Supplemental data

Direct control of hepatic glucose production by interleukin-13

Kristopher J. Stanya¹, David Jacobi¹,², Sihao Liu¹,*, Prerna Bhargava¹,*, Lingling Dai¹,³, Matthew R. Gangl¹, Karen Inouye¹, Jillian Barlow⁴, Yewei Ji⁵, Joseph P. Mizgerd⁶, Ling Qi⁵, Hang Shi⁷, Andrew N.J. McKenzie⁴ and Chih-Hao Lee¹,†.

¹Department of Genetics and Complex Diseases, Division of Biological Sciences, Harvard School of Public Health, 665 Huntington Ave, Boston, MA 02115, USA

²CHRU de Tours, Service de Médecine Interne-Nutrition, INSERM U 1069, Université François Rabelais, Tours, France

³Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan, People’s Republic of China

⁴MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK

⁵Division of Nutritional Science, Cornell University, Ithaca, NY 14853, USA

⁶Pulmonary Center, Boston University School of Medicine, Boston MA 02118, USA

⁷Department of Internal Medicine, Wake Forest Health Sciences, Winston-Salem, NC 27157, USA

*These authors contributed equally to this work

†Correspondence should be addressed:
C.-H. L. e-mail: clee@hsph.harvard.edu
Supplemental Methods

Lipogenic and fat oxidation assays. For measurement of lipogenesis, hepatocytes were treated \(\pm \) 10 ng/ml rIl-13 overnight followed by incubation with \(^{14}\)C-acetate for 6 h. \(^{14}\)C-lipids were extracted with 2:1 chloroform:methanol and normalized to protein content. Fatty acid oxidation assays were conducted using the \(^{3}\)H palmitate tracer, following overnight rIl-13 treatment. \(^{3}\)H\(_{2}\)O was determined and normalized to the protein concentration.

FACS and F4/80\(^{+}\) cell isolation. Livers and WAT were harvested from mice fasted for 6 h. Liver cells were released by extensive pipetting and filtered through a cell strainer (70 \(\mu \)m), followed by centrifugation at 50g to pellet hepatocytes. Supernatant containing immune cells was washed and collected. WAT was digested for 30 min at 37°C with 2 mg/mL collagenase, filtered through nylon mesh (250 \(\mu \)m) and centrifuged to pellet the stromal vascular fraction. Cells devoid of hepatocytes or adipocytes were subjected to either FACS using antibodies against F4/80 (Life Technologies) and Mgl1 (AbD Serotec) or magnetic beads conjugated with anti-F4/80 antibody (Life Technologies) for RNA isolation to determine M1/M2 gene expression in resident macrophages.
Supplemental table 1

Metabolic parameters of high fat fed BALB/c mice

<table>
<thead>
<tr>
<th>BALB/c HFD</th>
<th>wt</th>
<th>Il-13+/−</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (g)</td>
<td>42.78±1.82</td>
<td>43.66±1.31</td>
</tr>
<tr>
<td>Liver/body weight (mg/g)</td>
<td>33.44±1.2</td>
<td>34.13±1.27</td>
</tr>
<tr>
<td>WAT/body weight (mg/g)</td>
<td>32.7±1.5</td>
<td>33.32±3.12</td>
</tr>
<tr>
<td>Glucose (mg/dL)</td>
<td>99.20±9.40</td>
<td>141.20±12.16*</td>
</tr>
<tr>
<td>Insulin (ng/mL)</td>
<td>0.47±0.009</td>
<td>0.45±0.004</td>
</tr>
<tr>
<td>Triglyceride (mg/dL)</td>
<td>49.53±4.37</td>
<td>67.59±5.43*</td>
</tr>
<tr>
<td>Cholesterol (mg/dL)</td>
<td>111.19±5.00</td>
<td>125.64±5.57</td>
</tr>
<tr>
<td>Free fatty acid (mMol)</td>
<td>2.05±0.12</td>
<td>1.71±0.14</td>
</tr>
<tr>
<td>Lactate (mg/dL)</td>
<td>15.49±1.16</td>
<td>14.42±1.15</td>
</tr>
</tbody>
</table>

Mice were fasted 6 h (n = 8/genotype). *p < 0.05, wt vs. Il-13+/− mice
Supplementary figures and figure legends

Supplemental Figure 1
Body weight and insulin responses in chow-fed and insulin signaling in high fat fed $IL-13^{-/-}$ mice in the BALB/c background. (A) The expression of IL-13 receptors in immune and non-immune cells determined by real-time PCR. IL-13 (and IL-4) binds to type II receptors consisting of IL-4rα/IL-13rα1 dimers. IL-13rα2 is thought to be a decoy receptor. IL-4 also binds to type I receptors consisting of IL-4rα/γc dimers, which are only expressed in immune cells, such as T lymphocytes. (B) Body weight and (C) insulin tolerance test (ITT) in wild-type (wt) or $IL-13^{-/-}$ mice in the BALB/c background on a normal chow diet (9% fat). ITT was conducted in 6 month old animals ($n = 5$/genotype). (D) Immunoblotting of tissue insulin signaling in high fat fed wt and $IL-13^{-/-}$ mice in the BALB/c background assessed by insulin stimulated Akt phosphorylation ($n = 8$/genotype). 5u/kg insulin was i.p. injected and tissues were collected 10 min later. Data are presented as mean ± SEM.
Supplemental Figure 2
Increased hepatic gluconeogenic gene expression in BALB/c $\text{Il-13}^{-/-}$ mice on high fat diet. (A) Metabolic gene expression in the liver. Liver samples from 6 h fasted wt and $\text{Il-13}^{-/-}$ mice in the BALB/c background ($n=6$, high fat diet for 6 months) were collected and gene expression was analyzed by quantitative, real-time PCR. (B) Glucose production and gluconeogenic gene expression are elevated in primary hepatocytes derived from $\text{Il-13}^{-/-}$ mice (BALB/c on high fat diet). rII-13 (10 ng/ml) was given to hepatocytes for two hours followed by a 4 hour glucose production assay in the presence of rII-13. Data are presented as mean ± SEM; *p < 0.05.
Supplemental Figure 3
Assessment of macrophage activation and tissue inflammation in C57BL/6 wt and Il-13–/– mice on normal chow (7 month old males). (A) and (B) Gene expression analyses of inflammatory markers in F4/80+ cells isolated from livers and white adipose tissues (WAT) (n = 4). Cells were isolated using magnetic beads conjugated with anti-F4/80 antibody. Right panel: FACS analyses to examine the percentage of F4/80+ cells in the non-hepatocyte or non-adipocyte fraction and the expression of Mgl1 in F4/80+ cells. (C) Circulating concentrations of cytokines and chemokines determined by ELISA (n = 7). (D) WAT histology (sections from 3 individual mice). Scale bar: 100 µm. Data are presented as mean ± SEM; *p < 0.05.
Supplemental Figure 4

Inflammatory and metabolic gene expression in BALB/c wt and Il-13–/– mice on high fat diet. (A) and (B) Gene expression analyses of inflammatory markers in liver and white adipose tissue (WAT). Tissue samples from 6 h fasted wt and Il-13–/– mice in the BALB/c background (n = 6, high fat diet for 6 months) were collected and gene expression was analyzed by quantitative, real-time PCR. (C) Expression profiling of oxidative metabolism and thermogenic genes in brown adipose tissue (BAT). Data are presented as mean ± SEM; *p < 0.05.
Supplemental Figure 5
Assessment of knockout/knockdown efficiency and the role of Il-13 in fat metabolism in hepatocytes. (A) Hepatic expression of Il-13 and Il-4 at the fed or fasted state determined by quantitative real-time PCR (male C57BL/6 mice, n = 5). (B) The expression of Stat3 and Stat6 in wt, Stat3–/– and Stat6–/– hepatocytes ± rII-13 (10 ng/ml) determined by quantitative real-time PCR. (C) The expression of Stat3, Stat6 and Il-13rα1 in control (sicontrol), Il-13rα1 siRNA (siII-13rα1) and Stat3 siRNA (siStat3) transfected hepatocytes ± rII-13 (10 ng/ml). (D) Il-4 does not suppress glucose production. Glucose production assays were conducted in primary hepatocytes ± rII-13 or rII-4 (10 ng/ml). (E) Lipogenic and fatty acid β oxidation assays in wt and Il-13–/– hepatocytes ± rII-13. Data are presented as mean ± SEM; *p<0.05.