a single-base polymorphism at –718 in the presumptive promoter/enhancer region of the Pref gene that was associated with a significant reduction in the level of Pref mRNA in the brain of the mice carrying the BALB/c allele. The authors also generated a complete knockout of the Pref gene from mouse embryonic stem cells in which a lacZ gene had randomly inserted into the fourth intron of the Pref gene in a gene-trapping experiment. The Pref-null (Pref−/−) mice ate less and had even less fat than the mice with partial loss of the enzyme; furthermore, these animals were resistant to diet-induced obesity. The authors convincingly demonstrate that α-MSH1−13 is a substrate for Prcp, which is known to remove the carboxyterminal residue from proteins with a penultimate proline residue. As predicted, the Pref−/− mice had elevated levels of α-MSH1−13 in the brain. Injection of α-MSH1−13 into the brain of wild-type mice inhibited feeding, whereas injection of the same amount of the truncated, inactive α-MSH1−12 was ineffective at reducing food consumption. As a final demonstration of the importance of Prcp, the authors showed that delivery of 2 different specific inhibitors of Prcp to the brain could suppress food intake by hungry mice in an MC4R-dependent manner. Overall, this is a very satisfying set of results that logically leads from the identification of a candidate disease gene to determination of its mechanism of action.

PRCP is expressed in the hypothalamus

Wallingford et al. (8) show that many cells in the brain make Prcp, including cells in the hypothalamus, where α-MSH1−13 is released onto postsynaptic neurons bearing MC4 receptors. Prcp has a signal peptide to direct it into the secretory pathway. Although Prcp was originally described as a lysosomal enzyme (17), it seems likely that its action on its known substrates, including α-MSH1−13, occurs extracellularly. So, Prcp may be poised in the synaptic space to degrade α-MSH1−13 and thereby reduce α-MSH1−13 action, which would promote anorexia. It is also possible that the amount of Prcp in the extracellular space can be regulated; e.g., under starvation conditions, the activity of Prcp may be elevated in order to limit α-MSH1−13 signaling and thereby help promote feeding and reduce metabolism. The converse situation has been demonstrated by studies showing that acetylation of desacetyl α-MSH1−13 increases in response to the adiposity hormone leptin (17, 18), which stabilizes α-MSH1−13 and thereby promotes weight loss.

Future directions

The present study adds an important new dimension to our understanding of how neuropeptide signaling is controlled in the brain. Moreover, it raises many intriguing questions and possibilities. Considering that α-MSH1−13 also functions in the skin to control pigmentation via activation of melanocortin-1 receptors, changes in Prcp levels may also affect skin and hair color. Because Prcp is widely expressed at low levels in the brain and in the periphery, it is likely that there are additional substrates with penultimate proline residues in their sequence whose levels are controlled by Prcp. Consequently, the phenotype of the Pref−/− mice may be more complex, and more interesting, than currently envisioned. For example, we can already anticipate that the levels of angiotensin II and bradykinin will be affected. Thus, there is much more to learn from the Pref−/− mice generated by Wallingford and colleagues (8). It will also be interesting to determine whether mutations in the human Prcp...
gene are correlated with body weight. If it turns out that α-MSH1,13 is the principal substrate of PRCP, then pharmacological inhibition of its action in the brain could help reduce appetite and weight gain; Wallingford et al. (8) demonstrated the efficacy of this strategy by injecting inhibitors directly into the brain, but brain-penetrating drugs would need to be developed to be clinically useful.

Address correspondence to: Richard D. Palmiter, Department of Biochemistry and Genome Sciences, Health Sciences Building, Room J-661F, Box 357370, University of Washington, 1959 Pacific Avenue, Seattle, Washington 98195, USA. Phone: (206) 543-6064; Fax: (206) 543-0858; E-mail: palmiter@ u.washington.edu.

Engaging the lysosomal compartment to combat B cell malignancies

Kirsten Grønbæk1 and Marja Jäättelä2

1Department of Hematology, Rigshospitalet, Copenhagen, Denmark. 2Apoptosis Department and Centre for Genotoxic Stress Response, Institute for Cancer Biology, Danish Cancer Society, Copenhagen, Denmark.

The combination of rituximab, a type I anti-CD20 mAb, with conventional chemotherapy has significantly improved the outcome of patients with B cell malignancies. Regardless of this success, many patients still relapse with therapy-resistant disease, highlighting the need for the development of mAbs with higher capacity to induce programmed cell death. The so-called type II anti-CD20 mAbs (e.g., tositumomab) that trigger caspase-independent B cell lymphoma cell death in vitro and show superior efficacy as compared with rituximab in eradicating target cells in mouse models are emerging as the next generation of therapeutic anti-CD20 mAbs. In this issue of the JCI, Ivanov and colleagues identify the lysosomal compartment as a target for type II mAbs (see the related article beginning on page 2143). These data encourage the further clinical development of type II mAbs as well as other lysosome-targeting drugs in the treatment of B cell malignancies.

Caspase-mediated apoptosis is the main mechanism of action of most current anti-cancer treatments. Defects in apoptosis signaling pathways are, however, among the major hallmarks of cancer, and apoptosis-inducing therapies further select for highly apoptosis-refractory tumor cell clones (1). Accordingly, new strategies to kill cancer cells by nonapoptotic mechanisms have flourished during the past decade, and many mediators of alternate cell death pathways have been identified. Among them are the lysosomes with their large arsenal of proteolytic and lipolytic hydrolases (2, 3).

The lysosome: an emerging target for cancer therapy

Lysosomes function as cellular recycling and waste disposal units by degrading organelles and macromolecules delivered to the lysosomal compartment by autophagy, endocytosis, and phagocytosis (4). The degradation is performed by over 50 lysosomal hydrolases that can process all the major macromolecules of the cell to break down products available for metabolic reutilization. The lysosomal cell death pathways are characterized by partial lysosomal membrane permeabilization and the subsequent translocation of lysosomal hydrolases into the cytosol (2, 3). Once in the cytosol, lysosomal hydrolases, particularly cathepsin proteases, can trigger caspase-independent and BCL-2–insensitive cell death pathways even in highly apoptosis-resistant cancer cells.

The potential of lysosomes as powerful “cell suicide bags” was recognized already in the 1950s by Christian de Duve, who received the Nobel prize for his discovery of