Behavioral stress accelerates prostate cancer development in mice

Sazzad Hassan, … , Sandeep Robert Datta, George Kulik

Prostate cancer patients have increased levels of stress and anxiety. Conversely, men who take beta blockers, which interfere with signaling from the stress hormones adrenaline and noradrenaline, have a lower incidence of prostate cancer; however, the mechanisms underlying stress–prostate cancer interactions are unknown. Here, we report that stress promotes prostate carcinogenesis in mice in an adrenaline-dependent manner. Behavioral stress inhibited apoptosis and delayed prostate tumor involution both in phosphatase and tensin homolog–deficient (PTEN-deficient) prostate cancer xenografts treated with PI3K inhibitor and in prostate tumors of mice with prostate-restricted expression of c-MYC (Hi-Myc mice) subjected to androgen ablation therapy with bicalutamide. Additionally, stress accelerated prostate cancer development in Hi-Myc mice. The effects of stress were prevented by treatment with the selective β2-adrenergic receptor (ADRB2) antagonist ICI118,551 or by inducible expression of PKA inhibitor (PKI) or of BCL2-associated death promoter (BAD) with a mutated PKA phosphorylation site (BADS112A) in xenograft tumors. Effects of stress were also blocked in Hi-Myc mice expressing phosphorylation-deficient BAD (BAD3SA). These results demonstrate interactions between prostate tumors and the psychosocial environment mediated by activation of an adrenaline/ADRB2/PKA/BAD antiapoptotic signaling pathway. Our findings could be used to identify prostate cancer patients who could benefit from stress reduction or from pharmacological inhibition of stress-induced signaling.

Find the latest version:

http://jci.me/63324/pdf
The authors have declared that no conflict of interest exists.
tion in mice subjected to androgen ablation therapy with bicalutamide (Casodex). Consistent with the role of the ADRB2/PKA/BAD signaling pathway, the effects of stress were blocked by providing Hi-Myc mice with ICI118,551 as well as in Hi-MycBAD^{3SA/WT} mice, in which endogenous BAD was replaced with phosphorylation-deficient mutant BAD^{3SA} (14).

Results

Immobilization stress protects prostate cancer xenografts from apoptosis via adrenaline/ADR2 signaling. To address the role of stress in therapeutic resistance of prostate cancer, we examined effects of immobilization stress on the responses of C42LucBAD xenografts to the PI3K inhibitor ZSTK474. Immobilization and exposure to predator scent is a well-established method of inducing behavioral stress in mice (15, 16). In our experiments, this technique increased adrenaline blood levels on average to 12 nM in stressed groups for at least 12 hours, whereas in nonstressed intact (or calm) mice, adrenaline was typically less than 1 nM (Supplemental Figure 1; supplemental material available online with this article; doi:10.1172/JCI63324DS1). Analysis of tumor tissue extracts also showed increased catecholamine levels in stressed mice (Supplemental Table 1).

C42 prostate cancer cells, which were used for xenograft studies, are among the best-characterized models of androgen-independent prostate cancer (17). The PI3K/AKT pathway is constitutively active in these cells due to the loss of tumor suppressor phosphatase and tensin homolog (PTEN), as is true for up to 70% of advanced androgen-independent prostate cancers (18). C42LucBAD cells were engineered to express firefly luciferase and...
These differences were eliminated by doxycycline-induced PKI-GFP expression (Supplemental Figure 1). Analysis of C42LucPKI xenograft tumors by Western blotting. ZSTK474 inhibited pAktS473 and induced cleavage of PARP and caspase-3. Stress or adrenaline induced pBAD and pCREBS133 and inhibited cleavage of PARP and caspase-3. These effects of stress or adrenaline were blocked by doxycycline-induced (Dox) PKI-GFP expression. At the time of tumor excision, blood was collected for adrenaline measurements (shown above blots). (B and C) Effects of stress and adrenaline on tumor luminescence depend on PKA activity. Mice were injected with DMSO as a control or with ZSTK474, with or without adrenaline or subsequent immobilization stress. Comparisons between groups were performed using t tests derived from the overall ANOVA model. (B) In mice that did not receive doxycycline, significant differences in luminescence across time were found in ZSTK+stress (P < 0.0002) and ZSTK+adren (P < 0.0002) groups versus ZSTK. (C) These differences were eliminated by doxycycline-induced PKI-GFP expression (P > 0.63 and P > 0.13, respectively). Error bars in B and C show the SD from the average of measurements in at least 4 mice.

HA-BAD. Expression of BAD provides a more uniform response of xenograft tumors to PI3K inhibitors, whereas luciferase expression allows noninvasive monitoring of xenograft tumors in mice in vivo by luminescent imaging. Injection of the PI3K inhibitor ZSTK474 into C42LucBAD xenografts substantially reduced luminescence, as well as tumor volume (as measured by magnetic resonance imaging; Supplemental Figure 2), whereas subjecting mice to immobilization stress prevented this reduction of luminescence in C42LucBAD xenografts (Figure 1, A and C). Immunohistochemical analysis of tumor xenografts with antibodies that recognize active caspase-3 showed increased staining of prostate cancer cells in ZSTK474-injected xenografts; staining was decreased in xenografts from mice subjected to immobilization stress (Figure 1B). The validity of staining for active caspase-3 to identify apoptosis in C42LucBAD cells was confirmed by TUNEL; in most cases, staining for TUNEL and active caspase-3 overlapped (Supplemental Figure 3). Analysis of proteins extracted from tumor xenografts by Western blotting confirmed the appearance of the active cleaved form of caspase-3 and cleavage of the caspase substrate PARP in tumors with reduced luminescence (Figure 1D), whereas no changes in cleaved caspase-3 and PARP were observed in xenografts excised from stressed mice not injected with ZSTK474 (Supplemental Figure 4). Therefore, diminished luminescence of xenograft tumors reflects increased apoptosis of C42LucBAD cells.

Because beta blockers were reported to reduce prostate cancer incidence and mortality (10, 19), and ADRB2 is the predominant adrenergic receptor in LNCaP/C42 prostate cancer cells (20), we examined the effects of stress in the presence of the selective ADRB2 antagonist ICI118,551 (21). Effects of stress on xenograft luminescence and apoptosis (i.e., PARP and caspase-3 cleavage) were completely blocked by ICI118,551 (Figure 1, C and D). Conversely, injections of adrenaline mimicked the effects of stress on xenografts’ luminescence and apoptosis. As was the case with stress, effects of adrenaline injections were blocked by ICI118,551 (Figure 1C). Taken together, our results suggest that adrenaline signaling via ADRB2 is necessary and sufficient to inhibit apoptosis in prostate cancer xenografts of mice subjected to immobilization stress.

Figure 2 Activation of PKA is necessary for stress- or adrenaline-induced protection from apoptosis in prostate cancer xenografts. (A) Analysis of C42LucPKI xenograft tumors by Western blotting. ZSTK474 inhibited pAktS473 and pBAD and induced cleavage of PARP and caspase-3. Stress or adrenaline induced pBAD and pCREBS133 and inhibited cleavage of PARP and caspase-3. These effects of stress or adrenaline were blocked by doxycycline-induced (Dox) PKI-GFP expression. At the time of tumor excision, blood was collected for adrenaline measurements (shown above blots). (B and C) Effects of stress and adrenaline on tumor luminescence depend on PKA activity. Mice were injected with DMSO as a control or with ZSTK474, with or without adrenaline or subsequent immobilization stress. Comparisons between groups were performed using t tests derived from the overall ANOVA model. (B) In mice that did not receive doxycycline, significant differences in luminescence across time were found in ZSTK+stress (P < 0.0002) and ZSTK+adren (P < 0.0002) groups versus ZSTK. (C) These differences were eliminated by doxycycline-induced PKI-GFP expression (P > 0.63 and P > 0.13, respectively). Error bars in B and C show the SD from the average of measurements in at least 4 mice.

Stress protects C42Luc xenografts from apoptosis via PKA/ BAD signaling. To examine signaling pathways that control apoptosis in prostate cancer xenografts, we targeted phosphorylation of BAD, a BH3-only proapoptotic member of the Bcl2 protein family. Earlier tissue culture experiments identified BAD as a convergence node for several survival signaling pathways in prostate cancer and breast cancer cells (22, 23). However, in vivo evidence that BAD phosphorylation plays a critical role in antiapoptotic signaling in prostate tumors has been lacking. BAD is continuously phosphorylated at S112, S136, and S155 in PTEN-deficient prostate cancer cells. Phosphorylation at either BADS112 or BADS136 facilitates binding to 14-3-3 proteins and neutralizes the proapoptotic properties of BAD (24). In prostate cancer cells, inhibition of PI3K led to dephosphorylation of BADS112 and BADS136 and increased apoptosis, while antiapoptotic signaling by vasoactive intestinal peptide, adrenaline, or the RAF/MAPK pathway restored phosphorylation of BADS112 and inhibited apoptosis (11, 22).

ZSTK474 inhibited phosphorylated AKTS473 (pAKTS473) and pBAD in xenograft tumors of intact mice. However, in mice subjected to immobilization stress or injected with adrenaline, BAD phosphorylation was restored, despite continuous inhibition of the PI3K/AKT pathway (Figure 1D). Injection of ICI118,551 prevented BAD phosphorylation by either stress or adrenaline. Since C42Luc xenografts are characterized by constitutive activation of the PI3K pathway, BAD was constitutively phosphorylated. Its phosphorylation status was not changed significantly by stress in the absence of ZSTK474, although CREB phosphorylation was increased (Supplemental Figure 4). These results demonstrated that immobilization stress triggers PI3K/AKT-independent phosphorylation of BAD via the adrenaline/ADRB2 axis in prostate cancer xenografts.

PKA has been identified as one of the downstream effectors of ADRB2 signaling and as a BADS112 kinase (25, 26). We thus analyzed phosphorylation of CREBS133, an established PKA substrate (27), in prostate cancer xenografts; similar to BADS112, both stress and adrenaline stimulated pCREBS133, and these effects were reversed by ICI118,551 (Figure 1D).
To directly test the role of PKA in antiapoptotic signaling by stress or adrenaline in vivo, we generated C42LucPKI cells that inducibly express a chimera of the PKA inhibitor peptide PKI and GFP (PKI-GFP; ref. 28). Induction of PKI-GFP expression in C42LucPKI prostate cancer cells prevented adrenaline-induced activation of PKA to a degree similar to pretreatment with IC118,551, as shown by lack of CREB phosphorylation (Supplemental Figure 5). Likewise, in subcutaneously implanted C42LucPKI xenografts, doxycycline-induced PKI-GFP expression prevented phosphorylation of the PKA substrates CREB and BAD in response to stress or adrenaline injection (Figure 2A). Furthermore, doxycycline-induced expression of GFP-PKI in C42Luc xenografts blocked the ant apoptotic effects of stress or adrenaline, as evidenced by the increased levels of cleaved caspase-3 and cleaved PARP.

Consistent with increased apoptosis, decreased luminescence was observed in C42LucPKI xenografts injected with ZSTK474 in mice that received doxycycline before stress or adrenaline injection, whereas in the absence of doxycycline, these xenograft tumors responded to stress could activate antiapoptotic mechanisms in the prostate. To address this question, we examined phosphorylation of the PKA substrates CREB and BAD in prostates of stressed FVB or BALB/c nude mice (Figure 4A and Supplemental Figure 6A). Statistically significant positive correlations were observed between adrenaline levels and pBAD S112 and pCREBS133 in prostates of stressed mice (Supplemental Figure 6B). These results suggest that an adrenaline/ADRB2 phosphorylation plays a decisive role in antiapoptotic effects of stress in prostate xenograft tumors.

Behavioral stress activates adrenaline/ADRB2 signaling, inhibits apoptosis, and accelerates cancer development in mouse prostates. Experiments with subcutaneously implanted C42 xenografts demonstrated that psychosocial stress could activate the adrenaline/ADRB2/PKA/BAD antiapoptotic signaling pathway in prostate tumors that grow outside of prostate gland and boost their therapeutic resistance. However, these experiments did not elucidate whether stress could activate antiapoptotic mechanisms in the prostate. To address this question, we examined phosphorylation of the PKA substrates CREB and BAD in prostates of mice subjected to immobilization stress. pBAD S112 and pCREBS133 increased in prostates of stressed FVB or BALB/c nude mice (Figure 4A and Supplemental Figure 6A). Statistically significant positive correlations were observed between adrenaline levels and pBAD S112 and pCREBS133 in prostates of stressed mice (Supplemental Figure 6B).

These results suggest that an adrenaline/ADRB2/PKA/BAD antiapoptotic signaling pathway activated in response to behavioral stress could contribute to the progression of primary prostate tumors in mice. To test this hypothesis, we chose Hi-Myc mice, a model of prostate cancer driven by prostate-restricted expression of c-MYC under a probasin promoter (29). Ectopic expression of c-MYC increases both proliferation and apoptosis in various cell
types, including prostate epithelial cells (29, 30); however, it did not increase BAD phosphorylation (Figure 4A). At the same time, subjecting mice to immobilization stress increased BAD phosphorylation in prostates of WT and Hi-Myc mice and decreased cleavage of caspase-3 and PARP in Hi-Myc prostates (Figure 4, A and B). Furthermore, immobilization stress administered for 7 consecutive days led to increased prostate weight in Hi-Myc mice, but not WT mice (Figure 5A). Histological analysis of prostate tissue sections revealed reduced apoptosis, based on increased numbers of cells with active caspase-3 or with positive TUNEL staining (Figure 5B and Supplemental Figure 7), and larger PIN area (Figure 5C), in Hi-Myc mice subjected to stress. Consistent with our results in C42 xenografts, stress-induced phosphorylation of BAD, inhibition of apoptosis, more extensive PIN, and increased prostate weight were all blocked in stressed mice by the ADRB2 antagonist ICI118,551 (Figures 4 and 5).

Analysis of BAD phosphorylation and of apoptosis markers (cleaved PARP and cleaved caspase-3) revealed no difference between prostates from intact or stressed Hi-MycBAD3SA/WT mice; however, pCREBS133 in prostates of stressed mice was significantly increased (Figure 6, A and B, and Supplemental Figure 8, A and B), which confirmed that stress activated the PKA pathway. Analysis of prostate tissue sections showed that, similar to WTBAD3SA/WT littermates, Hi-MycBAD3SA/WT mice were characterized by PIN, predominantly in the dorsolateral prostate (DLP) lobe. At the same time, there were no significant differences in prostate weight between Hi-MycBAD3SA/WT mice subjected to repeated immobilization stress or left intact (Figure 6, C and D), in striking contrast to Hi-MycBAD3SA/WT mice, which express WT BAD (Figure 5A). Comparable results were obtained in 12- and 24-week-old Hi-MycBAD3SA/WT mice (Figure 6 and Supplemental Figure 8). Thus, similar to the C42 prostate cancer xenograft model, BAD phosphorylation was necessary for behavioral stress to manifest tumor-promoting effects in mouse prostate glands.
Research article

Behavioral stress delays bicalutamide-induced involution and apoptosis in prostates of Hi-Myc mice. Androgen ablation therapy, introduced by Huggins in 1941, remains the most effective systemic treatment for prostate cancer (reviewed in ref. 31). Bicalutamide, an androgen receptor (AR) antagonist that, upon binding, inhibits transcriptional activity of AR, is widely used to treat prostate cancer. Since AR activity is necessary for survival of prostate cells, bicalutamide androgen-responsive gene, was significantly reduced in prostates of bicalutamide-treated mice, yet no significant increase in probasin expression was detected in stressed mice (Figure 8, A and D), which indicates that stress does not transactivate AR signaling or activate transcriptional targets of AR.

The effect of stress on prostate weight was completely blocked by the ADRB2 antagonist ICI118,551 and was decreased from 2-fold

induces apoptosis and involution of human and rodent prostates (32–34).

We examined effects of systemically injected bicalutamide on prostates of Hi-Myc mice. The most significant reduction in prostate weight (from 45 ± 8.3 mg to 29 ± 8.4 mg) was observed after 2 daily injections of bicalutamide, with little further decrease (to 28 ± 3.7 mg) after third bicalutamide injection. Effects of behavioral stress on prostate weight were also most evident after 2 days of bicalutamide injections; therefore, this time point was selected for subsequent experiments. As shown in Figure 7, behavioral stress delayed Hi-Myc prostate involution and apoptosis induced by bicalutamide and increased prostate weight in bicalutamide-treated stressed versus intact Hi-Myc mice. Consistent with the effects on prostate weight, stress caused a significant 3.6-fold reduction in apoptosis, based on the percentage of cells with cleaved caspase-3 (Figure 7B). Analysis of Hi-Myc prostates by Western blotting confirmed quantitative analysis of apoptosis: cleaved caspase-3 and cleaved PARP were increased in prostates of mice that received bicalutamide (Figure 8A). Behavioral stress induced pCREB(133) and pBAD(112) and inhibited apoptosis, as shown by lower levels of cleaved caspase-3 and cleaved PARP, in prostates of stressed mice (Figure 8, B and C). Expression of probasin, a known androgen-responsive gene, was significantly reduced in prostates of bicalutamide-treated mice, yet no significant increase in probasin expression was detected in stressed mice (Figure 8, A and D), which indicates that stress does not transactivate AR signaling or activate transcriptional targets of AR.

The effect of stress on prostate weight was completely blocked by the ADRB2 antagonist ICI118,551 and was decreased from 2-fold

Figure 5
Stress accelerates PIN growth and inhibits apoptosis in DLP glands of Hi-Myc mice. (A) Stress increased prostate weight. Mouse prostates (AP, DLP, and VP lobes) were dissected and weighed, and the total prostate wet weight was expressed as mg/25 g body weight. Statistically significant differences were observed between intact and stressed Hi-Myc mice (P = 0.002), but not between WT groups (P = 1.00). This difference in Hi-Myc mice was eliminated by ICI118,551 injection prior to stress (P = 0.49). (B) Stress reduced apoptosis in DLP glands. Percent cleaved caspase-3–labeled cells in immunostained sections was determined relative to the total number of glandular epithelial cells in whole sections of DLP. Representative images of cleaved caspase-3 IHC-stained sections from DLP of intact or stressed Hi-Myc mice are also shown. Scale bars: 50 μm. Insets show the original images (×40 objective) enlarged ×5. (C) Stress increased PIN in DLP glands of Hi-Myc mice. Percent PIN area was determined as area of PIN divided by total DLP glandular area. Representative microphotographs of H&E-stained sections from DLP glands of intact and stressed Hi-Myc mice are also shown. Scale bars: 50 μm. See Supplemental Figure 8D for morphology of mouse PIN. Error bars in A–C show SD from the average of at least 5 samples.
to 0.2-fold in Hi-MycBAD3SA/WT prostates (Figure 7). Conversely, no significant decrease of apoptosis was observed in prostates of Hi-Myc mice, behavioral stress activated the adrenaline/ADRB2/PKA/BAD antiapoptotic signaling pathway, which in turn reduced therapeutic sensitivity and accelerated prostate cancer development. These data introduce behavioral stress as a new environmental component contributing to prostate cancer pathogenesis through a defined antiapoptotic signaling pathway that impinges on BAD phosphorylation. Considering that prostate cancer diagnosis increases stress and anxiety levels (6, 7), activation of a stress-induced antiapoptotic pathway may lead to a vicious cycle of stress and cancer progression (Figure 9).

Numerous publications have demonstrated that BAD phosphorylation is necessary for inhibition of apoptosis by survival agonists in tissue culture models, including prostate cancer cell lines (11, 22, 35). However, the in vivo evidence supporting the role of BAD phosphorylation is circumstantial, and therefore cannot distinguish whether BAD phosphorylation plays a dominant or secondary role in translating survival signaling into tumor progression and therapy resistance. The results presented here are the first to establish the critical role of BAD phosphorylation in stress or adrenaline antiapoptotic signaling in prostate tumors in vivo.

In the context of prostate cancer, substantial attention is paid to the potential roles of ARs in regulation of apoptosis in prostate cells. Specifically, androgen independence is attributed to transactivation of AR in the absence of androgens by other signaling pathways or to activation of antiapoptotic and proliferative pathways that are entirely independent from AR (36). Several publications examined interactions between PKA signaling and AR and reported either transactivation (37, 38) or inhibition (39, 40) of AR.

We previously demonstrated that the antiapoptotic effect of activation of ADRB2s is modestly diminished in prostate cancer cells with knockdown of AR expression and thus is largely independent
from AR (11). Conversely, unlike the AR agonist R1881, adrenaline did not induce increased PSA production by LNCaP and C42 cells that express AR (Supplemental Figure 9A). Thus, adrenaline cannot transactivate AR in prostate cancer cells. Consistent with this conclusion, stress did not increase PSA levels in mice with C42Luc xenografts (Supplemental Figure 9B), or probasin expression in prostates of mice treated with bicalutamide (Figure 8A).

Considering these recent data and earlier results of experiments with AR knockdown, we concluded that transactivation of AR plays a limited role in the antiapoptotic effects of adrenaline. Instead, adrenaline bypasses AR by activating the AR-independent ADRB2/PKA/BAD antiapoptotic signaling pathway and thus increases resistance of prostate cancer cells to androgen ablation therapy and other cytotoxic therapies that induce apoptosis.

A substantial body of literature describes the effects of stress on tumor development and metastases in various cancer models (5). Yet despite this abundant phenomenology, mechanisms of interaction between stress and cancer have not been well defined. The pioneering studies by Selye on stress-induced immunosuppression (41) stimulated significant interest in understanding how the modulation of immune responses by stress contributes to cancer initiation and progression. Thus, it was reported that catecholamine signaling accelerated primary tumor development by inhibiting natural killer cells and stimulated metastatic spread by attracting macrophages to tumor sites (42, 43).

Another line of research has focused on stress-regulated angiogenesis. Experiments in ovarian tumor xenografts have shown that ADRB2 activation leads to greater production of VEGF by ovarian cancer cells and neovascularization that supports tumor growth (16). These experiments established a new paradigm that connected the neuroendocrine system, cancer cells, and vascular growth into a stress-activated circuit that accelerated progression of ovarian cancer (44).

Since our xenograft experiments were conducted in immunocompromised mice, and the effects of stress on apoptosis were observed within 6 hours, contributions from the tumor microenvironment are unlikely to play a dominant role in inhibiting apoptosis in this model. Moreover, we did not find increased VEGF levels in plasma of stressed mice (Supplemental Figure 10A). Because C42Luc xenografts are already highly vascularized, this model may not permit detection of vascular increases. Immunostaining of the prostates of intact and stressed Hi-Myc mice with the endothelial cell marker factor VIII-related antigen (FVIII-RA) did not show increased vascular density in stressed mice (Supplemental Figure 10B). Taken together, these experimental data suggest that, unlike in the models of ovarian cancer, increased vascularity is not a primary mediator of stress effects on prostate tumors.

Expression of functional ADRB2 was previously reported in normal prostate epithelium and in prostate cancer cells, including LNCaP and C42 human prostate cancer cells and rodent prostates (12, 20, 45, 46). We confirmed expression of ADRB2 in prostate cancer models (Hi-Myc mouse prostates and C42 prostate cancer cells) as well as in human prostates (Supplemental Figure 11). Our results showing inhibition of antiapoptotic effects of stress on prostate tumors is consistent with recent findings in ovarian cancer xenografts (44).
stress or adrenaline in C42Luc xenografts by inducible expression of PKI-GFP and of BADS112A in prostate cancer cells are consistent with the notion that activation of antiapoptotic signaling within prostate cancer cells (rather than systemic effects of adrenaline) are responsible for reduced therapeutic sensitivity and accelerated progression of prostate tumors. Results from experiments in Hi-Myc mice that express either WT BAD or BAD3SA supported the conclusions from experiments in the xenograft model that antiapoptotic signaling via BAD phosphorylation mediates effects of stress on PIN extent and on prostate weight. These results suggest apoptosis inhibition by adrenaline as a new mechanism of the tumor-host interaction that, together with effects mediated via the immune and vascular systems, defines the effects of behavioral stress on tumor growth.

Interactions between stress and cancer may not always be unidirectional. Thus, moderate stress from enriched environments reportedly causes inhibition of tumor growth and cancer remission in melanoma and colon cancer models (47). These antitumor effects of moderate stress are attributed to increased hypothalamic brain-derived neurotrophic factor that activates sympathetic β-adrenergic receptor signaling, which in turn reduces secretion of leptins by white adipose tissue (47). Unlike immobilization stress, enriched environments may not increase blood adrenaline sufficiently to activate antiapoptotic signaling in cancer cells. These bidirectional effects of behavioral stress evoke the distinction between “eustress” and “distress” made by Selye in his classic studies (41).

Several extrapolations relevant to human prostate cancer can be derived from our results. First, tumor-promoting effects of stress will be evident in patients who regularly experience increased adrenaline levels. We observed repeated increases greater than 1 nM in plasma adrenaline levels of 14 of 62 prostate cancer patients (22%; Supplemental Figure 12).

Second, antiapoptotic effects of stress will be restricted to cancer cells that express components of the ADRB2/PKA/BAD pathway. ADRB2, PKA, and BAD are ubiquitously expressed in normal prostate epithelial cells and in prostate cancer cells (20, 45, 48–50). Expression of ADRB2 is regulated by androgen and triiodothyronine and is reportedly increased in malignant prostate glands and in metastatic tumors (45). Yet another publication showed biphasic changes in ADRB2 expression characterized by increased levels of PIN and localized prostate cancer, followed by reduction of ADRB2 in metastatic cancer specimens due to transcriptional suppression by EZH2 (51). Still, despite apparent EZH2-dependent downregulation of ADRB2 in LNCaP cells, adrenaline in concentrations observed in stressed patients can protect these cells from apoptosis (11). There is also evidence that expression of βARK1, which desensitizes ADRB2, is lost in prostate tumors with high Gleason scores. This may lead to prolonged activation of adrenaline/ADR2B/PKA/BAD signaling (52).

Third, effects of behavioral stress would be most evident when apoptosis plays the leading role: for example, in tumors with deregulated oncogene expression. We have shown accelerated tumor progression in Hi-Myc mice subjected to repeated stress. Considering that increased c-MYC expression is reported in a sub-
A vicious circle of stress signaling in prostate cancer. Psychoemotional stress activates the hypothalamic-pituitary-adrenal axis (HPA); as a result, blood levels of adrenaline increase and activate ADRB2/PKA/BAD antiapoptotic signaling in prostate cells. Constitutive activation of this signaling pathway in stressed patients (Supplemental Figure 12) may trigger a vicious circle: stress and anxiety from a diagnosis of prostate cancer increase adrenaline levels that in turn reduce efficacy of anticancer treatments.

Figure 9

A vicious circle of stress signaling in prostate cancer. Psychoemotional stress activates the hypothalamic-pituitary-adrenal axis (HPA); as a result, blood levels of adrenaline increase and activate ADRB2/PKA/BAD antiapoptotic signaling in prostate cells. Constitutive activation of this signaling pathway in stressed patients (Supplemental Figure 12) may trigger a vicious circle: stress and anxiety from a diagnosis of prostate cancer increase adrenaline levels that in turn reduce efficacy of anticancer treatments.

Methods

Cell lines, antibodies, and reagents. C42LucBAD cells were generated by transfecting C42 cells with WT BAD (HA-BAD-pTRE2hygro) and firefly luciferase (PGL4.13). C42LucPKI cells were generated by cotransfecting C42tet-on cells with PKI-GFP chimera (PKI-GFP-pTRE-tight) and firefly luciferase (PGL4.14 hygro). C42LucBADpS112 cells were generated by cotransfecting C42tet-on cells with mutant BADpS112 (59) (HA-BADpS112-pTRE-tight), which has a mutated phosphorylation site at S112, and with firefly luciferase (PGL4.14 hygro). Transfections were performed at 60%–70% confluence using Lipofectamine 2000 (Invitrogen) according to the manufacturer’s recommendations. All cell lines were maintained in RPMI 1640 with 10% fetal bovine serum in 5% CO₂ at 37°C. Selections of stable clones were carried out in the presence of G418 (600 μg/ml) and hygromycin (150 μg/ml). After a 3-week selection period, macroscopically visible colonies were picked based on luminescence (luciferase expression). Cells were then expanded and analyzed for dosycycline-inducible expression of HA-BAD, PKI-GFP, and HA-BADpS112, A2870 ovarian cancer cells, which do not express ADRB2, were provided by A. Sood (University of Texas MD Anderson Cancer Center, Houston, Texas, USA).

Antibodies were obtained from the following sources: BAD, pBADpS112, pAKTThr308, pAKTThr328, pCREBPSer133, and cleaved caspase-3 from Cell Signaling Technology; mouse monoclonal antibody to β-actin from Sigma-Aldrich; goat polyclonal antibody to cleaved PARP from R&D Systems; anti-ADR2 antibody from Oromone Labs; mouse monoclonal antibody to c-Myc (9E10) and goat polyclonal antibody to probasin (R-15) from Santa Cruz Biotechnology; rabbit polyclonal antibody to FVIII-RA (catalog no. 18-0018) from Zymed; and secondary horseradish peroxidase–conjugated antibodies used for Western blots from Amersham Biosciences. Protein G–agarose beads and adrenaline were obtained from Calbiochem. ZSTK474 was provided by Zenyaku-Kogyo Co. Ltd. G418 and hygromycin B were from Clontech. Bicalutamide (Casodex) was bought from Santa Cruz Biotechnology. All other chemicals and reagents, unless otherwise specified, were purchased from Sigma-Aldrich. Tissue culture reagents were purchased from Invitrogen.

Mouse xenograft model and acute stress. 6-week-old male athymic nude mice (BALB/c genetic background) were obtained from the National Cancer Institute. Mice were maintained under pathogen-free conditions and provided with sterile food and water ad libitum. Human tumor xenografts were generated by subcutaneously inoculating prostate cancer cell lines (C42LucBAD, C42LucPKI, and C42LucBADpS112) into nude mice. Each mouse received 4 subcutaneous injections of 2 × 10⁶ cells with BD Matriigel matrix High Concentration (BD Biosciences). Injections were made using an insulin syringe and a 27-gauge needle at 4 locations: left and right shoulder and left and right flank. Injections at 4 locations ensured that each mouse would develop xenograft tumors, thus reducing the number of mice required for the experiments. When the largest tumor was approximately 100 mm³ in size, HA-BAD, PKI-GFP, or BADpS112 expression was induced by addition of doxycycline (1 mg/ml) to the drinking water 24 hours before the experiments. Mice were randomly assigned to experimental groups (DSMO; ZSTK474; ZSTK474 followed by immobilization stress; ZSTK474 and epinephrine; ZSTK474 and IC118,551, followed by immobilization stress; and ZSTK474, IC118,551, and epinephrine). The next day, xenograft tumors (1 tumor per mouse) were injected once with the PI3K inhibitor ZSTK474 (5 mM, 40 μl; 0.8 mg/kg) or vehicle (DMSO); 3 hours later, mice were subjected to immobilization stress for 1 hour (acute stress) or injected with adrenaline (100 μM, 30 μl). Immobilization stress, which mimicked the presence of a natural predator without possibility of escape, was created by placing mice into a 50-ml conical vial with openings for breathing. Vials with mice were placed for 1 hour in a plastic box that contained tissue impregnated with fox urine (Chagnon’s Trap-
In these experiments, the second generation of Hi-MycBAD3SA/WT mice were subjected to subcutaneous injections with either vehicle (DMSO) or bicalutamide (50 mg/kg) once a day and to immobilization stress for 1 hour (2 times per day with 12-hour interval) for 0 or 3 consecutive days. To investigate the role of ADRB2 in stress effects, IC118,551 (25 μM, 30 μl) was given intraperitoneally 30 minutes before immobilization stress or adrenaline injection. To avoid unintended stress, mice were handled with extra care. Manipulations that could cause distress (e.g., injections and blood sampling) were conducted under light isoflurane anesthesia.

Xenograft tumors were monitored by noninvasive optical imaging on an IVIS100 imaging station (Caliper Life Sciences). Animals were immobilized by gas anesthesia with 2% isoflurane/O2. To account for background and nonspecific luminescence, mice were imaged before injection of luciferin. Animals were injected with 100 μl of the firefly luciferase substrate luciferin (3.5 mg/ml in PBS) and imaged 15 minutes later. Whole-body images were obtained and analyzed using the Living ImageH software provided with the imaging system. A grayscale photographic image and the bioluminescent color image were superimposed to provide anatomic registration of the light signal. A region of interest (ROI) was manually selected over the luminescent signal, and the intensity was recorded as photons/second within an ROI. Luminescence was measured before injection of P3K inhibitors (0 hours) and 24, 48, and 72 hours after injection. Xenograft tumors were excised 6 hours after injection of ZSTK474 and analyzed by immunohistochemistry for expression of cleaved caspase-3 and by Western blotting for expression of BAD, PKK-GFP, and BADΔ50; inhibition of PAKT; cleavage of PARP and caspase-3; and phosphorylation of CREB and BAD.

At the time of tumor excision, blood was also collected, and adrenaline levels were measured by ELISA (see below).

Mouse prostate model and chronic stress. The transgenic Hi-Myc mice used herein, in which the prostate-specific expression of human c-myc is driven by the rat probasin promoter with androgen-responsive elements (ARR2/probasin promoter; ref. 29), were obtained from the Mouse Repository of the National Cancer Institute Mouse Models of Human Cancer Consortium. Hemizygous Hi-Myc mice on FVB background were crossbred with nontransgenic FVB breeders. All control mice used at each time point were from FVB littermates. To test the role of BAD phosphorylation, Hi-Myc mice were bred with BADΔ50Δ50 knockout mice (provided by M. Greenberg, Harvard Medical School, Boston, Massachusetts, USA), in which endogenous BAD is replaced by mutant BAD with S112, S136, and S155 substituted for alanine (14). In these experiments, the second generation of Hi-MycBADΔ50Δ50 mice was compared with WTBADΔ50Δ50 littermates as controls for baseline measures of prostate weight and with Hi-MycBADΔ50Δ50/littermates as controls for stress-induced reduction of apoptosis and increase in prostate weight.

12-week-old mice were subjected to immobilization stress for 1 hour for 7 consecutive days (2 times per day with 12-hour interval). To investigate the role of ADRB2 in stress effects, IC118,551 (25 μM, 30 μl) was given intraperitoneally 30 minutes before immobilization stress. At the end of day 7, before sacrifice of animals, approximately 500 μl of blood per mouse was collected through heart puncture under deep isoflurane anesthesia; blood was stored at –80°C until analysis. After sacrifice, each mouse was snap frozen in liquid nitrogen.

In vivo bicalutamide injection in mouse stress model. 12-week-old mice were subjected to subcutaneous injections with either vehicle (DMSO) or bicalutamide (50 mg/kg) once a day and to immobilization stress for 1 hour (2 times per day with 12-hour interval) for 2 or 3 consecutive days. To investigate the role of ADRB2 in stress effects, IC118,551 was given as described above. At 24 hours after the last injection, blood and prostate tissues (AP, DLP, and ventral prostate (VP) lobes were dissected and weighed; prostate tissues were then paraffin embedded and snap frozen in liquid nitrogen.

Prostate tissues were homogenized in lysis buffer containing 20 mM Tris (pH 7.4); 40 mM NaF; 2 mM EDTA; 1 mM EGTA; 1 Triton X-100; 1 mg/ml each of leupeptin, pepstatin, and aprotinin; 1 mM phenylmethylsulfonyl fluoride; 1 mM NaVO4; 50 mM β-glycerophosphate; 40 mM p-nitrophenyl phosphate; and 1 mM diithiothreitol. The lysates were cleared of insoluble material by centrifugation at 18,400 g for 10 minutes at 4°C. Tissue extracts were incubated with 6–8 μg anti-HA antibodies (12CAS) overnight at 4°C and with protein G-agarose beads (Calbiochem) for another 3 hours. Beads were washed 3 times with cell lysis buffer, and proteins were eluted with SDS sample buffer for Western blot analysis.

Whole Ab from cows. Proteins were visualized using an ECL chemiluminescence detection system, following the manufacturer’s protocol and Hyperfilm ECL (Amersham). After staining, nitrocellulose blots were stripped and reprobed with loading control antibodies (β-actin, α-tubulin, AKT, and BAD) for comparison and normalization. For quantification of Western blots, fluorescent secondary antibodies were used, and signal was quantified on an Odyssey imaging system.

Blood collection from prostate cancer patients. Blood was collected by phlebotomy twice with a 4-week interval.

Adrenaline and noradrenaline measurements. Plasma adrenaline concentrations were measured by ELISA (mouse) or radioimmunoassay (mouse, human) using commercially available assays (BA-0100 and BA-5100; Labor Diagnostika Nord, purchased through Rocky Mountain Diagnostics). Adrenaline was first extracted using a ciss-diol–specific affinity gel, acetylated to N-acetyladrenaline, and then derivatized enzymatically to N-acylmeta- nephrine. Acetylated adrenaline from the standards, controls, and samples then competed for a fixed number of antiserum binding sites, later detected by ELISA or radioimmunoassay, as described by the manufacturer.

For tissue adrenaline measurements, samples were homogenized in 0.01 N HCl in the presence of ETDATA (final concentration, 1 mM) and sodium metabisulfite (final concentration, 4 mM), and adrenaline concentrations were measured by ELISA (mouse).

Tissue noradrenaline levels were quantified using HPLC (Agilent 1100 binary HPLC) tandem mass spectrometry (Waters Quattro Ultima). Frozen pulverized tissues were weighed, suspended in HPLC-grade methanol (Fisher Scientific), and homogenized by ultrasonic disruption using a Misonix 3000 tissue homogenizer. Samples were centrifuged at 15,000 g for 5 minutes at 5°C to pellet cellular debris, and 0.1 ml supernatant was then mixed 1:1 with 20 mM ammonium acetate (pH 3.5) for analysis. Chromatographic resolution of noradrenaline was achieved using a Phenomenex SynterG 4 Hydro-RP (150 x 2 mm) analytical column with a linear mobile phase gradient separation method. Mass spectrometry analysis was performed using electrospray positive ionization in multiple reaction-monitoring modes.

VEGF ELISA. VEGF concentrations in the mouse plasma were measured using mouse VEGF Quantikine immunoassays (R&D Systems) following the manufacturer’s instructions.

Immunoprecipitation. Prostate tissues were homogenized in lysis buffer containing 20 mM Tris (pH 7.4); 40 mM NaF; 2 mM EDTA; 1 mM EGTA; 1 Triton X-100; 1 mg/ml each of leupeptin, pepstatin, and aprotinin; 1 mM phenylmethylsulfonyl fluoride; 1 mM NaVO4; 50 mM β-glycerophosphate; 40 mM p-nitrophenyl phosphate; and 1 mM diithiothreitol. The lysates were cleared of insoluble material by centrifugation at 18,400 g for 10 minutes at 4°C. Tissue extracts were incubated with 6–8 μg anti-HA antibodies (12CAS) overnight at 4°C and with protein G-agarose beads (Calbiochem) for another 3 hours. Beads were washed 3 times with cell lysis buffer, and proteins were eluted with SDS sample buffer for Western blot analysis.

Immunohistochemistry. Antibody staining was performed on histological sections of formalin-fixed prostate tumor xenografts and mouse prostate lobes. Cleaved caspase-3 staining was performed with an anti–cleaved caspase-3 primary antibody (1:1,000 dilution; catalog 9661; Cell Signaling Technology) that specifically recognizes the large fragment (17 kDa) of the active protein but not full-length caspase-3, followed by a biotinylated anti-rabbit secondary antibody and streptavidin alkaline phosphatase (Super Sensitive Link-Label IHC Detection Systems; Bio-Genex); sections were then visual-
ized with Vector Red Substrate (SK-5100; Vector Laboratories) and counterstained with hematoxylin. Similarly, Ki-67 immunostaining was performed with polyclonal anti–Ki-67 (1:200 dilution; ab15580; Abcam) antibody.

Double immunofluorescence for cleaved caspase-3 and TUNEL. To visualize the colocalization of activated caspase-3 and DNA fragmentation in C42LucBAD prostate cancer cells, C42LucBAD prostate cancer xenografts, and mouse prostates, sequential immunofluorescence for cleaved caspase-3 and TUNEL was done as described previously (60). Briefly, cells and fresh-frozen tissue sections were fixed in 10% buffered formalin for 20 minutes and then permeabilized in 0.1% sodium citrate with 0.1% NP-40 at 4°C for 2 minutes, followed by blocking for 30 minutes with 2.5% goat serum in PBST (PBS plus 0.1% Tween 20) at 37°C. Primary antibody to cleaved caspase-3 (1:300 dilution in PBST with 2.5% goat serum; Cell Signaling Technology) was added for 3 hours at room temperature. After washing 3 times in PBST, secondary antibody conjugated with Texas Red (1:300 dilution in PBST plus 2.5% goat serum) was added for 90 minutes at room temperature. After washing 3 times in PBST, TUNEL reaction was done as described in the manual for In Situ Cell Death Detection Kit, POD (Hoffmann-La Roche Ltd.).

Determination of apoptotic and proliferative indices. For this study, activated cleaved caspase-3 labeling was used to identify apoptotic cells. The number of cleaved caspase-3–labeled cells in immunostained sections was counted relative to the total number of glandular epithelial cells present in whole DLP sections. Digital copies of the entire prostate were created automatically from the cleared caspase-3–immunostained glass slides by the Aperio ScanScope CS with objective ×20. Individual images of DLP were then exported in Adobe Photoshop CS, and nonglandular portions of the DLP were cropped. The total number of DLP epithelial cells was enumerated in all glands using Image-Pro Plus 4.5 software (Image Processing Solutions). Numbers of apoptotic cells were then counted in every gland from the imaged DLP. The apoptotic index for each DLP lobe was expressed as the number of apoptotic cells per 100 cells in all glands (glands with normal epithelium and PIN). The Ki-67 proliferative index was determined similarly.

PIN measurements in Hi-Myc mice. Hi-Myc mice develop mouse PIN followed by prostatic adenocarcinoma as a result of MYC overexpression in the mouse prostate. Histologically, mouse PIN is characterized by enlargement of nuclei, prominence of nucleoli, and epithelial cell proliferation; crowding results in a pseudo-multilayer appearance (overlapping of cells), with normal architecture of the glands (Supplemental Figure 2E). PIN area was measured in DLP of intact and chronically stressed mice. H&E-stained slides were digitally scanned, exported, and cropped as described above. PIN and total glandular areas were measured in each scanned DLP, and PIN results were expressed as a percentage of total DLP glandular area.

In vivo MRI for tumor volume measurements. Each animal was anesthetized in an induction chamber filled with a mixture of isoflurane (2%) and oxygen (2 l/min) and continued to receive isoflurane and oxygen during the procedure; typical levels during scanning were 1.5% and 1 l/min. A respirator was placed over the animal’s abdomen to monitor respiration rate and to facilitate triggered acquisition. Thermostatically controlled warm air was blown into the bore of the magnet to keep the animal’s skin temperature above 35°C. The animal was placed in the center of the 7T MRI magnet in a 50-mm-inside-diameter quadrature RF coil (Doty Scientific). Whole-body T2-weighted images were acquired using low 300-2-MHz radio waves. The entire imaging data acquisition procedure took about 15 minutes per mouse. A 3-plane localizer Rapid Acquisition with Relaxation Enhancement (RARE) pulse sequence was used with the following parameters: TR, 2100 ms; TE, 36 ms; matrix, 256 × 256; FOV, 4 cm; slice thickness, 2.0 mm; NEX, 1; giving an acquisition time of 50 seconds. The 3-plane localizer was used to plan the geometry for the high-resolution tumor volume scan. The high-resolution scan was performed using a RARE pulse sequence as well as axial slices centered on the tumor, with the following parameters: TR, 3,300 ms; TE, 45 ms; FOV, 3.0 cm; slice thickness, 1.0 mm; matrix, 256 × 256; NEX, 2; giving an acquisition time of 10 minutes. At the end of the procedure, each mouse was placed on a warming pad until it regained consciousness. Images were analyzed using ImageJ software to measure the total tumor volume in each mouse.

Total PSA electrochemiluminescence immunoassay. Total PSA was assayed according to the manufacturer’s protocol, using a Roche Elecsys 2010 Chemistry Analyzer (Hoffmann-La Roche Ltd.) (61). Each sample was assayed in triplicate.

Analysis of microvessel density (MVD) in mouse prostate tissue sections. FVIII-RA expression was detected immunohistochemically using rabbit polyclonal antibody (Zymed FVIII-RA antibody) provided by L. Metheny-Barlow (Wake Forest University School of Medicine) on histological sections of formalin-fixed mouse prostate lobes. To quantify MVD, we counted total number of microvessels (clusters of endothelial cells positive for FVIII staining with central lumen were considered to be individual vessels) from digital copies of the entire prostate. MVD was then expressed as number of microvessels per square millimeter of prostate tissue section.

Statistics. To compare luminescence between mouse groups in Figures 1 and 2, 2-way repeated-measures ANOVA models were fit with the individual animal treated as a random effect in the model. In these models, time and group were considered as fixed effects. For each model, the group by time interaction was first examined to determine whether differences between groups were consistent over the time periods. If this interaction was nonsignificant, then the model was refit without the interaction term, and the group effect was examined, adjusting for the time of the measurement. Groups were compared using this approach. PROC MIXE in SAS version 9.2 was used to fit these models.

To determine whether differences between data sets in Figure 3–8 and Supplemental Figures 6 and 8–10 were statistically significant, Student’s t test analysis (2-tailed distribution; 2-sample unequal variance) was performed using Microsoft Excel software. A P value less than 0.03 was considered significant. Error bars show SD from the average of at least 3 samples.

Study approval. All animal studies were conducted according to a protocol approved by the Institutional Animal Care and Use Committee of Wake Forest School of Medicine and conformed to the NIH Guide for the Care and Use of Laboratory Animals. For studies in prostate cancer patients, all participants provided informed consent, and the protocol was approved by the Institutional Review Board of Wake Forest School of Medicine.

Acknowledgments

The authors are grateful to Anil Sood and Karen Klein for critical reading and helpful suggestions; to Dina Yamaloeva, Michael Mangiapani, and Michael Conlin for assistance with image analysis; to John Olson for MRI imaging; and to Michael Thomas for mass spectrometry detection of noradrenaline. This work was supported by federal grants PC073548 from the Department of Defense and R01CA118329 from the National Cancer Institute and by institutional grants from Wake Forest University Health Sciences to G. Kulik. D. Yancey was supported in part by Research Supplement to Promote Diversity in Health-Related Research.

Received for publication February 10, 2012, and accepted in revised form November 26, 2012.

Address correspondence to: George Kulik, Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Blvd., Winston-Salem, North Carolina 27157, USA. Phone: 336.713.7650; Fax: 336.713.7661; E-mail: gkulik@wakehealth.edu.