An activated mutant BRAF kinase domain is sufficient to induce pilocytic astrocytoma in mice

Jan Gronych, … , Stefan Pfister, Peter Lichter

Pilocytic astrocytoma (PA) is the most common type of primary brain tumor in children and the second most frequent cancer in childhood. Children with incompletely resected PA represent a clinically challenging patient cohort for whom conventional adjuvant therapies are only moderately effective. This has produced high clinical demand for testing of new molecularly targeted treatments. However, the development of new therapeutics for PA has been hampered by the lack of an adequate in vivo tumor model. Recent studies have identified activation of MAPK signaling, mainly by oncogenic *BRAF* activation, as a hallmark genetic event in the pathogenesis of human PA. Using in vivo retroviral somatic gene transfer into mouse neural progenitor cells, we have shown here that ectopic expression of the activated *BRAF* kinase domain is sufficient to induce PA in mice. Further in vitro analyses demonstrated that overexpression of activated *BRAF* led to increased proliferation of primary mouse astrocytes that could be inhibited by treatment with the kinase inhibitor sorafenib. Our in vivo model for PA shows that the activated *BRAF* kinase domain is sufficient to induce PA and highlights its role as a potential therapeutic target.

Find the latest version:

http://jci.me/44656/pdf
Brief report

An activated mutant BRAF kinase domain is sufficient to induce pilocytic astrocytoma in mice

Jan Gronych,1 Andrey Korshunov,2 Josephine Bageritz,1 Till Milde,3,4 Manfred Jugold,5 Dolores Hambardzumyan,6 Marc Remke,1,4 Christian Hartmann,2 Hendrik Witt,1,4 David T.W. Jones,1 Olaf Witt,3,4 Sabine Heiland,7 Martin Bendszus,7 Eric C. Holland,6 Stefan Pfister,1,4 and Peter Lichter1

1Division Molecular Genetics (B060), German Cancer Research Center, Heidelberg, Germany.
2Clinical Cooperation Unit Neuropathology (G380), German Cancer Research Center, and Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-University, Heidelberg, Germany. 3Clinical Cooperation Unit Pediatric Oncology (G340), German Cancer Research Center, Heidelberg, Germany. 4Clinical Cooperation Unit Pediatric Oncology (G340), German Cancer Research Center, Heidelberg, Germany. 5Division Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany. 6Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA. 7Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany.

Pilocytic astrocytoma (PA) is the most common type of primary brain tumor in children and the second most frequent cancer in childhood. Children with incompletely resected PA represent a clinically challenging patient cohort for whom conventional adjuvant therapies are only moderately effective. This has produced high clinical demand for testing of new molecularly targeted treatments. However, the development of new therapeutics for PA has been hampered by the lack of an adequate in vivo tumor model. Recent studies have identified activation of MAPK signaling, mainly by oncogenic BRAF activation, as a hallmark genetic event in the pathogenesis of human PA. Using in vivo retroviral somatic gene transfer into mouse neural progenitor cells, we have shown here that ectopic expression of the activated BRAF kinase domain is sufficient to induce PA in mice. Further in vitro analyses demonstrated that overexpression of activated BRAF led to increased proliferation of primary mouse astrocytes that could be inhibited by treatment with the kinase inhibitor sorafenib. Our in vivo model for PA shows that the activated BRAF kinase domain is sufficient to induce PA and highlights its role as a potential therapeutic target.

Introduction

Pilocytic astrocytoma (PA) is the most common primary brain tumor in children. This WHO grade I neoplasm characteristically displays noninfiltrative growth and shows benign biological behavior that translates into a remarkably high 10-year overall survival rate of greater than 90% upon gross total resection (1). Nevertheless, up to 20% of patients may not be cured by surgery alone (2). Because of the slow-growing nature of PA, complete responses to adjuvant radiation and chemotherapy are rare, and most tumors eventually progress after a stabilization period of typically more than 3 years. Thus, there is demand for novel targeted therapeutic options (3).

Recent studies suggest that most PAs feature constitutive activation of the MAPK signaling cascade as a molecular hallmark. Thus, PA may be a prototypic single-pathway disease, with MAPK signaling constituting the critically important molecular target for future therapeutic intervention. Previously, we identified tandem duplications or activating mutations (V600E) of the proto-oncogene BRAF at 7q34 as by far the most prevalent genetic mechanism leading to constitutive MAPK pathway activation, occurring in more than 50% of sporadic PAs (4). Subsequent studies confirmed similar or even higher frequencies of BRAF tandem duplications and activating mutations in PAs, with V600E being the most frequent, and showed that the duplication leads to formation of fusion genes of BRAF (5–9). The unifying molecular feature of all RAF fusion products identified to date is that the RAF kinase domain alone, upon loss of the autoinhibitory N terminus, has the potential to drive proliferation via constitutive MAPK activation. Hence, it is commonly assumed that RAF activation, either by fusion or by mutation, constitutes a critically important genetic event in PA tumorigenesis.

Approaches based on constitutive MAPK activation were pursued to model human brain tumors in mice (10–12). However, generation of an adequate model for PA has been hampered by the low proliferative character of these tumors and a lack of knowledge about the molecular etiology.

To assess the oncogenic potential of BRAF in the formation of astrocytic tumors, we used the replication-competent avian leukosis virus with splice acceptor/Tv-a (RCAS/Bv-a) system for retroviral gene transfer (13, 14). Using this system, we introduced different BRAF constructs into nestin-expressing neural progenitor cells of newborn mice. We show that transgenic expression of the activated BRAF kinase domain was sufficient to induce PA formation in mice, with tumors closely recapitulating the clinical and histological features of human PA.

Results and Discussion

Generation of MAPK-activating RCAS-BRAF variants. To assess the role of BRAF in brain tumor etiology, we cloned a variety of BRAF constructs—the full-length gene (BRAF WT FL), the full-length gene carrying the V600E mutation (BRAF VE FL), the WT kinase domain spanning exons 9–18 of WT BRAF (BRAF WT kin), and the V600E mutated BRAF kinase domain (BRAF VE kin) — into the RCASBP(A) vector.
Transduction of primary Ntv-a astrocytes with these different constructs and GFP as a control in vitro revealed morphological alterations and focal growth induced by overexpression of BRAF VE kin (Figure 1B). Cells expressing all other constructs displayed a morphology similar to the GFP control.

BRAF VE kin induces tumors in Ntv-a mice. For expression of BRAF variants in neural progenitor cells in vivo, we injected virus-producing DF-1 cells into hemispheres or brainstem of neonatal Ntv-a mice for each of the 4 variants (Table 1). In the first cohort, 7 of 39 animals died as a result of encephalitis during the first weeks after injection. At 17 weeks after inoculation, all surviving mice were still clinically asymptomatic. These animals were then sacrificed, and presence of a tumor was detected upon histopathologic evaluation only in animals overexpressing BRAF VE kin. In a second cohort, BRAF VE kin was injected into the cerebral hemispheres. Using high-field MRI, unilateral hemispheric hyperintensity in T1-weighted images after application of contrast agent was detected (Figure 2A). Of note, this radiologic finding resembled the MRI appearance of human PAs, which are frequently contrast enhancing. Postmortem histopathologic analysis confirmed the presence of glial tumors based on GFAP immunoreactivity. Furthermore, activated MAPK signaling, as assessed by immunohistochemical staining for Erk phosphorylation, overlapped with the contrast enhancement seen in the MRI and with GFAP staining. FLAG-tagged BRAF transgene was also detected in the neoplastic region, but exhibited more diffuse staining (Figure 2A). Strikingly, the relatively slow tumor growth seen upon RCAS-mediated oncogene induction again recapitulated the biological behavior of human PAs. Tumor-bearing animals were clinically asymptomatic until at least 4 months after induction; in contrast, animals subjected to tumor induction with RCAS-PDGF survive no longer than 3 months in the same system (15).

Tumor incidence and histology. Histopathological analysis revealed a total of 21 neoplasias in the cerebral hemispheres (n = 17) and in the brainstem (n = 4). All of these lesions were found upon overexpression of BRAF VE kin, with an incidence of 91% (21 of 23; Table 1). With all remaining constructs, no tumor development was observed up to 4 months after injection. This confirmed the findings of an earlier study, in which overexpression of full-length WT BRAF or the full-length V600E variant alone did not result in tumor formation after 3 months, whereas overexpression of BRAF VE FL resulted in high-grade astrocytic tumors only on an Ink4/Arf-deficient background (16). This, in turn, is consistent with considerations on the role of Ink4/Arf in Ras-driven mouse models in the literature (17).

In our study, BRAF VE kin–induced cerebral tumors exhibited more extensive growth within the hemisphere along the lateral ventricle, compared with the more focal appearance of brainstem neoplasias (Figure 1A). Transduction of primary Ntv-a astrocytes with these different constructs and GFP as a control in vitro revealed morphological alterations and focal growth induced by overexpression of BRAF VE kin (Figure 1B). Cells expressing all other constructs displayed a morphology similar to the GFP control.

Figure 1
BRAF variants induce MAPK activation. (A) Different BRAF constructs used for RCAS-mediated gene delivery. Truncated variants containing the kinase domain corresponded to exons 9–18 of the human BRAF gene. The V600E mutation is indicated. (B) Phase-contrast microscopy demonstrated altered cell morphology and focal growth of cells transduced with BRAF VE kin compared with control and other BRAF constructs. Scale bars: 100 μm.
tumors (Figure 2, A and B). In one of the cerebral tumors, neoplastic tissue was also found in the cerebellum (Figure 2B). In all cases, neoplastic tissue showed the presence of the transgene, and tumors were well-delineated from healthy tissue, as shown by FLAG and GFAP staining, respectively (Figure 2C). Staining of nestin, a marker for neural precursors, showed weak to negative immunoreactivity (Figure 2C). Histopathological analysis of the tumors revealed characteristic morphological patterns closely resembling human PA (Figure 2D). Tumor cells showed typical biphasic, piloid pattern and a predominantly elongated shape with round or oval, frequently pale nuclei. Eosinophilic elongated structures resembling Rosenthal fibers and eosinophilic granular bodies, so-called protein droplets, were interspersed. Blood vessels were relatively scarce. Endothelial proliferation, microcystic degeneration, or regions with oligodendroglioma-like cells were not observed. All tumors showed strong immunopositivity for GFAP, which demonstrated in the majority of tumor cells the presence of bipolar long processes forming a tight network in the intercellular spaces. The intensity of GFAP immunostaining was noticeably stronger than in reactive astrocytes from surrounding brain tissue (Figure 2C). The low proliferative index, as assessed by Ki67 immunohistochemistry, and the clear phospho-Erk positivity were again reminiscent of human PA (Figure 2D). These observations underline the similarity between the induced murine tumors and their human counterparts.

MAPK activation and proliferation after BRAF overexpression and sorafenib treatment. To further investigate the effects of BRAF overexpression in vitro, we isolated primary neurospheres from Ntv-a mice and transduced them with the 4 different RCAS-BRAF constructs or RCAS-GFP. Expression of BRAF variants was confirmed on protein and RNA levels (Figure 3A). Interestingly, although successful viral transduction was demonstrated by quantitative RT-PCR, protein levels of BRAF VE FL were considerably reduced and only slightly above endogenous levels compared with all other variants. This is in line with a previous report showing that intrinsic stability of the V600E form of BRAF is reduced compared with the WT protein (18). In spite of this, increased MAPK activation was detected, as reflected by phosphorylation of Erk1/2 compared with the control (Figure 3A). BRAF VE kin, although showing lower RNA abundance, was present in higher protein amounts and led to clearly increased MAPK activation. In both cases, Erk phosphoryla-

![Figure 2](https://example.com/figure2.jpg)
tion was abrogated by treatment with 5 μM sorafenib (Figure 3A). The WT variants did not induce detectable MAPK activation in this context. Therefore, absence of tumors after overexpression of BRAF VE FL could be attributed to the reduced protein abundance of this variant, whereby its MAPK activation does not suffice for neoplastic transformation without further oncogenic hits.

To assess the effect of the different BRAF constructs on proliferation, transduced cells were incubated with EdU in serum-containing medium for 48 hours (Figure 3B). GFP-transduced cells showed a very low proliferation rate of 1.1% ± 0.1%. Whereas expression of BRAF VE FL and BRAF WT kin increased the proliferating fraction to 4.0% ± 0.4% and 2.9% ± 0.4%, respectively, BRAF VE kin led to an increase to 13.0% ± 1.2%. Proproliferative effects of the V600E constructs were significantly abrogated by treating the cells with 5 μM sorafenib (Figure 3B), which highlights the potential of MAPK inhibitors for clinical use. Since in human PA, oncogenic BRAF activation by fusion genes that lack activating point mutations is much more frequent than that by the V600E mutation itself, it will be highly interesting and relevant for preclinical testing of targeted drugs to model tumor induction by BRAF fusion genes in the future.

In conclusion, we provide in vivo evidence that BRAF activation is sufficient to generate PA in mice and demonstrate that the histopathological and biological characteristics of induced murine tumors are highly reminiscent of human PA. Thus, we have generated a mouse model that allows for comprehensive preclinical testing in a system that closely resembles the situation in humans.

Methods
Vector construction and in vivo infection. C-terminally FLAG-tagged BRAF variants were amplified using primers containing Clal and NotI restriction sites...
Cell proliferation was analyzed with the Click-iT EdU assay (Invitrogen) according to the manufacturer’s protocol. In brief, cells were incubated with 10 μM EdU for 4 hours before measurement. Incorporated EdU was detected by conjugation of Alexa Fluor 488 and subsequent flow cytometry on FACS Canto (BD Biosciences). For each measurement, at least 10,000 events were counted. Data were analyzed using FACS Diva software (BD Biosciences).

Acknowledgments

We thank Neal Rosen for providing us with BRAF plasmids. This work was supported by grants from the German Federal Ministry of Education and Research (BMBF) within the National Genome Research Network NGSFplus (01GS0883) as well as by funds from the Sibylle-Assmus Award 2009 to S. Pfister. J. Gronych and J. Bageritz have been supported by the Helmholtz International Graduate School for Cancer Research.

Received for publication August 6, 2010, and accepted in final form January 19, 2011.

Address correspondence to: Peter Lichter or Stefan Pfister, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany. Phone: 49.6221.42.4593; Fax: 49.6221.42.4618; E-mail: peter.lichter@dkfz.de (P. Lichter), Phone: 49.6221.42.4618; Fax: 49.6221.42.4639; E-mail: s.pfister@dkfz.de (S. Pfister).

