#### SUPPLEMENTARY MATERIAL

## Human satellite cells as a manageable tool for gene therapy

Andreas Marg, Helena Escobar, Markus Kufeld, Sina Gloy, Joseph Zacher, Andreas Spuler, Carmen Birchmeier, Zsuzsanna Izsvák, Simone Spuler

## **Supplemental Figure 1**



Single human muscle fiber fragment after manual dissection. Bar 200  $\mu\text{m}$ 

# Supplementary Table 1. Summary of experiments

| Number of muscle | Age and gender     | Procedure                          | Number of           |
|------------------|--------------------|------------------------------------|---------------------|
| biopsy specimens | of donors          |                                    | experiments         |
| 69               | 20-80 years        | HMFF <sup>1</sup> characterization | 580 HMFF            |
|                  | 34 male, 35 female | Characterization of                | 304 HMFF            |
|                  |                    | colonies that grew onto            |                     |
|                  |                    | culture dish                       |                     |
|                  |                    | Characterization of                | 272 HMFF            |
|                  |                    | colonies after hypothermic         |                     |
|                  |                    | treatment (4°C)                    |                     |
| 6                | 44-64 years        | Transplantation                    | 33 transplantations |
|                  | 3 male, 3 female   |                                    | in TA muscle        |

<sup>1</sup> Human muscle fiber fragment

#### **Supplementary Figure 2**



Surface marker profile of human satellite cells. Upper panel: Skeletal muscle cryosections from a three months old infant. MET positive cells (red) are frequent in the satellite cell niche. In muscle section from adult probands  $MET^+$  cells could not be detected. Second and third panel: CXCR4 (red) is expressed in endothelial cells of skeletal muscle tissue; Ulex European Agglutinin (UEA), green. Some CXCR4 positive cells are located in the interstitial space outside of the basal lamina ( $\beta$ 2 laminin, green). Lower panel: Endothelial cells of skeletal muscle tissue express high levels of CD34 (CD34: red, UEA: green). No cells in the satellite cell niche are positive for CD34. Bars: 50/100/50/50 µm. Supplementary Video 1 Viable satellite cells in single human fiber fragment.

Satellite cells migrating in the satellite cell niche of human a single fiber. The fiber has been cultured for 13 days prior to recording for 17 h. Images were taken every 15 min. Note the sliding cell inside of the surrounding membrane. Bar:  $75 \mu m$ .

### **Supplementary Figure 3**



Colony formation of cells outgrowing the HMFF could be observed 10 days after initiating the HMFF irrespective whether the fiber was placed on Matrigel® (left) or on plastic (right). Bar: 200 µm.

# Supplemental Table 2: Antibodies used for immunohistochemistry

| Antibody          | Species | Working          | Catalog number, Company                 |
|-------------------|---------|------------------|-----------------------------------------|
|                   |         | concentration    |                                         |
| Anti-BrdU         | rat     | 10 µg/ml         | ab 6326, Abcam, Cambridge, UK           |
| Anti-CD34         | rabbit  | 2 µg/ml          | sc-9095, Santa Cruz Biotechnology,      |
|                   |         |                  | Santa Cruz, CA, USA                     |
| Anti-CXCR4        | rabbit  | 2.5 µg/ml        | ab 2074, Abcam                          |
| Anti-c-met        | rabbit  | 2 µg/ml          | sc-161, Santa Cruz Biotechnology        |
| Anti-desmin       | mouse   | 1:500 (cells)    | M 0760, Dako, Glostrup, Denmark         |
|                   |         | 1:50 (histology) |                                         |
| Anti-desmin       | rabbit  | 4 µg/ml          | ab 8592, Abcam                          |
| Anti-hu Lamin A/C | rabbit  | 1:2000           | ab 108595, Epitomics, Cambridge, UK     |
| Anti-β2 laminin   | mouse   | 0.1 µg/ml        | Novus Biologicals, Littleton, CO, USA   |
| Anti-Myf5         | rabbit  | 0.2 µg/ml        | sc-302, Santa Cruz Biotechnology        |
| Anti-MyoD         | mouse   | 1 µg/ml          | sc-32758, Santa Cruz Biotechnology      |
| Anti-NCAM (CD56)  | mouse   | 2 µg/ml          | 130-090-955, Miltenyi Biotech, Bergisch |
|                   |         |                  | Gladbach, Germany                       |
| Anti-Pax7         | mouse   | Supernatant,     | DSHB, Iowa City, Iowa, USA              |
|                   |         | undiluted        |                                         |

## **Supplemental Figure 4**



Effect of irradiation (18 Gy) on mouse tibialis anterior (TA) muscle. Cardiotoxin (CTX) was injected into TA muscle without irradiation (left) or 24 h after irradiation (middle). Irradiation completely abolished muscle regeneration, but had no effect on muscle morphology in the absence of CTX (right). Histology was obtained 9 days after irradiation Bar, 100 µm.